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We study the coupling between backward- and forward-propagating wave modes, with the same group ve-
locity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion
technique, we derive a system of two coupled nonlinear Schr¨odinger equations governing the evolution of the
envelopes of these modes. We show that this system supports avariety of backward- and forward propagating
vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical sim-
ulations in the framework of the original lattice that models the transmission line, we study the propagation
properties of the derived vector soliton solutions. We showthat all types of the predicted solitons exist, but
differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types
are less robust, featuring shorter lifetimes. In all cases,our analytical predictions are in a very good agreement
with the results of the simulations, at least up to times of the order of the solitons’ lifetimes.

PACS numbers: 41.20.Jb, 42.65.Tg, 78.20.Ci

I. INTRODUCTION

Left-handed (LH) metamaterials are artificial, effectively
homogeneous structures, featuring negative refractive index
at specific frequency bands where the effective permittivity ǫ
and permeabilityµ are simultaneously negative [1–3]. In fact,
all known realizations of LH metamaterials rely on the use of
common right-handed (RH) elements and, thus, in a realistic
situation such a composite material features both a LH and a
RH behavior, in certain frequency bands. Physically speaking,
the difference between the two is that in the LH (RH) regime,
the energy and the wave fronts of the electromagnetic (EM)
waves propagate in the opposite (same) directions, giving rise
to backward- (forward-) propagating waves.

Transmission line (TL) theory constitutes a convenient
framework for the analysis of LH metamaterials. Such an
analysis relies on the connection of the EM properties of the
medium (ǫ andµ) with the electric elements of the TL’s unit
cell, namely the serial and shunt impedance. As mentioned
above, in practicecomposite right/left-handed (CRLH)struc-
tures are quite relevant, giving rise to pertinent CRLH-TL
models. These models are, in fact, dynamical lattices which
can be used for the description of a variety of metamaterials-
based devices and systems, such as resonators, directional
couplers, antennas, etc [1–4].

Nonlinear CRLH-TLs, with a serial or/and shunt
impedance depending on voltages or currents, have also
attracted attention. Such structures may be realized by
inserting diodes – which mimic voltage-controlled nonlinear
capacitors – into resonant conductive elements (such as
split-ring resonators) [5–7]. Such nonlinear CRLH-TL
models have been used in various works dealing, e.g., with
the parametric shielding of EM fields [8], the long-short wave
interaction [9], or soliton formation [10–12]. Experiments
in nonlinear CRLH-TLs have also been performed (see
the review [13]), and formation of bright [14, 15] or dark

[15, 16] envelope solitons, described by an effective nonlinear
Schrödinger (NLS) equation, was reported. Notice that in
earlier studies on RH-TL models it was shown that two (or
more) solitons propagating with the same group velocity, can
be described by a system of two (or more) NLS equations [17]
(see also [18] for theoretical as well as experimental results).
Such coupled NLS equations have been studied extensively
in nonlinear optics and mathematical physics; see, e.g.,
Refs. [19–21] and references therein. They are well-known to
give rise to a variety of vector solitons, including bright-bright
(BB), bright-dark (BD), and dark-dark (DD) ones.

In this work, we study analytically and numerically the in-
teraction between backward- and forward-propagating soli-
tons in a nonlinear CRLH-TL. Our model is a nonlinear ver-
sion of a generic CRLH-TL model, particularly relevant to
the context of LH metamaterials (see, e.g., Refs. [2, 4]). The
considered nonlinear element in the unit cell of the TL is the
shunt capacitor, which simulates the presence of a heterostruc-
ture barrier varactor (HBV) diode [6] (the capacitance of the
HBV diode depends on the applied voltage). Starting from
the discrete lump element model of the CRLH-TL, we de-
rive a nonlinear lattice equation. First, we study the linear
regime and show that, for certain frequency bands, RH- and
LH-modes can propagate with the same group velocity. Next,
we treat the nonlinear lattice equation in the framework of the
quasi-discrete(or quasi-continuum) approximation (see, e.g.,
[15, 22, 23] and [19] for a review): we thus seek for envelope
soliton solutions of the nonlinear lattice model, characterized
by a discrete carrierand acontinuum envelopeand employ
an asymptotic multi-scale expansion method, to derive a sys-
tem of two coupled NLS equations. Each of these equations
describes the evolution of the envelope of a backward- (LH-)
and a forward-propagating (RH-) mode.

A systematic analysis of the system of the NLS equations
reveals the existence –in certain frequency bands– of threedif-
ferent types of vector solitons: (a) a backward-propagating
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bright soliton coupled with a forward-propagating bright soli-
ton; (b) a backward-propagating bright soliton coupled with a
forward-propagatingdark soliton; (c) a backward-propagating
dark soliton coupled with a forward-propagating bright soli-
ton. This way, we propose –and study in detail– all possible
vector solitons in this nonlinear CRLH-TL setting, highlight-
ing how individual soliton components interact via the non-
linearity induced by the insertion of the HBV diodes. Impor-
tantly, our analysis suggests how the characteristics (ampli-
tude, width, etc) of each solitonic mode can control the ones
of the other mode; this possibility arises from the fact that
the relevant parameters of each soliton are connected with the
ones of the other soliton, thus providing a means to adjust,
e.g., the amplitude or width of the LH mode by changing the
parameters of the RH mode.

The above analytical predictions are then tested against di-
rect numerical simulations, which are performed in the frame-
work of the original nonlinear lattice model. The results of
the simulations verify the existence of the aforementioned
types of vector solitons in the full TL model, but also offer
important information regarding their robustness. In partic-
ular, results of direct simulations performed for long times
indicate that bright-bright (BB) solitons are the most robust
among the members of the vector soliton family. Indeed, the
mixed [dark-bright (DB) or bright-dark (BD)] types are found
to be less robust; however, the DB solitons in a specific fre-
quency band, although they are deformed during their evolu-
tion, are found to be more robust than those in other bands, as
well as the bright-dark solitons, which are destroyed for the
same propagation time. The observed long-time behaviour
of the above solitons of the mixed type may be qualitatively
explained –in the framework of the effective coupled NLS
description– by the following fact: in the less robust cases,
the continuous-wave background carrying the dark soliton is
prone to modulational instability [18, 24], while in the more
robust case is not. In any case, our results indicate the exis-
tence of all three types, robustness of BB solitons and partial
or substantial deformation of the other types. We can thus
conclude that bright-bright (LH-RH), as well as dark-bright
(LH-RH) solitons in certain frequency bands, have a better
chance to be observed in experiments.

The paper is organized as follows. In Section II, we intro-
duce the nonlinear CRLH-TL model and the pertinent lattice
equation, and derive the system of the two coupled NLS equa-
tions (relevant details are also appended in an Appendix). In
Section III, we present analytical and numerical results for
each type of vector soliton. Finally, in Section IV, we summa-
rize our conclusions.

II. THE MODEL AND ITS ANALYTICAL
CONSIDERATIONS

A. The nonlinear CRLH-TL model

We consider a generic CRLH-TL, composed by both right-
and left-handed elements, as shown in its unit-cell circuit
shown in Fig. 1 [2, 4]. The (RH) elements of this TL are

FIG. 1: The unit-cell circuit of the nonlinear CRLH model.

the inductanceLR and capacitanceCR, while the LH ones
are the inductanceLL and capacitanceCL. We assume that
the TL is loaded with a nonlinear capacitance (CR, while the
capacitanceCL will be assumed to be fixed and voltage in-
dependent). This can be implemented by proper insertion of
diodes in the TL (see, e.g., pertinent experiments as well as
theoretical work in Refs. [10–16]); in other words, we assume
that the shunt capacitorCR is nonlinear (see details below).

Let us now consider Kirchhoff’s voltage and current laws
for the unit-cell circuit of Fig. 1, which respectively read:

Vn−1 = Vn + LR

dIn
dt

+ Un, (1)

In = In+1 + IL +
d

dt
(CRVn), (2)

whereUn is the voltage across the capacitanceCL and IL
is the current across the inductorLL. The above equations,
together with the auxiliary equationsVn = LLdIL/dt and
In = CLdUn/dt, lead to the following system:

LRLLCL

d4

dt4
(CRVn) + LL

d2

dt2
(CRVn) + LRCL

d2Vn
dt2

−LLCL

d2

dt2
(Vn+1 + Vn−1 − 2Vn) + Vn = 0. (3)

To proceed further, we now consider a specific voltage-
dependence for the nonlinear capacitanceCR. Here, we will
assume that – for sufficiently small values of the voltageVn
– the functionCR(Vn) can be approximated as follows, via a
Taylor expansion:

CR(Vn) ≈ CR0 + C
′

R0(Vn − V0) +
1

2
C

′′

R0(Vn − V0)
2, (4)

whereCR0 ≡ CR(V0) is a constant capacitance correspond-
ing to the bias voltageV0, while C

′

R0 andC
′′

R0 also assume
constant values, depending on the particular form ofCR(V ).
Below, we will further discuss this approximation, in connec-
tion with the HBV diode, used in the experiments described in
Ref. [13] (similar varactor-type diodes were also used in the
experiments of Ref. [7]).

Next, substituting Eq. (4) into Eq. (3) and using the scale
transformationst → ωsht [whereω2

sh = (LLCR0)
−1] and
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Vn → [C
′

R0(2CR0)
−1]Vn, we obtain:

d4Vn
dt4

− β2 d
2

dt2
(Vn+1 + Vn−1 − 2Vn) + (1 + δ2)

d2Vn
dt2

+δ2Vn + δ2
d2V 2

n

dt2
+ δ2µ

d2V 3
n

dt2
+
d4V 2

n

dt4
+ µ

d4V 3
n

dt4
= 0,

(5)

where the constant parametersδ, β andµ are given by:

δ =
fse
fsh

, β =
fRH

fsh
, µ =

2C
′′

R0

3C
′2
R0

CR0. (6)

In the above expressions,fse andfsh denote series and shunt
frequencies, whilefRH denotes the characteristic frequency
related to the RH part of the unit-cell circuit, respectively; the
above frequencies are defined as:

fse =
1

2π
√
LRCL

, fsh =
1

2π
√
LLCR0

,

fRH =
1

2π
√
LRCR0

. (7)

Note that if fse/fsh = 1, i.e., δ = 1, then the CRLH-TL
is usually referred to asbalanced, in the sense that the char-
acteristic impedances of the purely LH- and RH-TL, defined
asZL =

√

LL/CL andZR =
√

LR/CR0, are equal, i.e.,
ZL = ZR [2]. On the other hand, iffse/fsh > 1, i.e.,δ > 1,
the LH part of the TL dominates, in the sense that the TL has
a more pronounced LH behaviour (the serial branch features a
capacitive character while the shunt branch an inductive one).
In the opposite case,fse/fsh < 1, i.e., δ < 1, the RH part
of the TL dominates and the TL has a more pronounced RH
behaviour (the serial branch features an inductive character
while the shunt branch a capacitive one).

It is now relevant to adopt physically relevant parameter
values for Eq. (5). For applications in the microwave fre-
quency range (e.g., for microstrip lines [2] or coplanar waveg-
uide structures loaded with SRRs [3] – cf. also Ref. [23] for
recent work), typical values of the capacitances and induc-
tances involved in the CRLH structure are of the order of pF
and nH, respectively. Here, we will use the valuesLR = 1 nH,
CL = 0.1 pF, andLL = 0.12 nH; thus, the frequencies in
Eqs. (7) take the valuesfse = 15.92 GHz,fsh = 14.53 GHz
andfRH = 5.03 GHz. On the other hand, as concerns the pa-
rameters involved with the nonlinear capacitorCR, we assume
that the pertinent capacitance corresponds to a HBV diode,
which is characterized by the following equation [6] (see also
[7], where the same form ofC(V ) is used, but different pa-
rameter values):

C(V ) = Cj0Ada

(

1 +
|V |
Vbr

)−m

, (8)

whereCj0 = 1.53 fF/µm2 is the capacitance corresponding
to bias voltageV0 = 0.2 V, Ada = 650 µm2 is the device
area,Vbr = 12 V is the breakdown potential, and the exponent
m = 2.7 results from fitting experimental data. It is clear that,

for sufficiently smallV , by Taylor expanding Eq. (8) one ob-
tains Eq. (4), where the constant parameter values involvedare
CR0 = 1 pF,C

′

R0 = −0.24 pF/V andC
′′

R0 = −0.08 pF/V2.
To this end, the values of the normalized parametersδ, β and
µ appearing in Eq. (5) take the following values:

δ ≈ 1.1, β ≈ 0.35, µ ≈ −0.9. (9)

Below, we will use these values for the purposes of our an-
alytical and numerical considerations (we have checked that
other values lead to qualitatively similar results). Notice that
our choice leads toδ > 1, i.e., we consider the case where the
TL has a more pronounced LH character; however, when con-
sidering the linear setting (see next subsection), this parameter
will also assume other values, corresponding to the balanced
and RH-dominated behaviour as well.

B. Linear analysis

We now assume plane wave solutions of Eq. (5), of the form
Vn = Vo exp[i(kn − ωt)], wherek andω denote the wave
number and angular frequency, respectively, while the ampli-
tude of the wave isVo ≪ 1. Substituting the above ansatz into
Eq. (5), and keeping only the linear terms inV0, we obtain the
following linear dispersion relation:

ω4 −
(

1 + δ2 + 4β2 sin2
k

2

)

ω2 + δ2 = 0. (10)

The above result is illustrated in Fig. 2, where we plot the fre-
quencyf/fsh as a function of the wave numberk (in rad/cell),
for three different values ofδ (note that here we consider one
period ofk, i.e.,−π ≤ kj ≤ π). It is clear that forδ = 1.0954
(top panel) there exist two frequency bands where EM wave
propagation is possible: the RH-band [high-frequency band
depicted by dashed (blue) line], for1.0954 < f < 1.4535,
and the LH-band [low-frequency band depicted by solid (red)
line], for 0.7538 < f < 1. In the same case (δ = 1.0954),
there exists a gap for1 < f/fsh < δ, where EM wave propa-
gation is not possible.

In the case whereδ = 1 (corresponding, e.g., to the value
CL = 0.12 pF) the gap vanishes (cf. middle panel of Fig. 2)
and the TL is balanced. In the balanced case, EM wave prop-
agation is possible in two frequency bands as well: the RH-
band [high-frequency band – cf. dashed (blue) line] with
1 < f/fsh < 1.405 and the LH-band [low-frequency band
– cf. solid (red) line] with0.7117 < f/fsh < 1.

Finally, for δ = 0.7746 (corresponding, e.g., toCL =
0.2 pF), a gap appears again forδ < f/fsh < 1 (bottom panel
of Fig. 2). In this case too, there exist a RH-frequency band
and a LH-frequency band, for0.588 < f/fsh < 0.7746 and
1 < f/fsh < 1.317, respectively. Note that in all cases, the
RH± and LH± branches correspond to positive or negativek,
respectively.

Thus, generally, in the linear setting – and for a given fre-
quency – the EM waves may either propagate in the RH region
(forward wave propagation) or in the LH region (backward
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FIG. 2: (Color online) The dispersion relation showing the normal-
ized frequencyf/fsh as a function of the wave numberk (in rad/cell)
for different values ofδ, i.e., δ = 1.0954 (top panel),δ = 1
(middle panel), andδ = 0.7746 (bottom panel). The solid (red)
and dashed (blue) lines show the dispersion relation in the LH- and
RH-frequency regions, respectively; RH± and LH± denote branches
with k > 0 or k < 0. If δ 6= 1 a gap is formed; the width of the gap
is |δ − 1| for δ > 1 (top panel) orδ < 1 (bottom panel).

wave propagation). However, in the nonlinear setting, cou-
pling between modes propagating in the LH and RH regime is
possible (see, e.g., relevant earlier work in Refs. [17, 18]). Be-
low we will demonstrate that this is the case indeed, and study
the coupling (interaction) between LH and RH modes with
equal group velocities. Since the latter are tangents in thedis-
persion curves, inspection of Fig. 2 shows that it is possible to
identify domains, belonging to the RH± and LH∓ branches,
exhibiting parallel tangents, i.e., equal group velocities.

To further elaborate on this, we may use Eq. (10) to obtain
the group velocityvg ≡ ∂ω/∂k:

vg =
ω3β2 sin k

ω4 − δ2
. (11)
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FIG. 3: (Color online) The group velocityvg as a function of the
normalized frequencyf/fsh (for δ = 1.0954). The solid (red) and
dashed (blue) lines indicate branches corresponding to theLH− and
RH+ regimes, respectively. The intersection of the group velocity
curves with the horizontal solid (black) line depicts frequencies of
modes with the same group velocity,vg = 0.1. Regions I, II, III and
IV indicate possible interactions between LH− and RH+ modes with
the samevg but different signs of GVD.

In Fig. 3, we show the dependence of the group velocityvg on
the normalized frequencyf/fsh, for the values ofδ used in
Fig. 2. Notice that the figure depicts only the group-velocity
branches withvg > 0 – see solid (red) and dashed (blue) lines
– corresponding, respectively, to the LH− and RH+ branches
of the dispersion curves; the branches withvg < 0 (pertinent
to the LH+ and RH− branches of the dispersion curve) are
mirror symmetric with respect to the ones shown in the figure,
due to the parity of the dispersion relation.

Considering a horizontal cut of the group-velocity curves,
say atvg = 0.1 or vg = 0.075 (see horizontal lines in the
top and bottom panels of Fig. 3), it is readily observed that,
indeed, a LH− and a RH+ mode can share a common group
velocity (and interact in the nonlinear regime, as mentioned
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above). In fact, inspection of the group-velocity curves, say
in the top panel of Fig. 3, shows that the maximum possible
commonvg is given byvgmax

= 0.1339, the local maximum
of vg, occurring atf = 0.9391, in the (shorter in height) LH
frequency band. Then, one can divide each of the LH and
RH group-velocity curves into two sub-regions, depending
on the sign of the group-velocity dispersion (GVD),∂vg/∂ω,
where such coupling with equal group velocities may occur.
These subregions are: (a) the sub-bands I (0.7538 < f/fsh <
0.9391) and II (0.9391 < f/fsh < 1) for the LH-frequency
band, characterized by positive and negative GVD respec-
tively, and (b) the sub-bands III (1.0954 < f/fsh < 1.1195)
and IV (1.356 < f/fsh < 1.4535) for the RH-frequency
band, again characterized by positive and negative GVD re-
spectively. Thus, nonlinear LH and RH modes of equalvg
can feature the following four different possible interactions:

1. LH-mode in band II and RH-mode in band IV, both fea-
turing negative GVD.

2. LH-mode in band I and RH-mode in band IV; here, the
LH (RH) mode features positive (negative) GVD.

3. LH-mode in band I and RH-mode in band III, both fea-
turing positive GVD.

4. LH-mode in band II and RH-mode in band III; here, the
LH (RH) mode features negative (positive) GVD.

It is clear that the above set of possibilities arises from the
existence of the gap in the considered case withδ = 1.0954.
A similar situation also occurs forδ < 1, e.g., forδ = 0.7746
as in the bottom panels of Figs. 2 and 3. On the other hand, for
δ = 1 the gap does not longer exist and, thus, the only possi-
ble interaction is between a LH-mode with positive GVD and
a RH-mode with negative GVD; this interaction can occur for
group velocitiesvg ≤ 0.175, i.e., beneath the dashed horizon-
tal line in the middle panel of Fig. 3. This possibility, however,
is already taken into regard – cf. case (2) above; furthermore,
soliton formation in the balanced CRLH-TL (δ = 1) has al-
ready been studied in the literature [11]. For these reasons,
below we will proceed by analyzing the case corresponding
to δ = 1.0954, which offers all possible scenarios; it is clear
that the case ofδ = 0.7746 shares similar qualitative features;
this similarity extends beyond the linear wave case and into
the nonlinear solitonic one.

Although, as explained above, we are not going to analyze
soliton formation and soliton in the special case of the bal-
anced CRLH-TL withδ = 1, it is worth mentioning the fol-
lowing. In the case ofδ = 1, the dispersion relation exhibits a
Dirac point, namely it is approximately linear in the vicinity of
k = 0, i.e.,ω ≈ ±[1 + (β/2)k] – cf. middle panel of Fig. 2.
The emergence of Dirac points is particularly interesting in
the two-dimensional (2D) setting of triangular and hexago-
nal lattices arising in different contexts, such as optics [25],
atomic Bose-Einstein condensates [26], and the so-called pho-
tonic graphene [27]. This has also led to an interest in this
subject from a rigorous mathematical perspective [28]. It is
thus quite interesting that, in principle, 2D balanced CRLH-
TLs may host a variety of fundamental effects, such as conical

diffraction, formation of topological defects, and even phase
transitions, as in Refs. [25–27].

C. Nonlinear analysis: coupled NLS equations and solitons

To describe the coupling between a RH and a LH nonlin-
ear mode with equal group velocities, we will use the quasi-
discrete approximation, which takes into regard the inherent
discreteness of the system (see, e.g., Ref. [19] for a review,
and Refs. [15, 23] for relevant recent work). Generally, this
approach allows for the description of quasi-discrete envelope
solitons (usually satisfying an effective NLS model), charac-
terized by adiscrete carrierand a slowly-varyingcontinuum
envelope. In our case, since we are interested in the descrip-
tion of two different modes, we seek for a solution of Eq. (5)
in the form:

Vn = ǫ

2
∑

j=1

Vj(X,T ) exp(iθj) + c.c., (12)

where “c.c.” denotes complex conjugate. In Eq. (12), sub-
scriptsj = 1, 2 correspond to the LH and RH mode,Vj(X,T )
are unknown (continuous) slowly-varying envelope functions
depending on the slow scalesX = ǫ(n−vgt) (wherevg is the
commongroup velocity) andT = ǫ2t, while exp(iθj), with
θj = kjn − ωjt, are the (discrete) carriers of frequenciesωj

and wavenumberskj . Finally, ǫ is a formal small parameter
setting the field amplitude and the slow scales of the envelope
functions.

At this point, we should note that the fieldVn as expressed
in Eq. (12) is, in fact, the leading-order form of a more gen-
eral ansatz employing multiple time and space scales. In this
context, use of a formal multi-scale expansion method leads
to a hierarchy of equations at various powers ofǫ, which are
solved up to the third-order. Here, we will present the main
results and provide further details in Appendix A. Particularly,
from the first- and second-order problems [i.e., at ordersO(ǫ)
(linear limit) andO(ǫ2), respectively] we derive the dispersion
relation, Eq. (10), and the group velocity, Eq. (11). Finally, at
the next order,O(ǫ3), we obtain the following coupled NLS
equations:

i∂TV1 +
1

2
D1∂

2
XV1 +

(

g11|V1|2 + g12|V2|2
)

V1 = 0, (13)

i∂TV2 +
1

2
D2∂

2
XV2 +

(

g21|V1|2 + g22|V2|2
)

V2 = 0, (14)

where the normalized GVD coefficientsDj , the self-phase
modulation (SPM) coefficientsgjj , and the cross-phase mod-
ulation (CPM) coefficientsgj,3−j (with j = 1, 2) are respec-
tively given by:

Dj ≡ ∂2ωj

∂k2j
= vg

[

cot kj −
ω4
j + 3δ2

ωj(ω4
j − δ2)

vg

]

, (15)

gjj =
ω3
j (ω

2
j − δ2)

2(ω4
j − δ2)

(3µ−Aj) , (16)

gj,3−j =
ω3
j (ω

2
j − δ2)

2(ω4
j − δ2)

(6µ−B3−j) , (17)
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FIG. 4: (Color online) The nonlinearity coefficientsg11 [solid (red)
lines] andg22 [dashed (blue) lines] as functions off/fsh for interac-
tions in bands II-IV (top left), I-IV (top right), I-III (bottom left), and
II-III (bottom right). The parameterδ takes the valueδ = 1.0954.
Stars (in black) in each panel depict parameter values used in rele-
vant simulations —see Figs. 6 and 7 (corresponding to top left panel),
Figs. 9 and 10 (top right), Figs. 13 and 14 (bottom left), as well as
Figs. 15 and 16 (bottom right) below.

where the coefficientsAj andB3−j are defined in Appendix
A. It is now useful to remark that, for all four possible wave
interactions mentioned in the previous Section, the SPM coef-
ficientsgjj are negative —see Fig. 4. Then, measuring nor-
malized timeT and densities|Vj |2 in units of |D1|−1 and
|D1/gjj | respectively, we express Eqs. (13)-(14) in the fol-
lowing form:

i∂TV1 +
s

2
∂2XV1 +

(

λ1|V2|2 − |V1|2
)

V1 = 0, (18)

i∂TV2 +
d

2
∂2XV2 +

(

λ2|V1|2 − |V2|2
)

V2 = 0, (19)

where

s = sign(D1), d =
D2

|D1|
, λ1 =

g12
|g22|

, λ2 =
g21
|g11|

.

(20)

As seen from Eqs. (18)-(19), in the absence of CPM cou-
pling (λj = 0) the evolution of either the LH modeV1 or the
RH modeV2 is described by a single NLS equation. The lat-
ter, supports soliton solutions of the bright or the dark type,
depending on the sign of dispersion coefficient (see, e.g.,
Ref. [20]): in particular, the modeV1 (V2) supports bright soli-
tons fors < 0 (d < 0) or dark solitons fors > 0 (d > 0).
These conditions, however, are modified forλj 6= 0, and var-
ious types ofcoupled(alias vector) solitons can be found in
the full version of Eqs. (18)-(19). Below we will present these
types of coupled backward- and forward-propagatingsolitons,
belonging, respectively, to the LH and RH frequency bands.

In principle, four types of vector solitons are, in principle,
possible:

• bright-brightsolitons, in the form:

V1(X,T ) = a1sech(bX) exp(−iν1T ), (21)

V2(X,T ) = a2sech(bX) exp(−iν2T ), (22)

• bright-dark(BD) solitons, in the form:

V1(X,T ) = a1sech(bX) exp(−iν1T ), (23)

V2(X,T ) = a2tanh(bX) exp(−iν2T ), (24)

• dark-bright(DB) solitons, in the form:

V1(X,T ) = a1tanh(bX) exp(−iν1T ), (25)

V2(X,T ) = a2sech(bX) exp(−iν2T ), (26)

• dark-dark(DD) solitons, in the form:

V1(X,T ) = a1tanh(bX) exp(−iν1T ), (27)

V2(X,T ) = a2tanh(bX) exp(−iν2T ). (28)

In the above equations,a1,2 andν1,2 denote the amplitudes
and frequencies of each soliton, whileb is the (common) in-
verse width of the solitons.

Now, each of the above ansatz is substituted in Eqs. (18)-
(19), leading to a set of equations connecting the soliton pa-
rameters. Particularly, the equations connecting the ampli-
tudesa1,2 with the inverse widthb are of the form:

(aj/b)
2 = −αj , (29)

(aj/b)
2 = (−1)jαj , (30)

(aj/b)
2 = (−1)3−jαj , (31)

(aj/b)
2 = αj , (32)

for the BB, BD, DB and DD solitons respectively, where pa-
rametersαj (j = 1, 2) are given by:

α1 =
dλ1 + s

1− λ1λ2
, α2 =

sλ2 + d

1− λ1λ2
. (33)

On the other hand, the frequencies of the BB, BD, DB and DD
solitons are respectively given by:

ν1 = −s
2
b2, ν2 = −d

2
b2, (34)

ν1 = −s
2
b2 − λ1a

2
1, ν2 = a22, (35)

ν1 = a21, ν2 = −d
2
b2 − λ2a

2
2, (36)

ν1 = a21 − λ1a
2
2, ν2 = a22 − λ2a

2
1. (37)

It is clear that each type of vector soliton is characterizedby
five independent parameters, connected by a set of four equa-
tions; thus, each of the above vector solitons are characterized
by one free parameter. Furthermore, the fact that the param-
eters of each soliton component depends on the ones of the
other component, clearly highlights an important possibility
arising from the nonlinear coupling of the solitonic modes:
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one can control, e.g., the characteristics (amplitude, width,
etc) of a LH-soliton by means of the parameters of its RH
sibling.

Requiring that the right-hand sides of Eqs. (29)-(32) are
positive, it can be concluded that the existence of each type
of vector soliton is determined by the signs of parametersαj :
in particular, BB solitons exist forα1 < 0 andα2 < 0, BD
solitons exist forα1 < 0 andα2 > 0, DB solitons exist for
α1 > 0 andα2 < 0, while DD solitons exist forα1 > 0
andα2 > 0. On the other hand, we should mention that the
signs ofαj depend on frequency, through the frequency de-
pendence of the parameters involved in Eqs. (33). Thus, for
each different type of mode interaction [see cases (1)-(4) in
Section II.B], below we will present results for the sign (and
magnitude) ofαj in bands II-IV, I-IV, I-III and II-III, and ac-
cordingly determine which type of soliton is possible. This
way, we will show that BB, BD and DB solitons can exist in
certain frequency bands, while DD solitons do not exist: this
is due to the fact thatα1 andα2 are either of opposite signs
or both negative, as is attested to by Figs. 5 (top panel), 8, 11
and 12.

Before proceeding with the presentation of the coupled soli-
ton solutions we make the following comments. First, vector
solitons will be found in a stationary form; however, using
these stationary solutions, one can also find travelling soliton
solutions, with an additional free parameter, i.e., the velocity
C, by means of the following Galilean boost:

V1(X,T ) → V1(X − CT, T )

× exp

{

i

s

[

CX +

(

C2

2

)

T

]}

, (38)

V2(X,T ) → V2(X − CT, T )

× exp

{

i

d

[

CX +

(

C2

2

)

T

]}

. (39)

Second, it is interesting to note that, contrary to what is often
the case in the mathematically studied multi-component vari-
ants of the NLS equation [21], the model of Eqs. (18)-(19)
does not necessarily respect the conditionλ1 = λ2. The latter
condition ensures the existence of an underlying Hamiltonian
structure and is customary in other physical applications (such
as atomic physics [29]). Nevertheless, as we will see below,
this is not a necessary condition for the existence of the exact
soliton solutions considered below.

III. SOLITON INTERACTIONS IN DIFFERENT
FREQUENCY BANDS. NUMERICAL RESULTS

A. Numerical procedure.

Let us now proceed to study numerically the evolution of
the coupled solitons presented in the previous section in the
framework of the fully discrete model of Eq. (5).

In order to compare the analytical approximations with the
results of numerical simulations, we will make use of two di-
agnostic quantities: the first one is the evolution of the center

of mass defined as:

X(t) =

∑n=N

n=−N nV 2
n

∑n=N

n=−N V 2
n

, (40)

and the second one, is a power-like quantity defined as:

P (t) =

n=N
∑

n=−N

V 2
n , (41)

with 2N + 1 being the lattice size. The above quantities can
readily be determined for each type of vector solitons that is
predicted analytically in the framework of the coupled NLS
equations.

In all simulations, which have been performed by means of
a fixed-step 4th-order Runge-Kutta scheme with a time step
equal to 0.01, we have fixed the value of the small parameter
asǫ = 0.02, and we have used periodic boundary conditions.
Use of the latter leads to the requirement that the wavenumber
k of a dark soliton component must be equal to2πq/p, with
q, p ∈ Z andq also being odd.

In all figures below (Figs. 6-16), except if stated otherwise,
we show the density plots ofVn, the spatial profile ofVn at
t = 2000, as well as the time evolution of the center of mass
X(t) and the quantityP (t).

Regarding the evolution time of the simulations, we should
note the following. Most of our simulations are performed for
relatively large normalized times – typically up tot ∼ 107

in some cases. However, given our time normalization, the
physical unit time (set by the frequencyfsh = 14.529 GHz)
is very small, namelyt0 = (2πfsh)

−1 ≈ 11 picoseconds
(see Sec. II.A). Actually, since all characteristic frequencies
of the system (see Eq. (7)) are in the microwave regime, all
characteristic times are less than a nanosecond and, thus, ob-
viously, simulations for timet even of the order of109 are
extremely time-consuming. Nevertheless, our results for nor-
malized times up tot = 107 (corresponding to a physical time
of the order of a tenth of millisecond), demonstrate a good
agreement with our analytical predictions in suitable cases
(see below). Furthermore, the results of such long simula-
tions can also be used as a reliable indication of the solitons’
robustness. Hence, in the case where the solitary waves are
found to be very robust, we expect that they would survive for
the longer time scales that would render them experimentally
observable.

B. BD, BB and DB solitons in bands II and IV.

First, we consider the interaction between a backward prop-
agating soliton, with a frequency lying in band II, and a for-
ward propagating soliton, with a frequency lying in band IV
(for δ = 1.0954). In this case,s = −1 (cf. Fig. 3) and –
following the analysis of the previous Section– we find three
different types of vector solitons in certain sub-bands:

• If 0.94 < f1/fsh < 0.96 thenα1 < 0 andα2 > 0;
thus, BD solitons exist, with the frequency of the bright
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FIG. 5: (Color online) Parameters for soliton interactionsin bands
II and IV. Top panel: The dependence of the coefficientsα1 [solid
(blue) line] andα2 [dashed (red) line] on the normalized frequency
f1/fsh. Bottom panel: The dependence of the parametersλ1 [thin
solid (blue) line],λ2 [dashed (blue) line] andd [bold solid (red) line]
on the normalized frequencyf1/fsh.

(dark) soliton component being in the LH (RH) fre-
quency band.

• If 0.96 < f1/fsh < 0.98 thenα1 < 0 andα2 < 0; thus,
BB solitons exist, with the solitons frequencies being
one in the LH- and one in the RH-frequency band.

• If 0.98 < f1/fsh < 1 thenα1 > 0 andα2 < 0;
thus, DB solitons exist, with the frequency of the dark
(bright) soliton being in the LH (RH) frequency band.

Here, we will focus on the BB soliton case (BD and DB soli-
tons will be studied below). In particular, we will investigate
the dynamics of a BB soliton corresponding to the frequency
valuef1/fsh = 0.965: for this value, the dispersion coeffi-
cientd becomesd ≃ −1 = s, the CPM coefficientsλ1,2 take
the valuesλ1 = λ2 = λ = −1.7, while α1 = α2 = 0.487
(see the intersection point of the relevant curves depictedby
a star in Fig. 5). In this case, the BB soliton has a (common
for both components) group velocityvg = 0.1288, which oc-
curs when the (normalized) carrier frequencies for the modes
V1 andV2 take, respectively, the valuesf1/fsh = 0.965 (as
mentioned above) andf2/fsh = 1.365. Notice that other BB
soliton solutions, do not obeying the above particular condi-
tions (λ1 = λ2 andd = −1) exist as well, as per our analysis
of the previous Section.

At this point, we should mention that this choice of the pa-
rameter values leads tosymmetriccoupled NLS Eqs. (18)-(19)
(and also to symmetric BB solitons of equal amplitudes —see,

n

t
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FIG. 6: (Color online) Bright-bright solitons in regions II-IV. Top
left: density plot of the space-time evolution ofVn obtained numer-
ically. The top right panel compares the analytical and numerical
profiles ofVn at t = 2000. The bottom panels show the time evo-
lution of the center of mass (left) and the power diagnostic (right).
The parameters used aref1/fsh = 0.96545 andf2/fsh = 1.36535,
which givesk1 = −0.4061 andk2 = 1.8576, i.e. a bright-bright
soliton in bands II and IV (this particular choice corresponds to the
points depicted by stars in Fig. 5). The difference in the powers can
be attributed to the approximate nature of our solution.

e.g., Ref. [30]). A very interesting sub-case, corresponding to
λ = −1 (i.e., equal SPM and CPM coefficients), would ren-
der Eqs. (18)-(19) the completely integrable Manakov system
[31]; in such a case, in the bottom panel of Fig. 5, the curve
for parameterd would intersect the curves forλ1,2, with all
parameters taking the value−1. However, we have checked
that other, physically relevant, choices of the values of the pa-
rameterδ does not lead to the Manakov case [the chosen value
δ = 1.0954 only leads to symmetric NLS Eqs. (18)-(19)].

Utilizing the above mentioned BB soliton solution, we can
express the voltageVn(t) in Eq. (5) in terms of the original
coordinatesn andt as follows:

Vn(t) ≈ V0[R1(n, t) cos(k1n− Ω1t)

+ R2(n, t) cos(k2n− Ω2t), (42)

where functionsR1 andR2 have the following form:

R1 = sech[
√
2ℓǫ(n− vgt)], (43)

R2 =

√

∣

∣

∣

∣

g11
g22

∣

∣

∣

∣

sech[
√
2ℓǫ(n− vgt)]. (44)

In the above equations,ℓ is an arbitrary parameter, while the
solution amplitudeV0 and the frequenciesΩj (j = 1, 2) are
given by:

V0 = 2ǫ

√

∣

∣

∣

∣

D1

g11

∣

∣

∣

∣

2ℓ

1− λ
, Ωj = ωj + ǫ2ℓ|D1|, (45)

with ωj ≡ fj/fsh. Now, substituting Eq. (42) into Eqs. (40)
and (41) we obtain (for sufficiently smallǫ) our diagnostic
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FIG. 7: (Color online) The bright-bright soliton of Fig. 6 isevolved
until t = 105. All the panels are similar to that of Fig. 6 except for
the top right. In this panel, snapshots of the soliton att = 2 × 106

andt = 107 are compared to the initial condition of the simulation
in order to examine its robustness under a very long evolution time.

quantities:

X(t) = vgt, P (t) =
V 2
0

ǫ
√
2ℓ

(

1 +

∣

∣

∣

∣

g11
g22

∣

∣

∣

∣

)

. (46)

In Figs. 6 and 7 we show the outcome of the simulations for
short and long times, respectively, of a bright-bright soliton
with ℓ = 1 andN = 500. The parameters used aref1/fsh =
0.965 andf2/fsh = 1.365, which givesk1 = −0.406 and
k2 = 1.857. In Fig. 6, it is evident that the agreement between
analytical and numerical results pertaining to the solitonpro-
file, and the evolution of the center of mass and power diag-
nostics, is very good. In the case shown in Fig. 7, we have
performed a very long simulation, up to normalized times
t = 107. It is clear that that the initial pulse does not spread
out, which indicates the soliton robustness: the top panelsof
the figure – and particularly the snapshots of the pulse profile
at t = 107 – clearly show that the soliton persists as a stable
object up to the end of this long simulation time. We note in
passing that a fragment of the soliton is backscattered when
the soliton starts its motion att = 0 (due to the approximate
nature of our analytical solution profile). Notice that despite
this emission and the subsequent interaction of the fragment
with the “distilled” solitary wave, the coherent structurere-
mains robust and preserves its characteristics throughoutthe
evolution thereafter.

C. BD solitons in bands I and IV

Next, we consider the interaction between a backward prop-
agating soliton, with a frequency in band I, and a forward
propagating soliton, with a frequency in band IV; in this case,
s = +1 (cf. Fig. 3). In Fig. 8 we show the dependence of the
parametersα1 andα2 on the normalized frequencyf1/fsh
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FIG. 8: (Color online) Parameters for solitons in bands I andIV.
Shown is the dependence of the coefficientsα1 [solid (blue) line]
andα2 [dashed (red) line] on the normalized frequencyf1/fsh. Stars
depict parameter values used for the simulations shown in Figs. 9 and
10 below.

(for δ = 1.0954). It is observed thatα1 < 0 andα2 > 0 and,
thus, solely BD solitons exist in bands I-IV.

Employing the solutions (23)-(24), we can again approxi-
mate a solution of Eq. (5) for the voltageVn(t), in terms of
the original coordinatesn andt, as follows:

Vn(t) ≈ V0[Ψ1(n, t) cos(k1n− Ω1t)

+ Ψ2(n, t) cos(k2n− Ω2t)], (47)

where

Ψ1 =

√

−α1

α2
sech[ǫb(n− vgt)], (48)

Ψ2 =

√

∣

∣

∣

∣

g11
g22

∣

∣

∣

∣

tanh[ǫb(n− vgt)]. (49)

In this case, the solution amplitudeV0 and the frequenciesΩj

(j = 1, 2) are given by:

V0 = 2ǫ

√

ν2

∣

∣

∣

∣

D1

g11

∣

∣

∣

∣

, Ωj = ωj + ǫ2νj |D1|. (50)

In order to get an expression for the center of mass similar
to that of the bright-bright soliton (46), we must define it as:

Xd(t) =
F (t)X(t)

Ψ2
1,0 − Ψ2

2,0

− ǫbN

2
Ψ2

2,0 cot(k2) sin(2Ω2t), (51)

where

F (t) = Ψ2
1,0 +Ψ2

2,0(ǫbN − 1) +
ǫb

2
Ψ2

2,0[1− cos(2Ω2t)].

(52)
Substituting Eq. (47) into Eqs. (51) and (41) we can once

again obtain relevant expressions (provided thatǫ is small
enough) for the center of mass and power:

Xd(t) = vgt, Pd(t) =
V 2
0

ǫb
F (t). (53)

Figures 9 and 10 show the evolution of a BD soliton (and its
characteristics) in bands I and IV withν2 = 1 andN = 1220.
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FIG. 9: (Color online) Bright-dark solitons in regions I-IV. Top left:
density plot of the time evolution ofVn obtained numerically. The
top right panel compares the analytical and numerical profiles ofVn

att = 2000. The bottom panels show the time evolution of the center
of mass (left) and the power diagnostics (right). The parameters used
aref1/fsh = 0.8831 andk2 = 5π/8 ≈ 1.9625, which givesk1 =
−1.0404 andf2/fsh = 1.3748 (see corresponding points depicted
by stars in Fig. 8), i.e. a bright-dark soliton in the I and IV bands.
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FIG. 10: (Color online) The bright-dark soliton of Fig. 9 is evolved
until t = 2×105. All the panels are similar to that of Fig. 9 except for
the top right. In this panel, snapshots of the soliton att = 2×105 and
t = 5× 105 are compared to the initial condition of the simulation.
Notice that the center of mass is not bounded into[−N,N ]; this can
be caused by the soliton splitting. In this setting, the modulational
instability of the background (see the discussion of Appendix B) ap-
pears to be responsible for the breakup of the wavepacket.

The parameters used aref1/fsh = 0.8831 andk2 = 5π/8 ≈
1.9625, which givek1 = −1.0404 andf2/fsh = 1.3748. In
this case, it is clear that although BD solitons do exist, the
agreement between analytical and numerical results becomes
worse over time. Also, as shown in the top right panel of
Fig. 10, the pulse profile indicates that the BD soliton is not
a robust object. The observed long-time behaviour of the BD
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FIG. 11: (Color online) Same as Fig. 8, but for soliton interactions in
bands I and III. Stars depict parameter values used for the simulations
shown in Figs. 13 and 14 below.

soliton can be attributed to the fact that the background of
the dark soliton component, namely a continuous-wave (cw),
is subject to the modulational instability (see Refs. [18, 24]).
This point is explained in more detail in Appendix B.

D. DB solitons in bands I-III and II-III
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FIG. 12: (Color online) Same as Fig. 8, but for soliton interactions
in bands II and III. Stars depict parameter values used for the simu-
lations shown in Figs. 15 and 16 below.

Finally, we consider the cases of coupled solitons in bands
I and III, as well as in bands II and III. In both cases, as is
observed in Figs. 11 (bands I-III) and 12 (bands II-III), we
find thatα1 > 0 andα2 < 0 and, thus, solely DB solitons
exist in these bands. Following our previous considerations,
we may use the DB soliton solutions of Eqs. (25)-(26) and ap-
proximate the voltageVn(t) in Eq. (5), in terms of the original
coordinates, as follows:

Vn(t) = V0[Φ1(n, t) cos(k1n− Ω1t)

+ Φ2(n, t) cos(k2n− Ω2t)], (54)

where functionsΦ1 andΦ2 are given by:

Φ1 = tanh[ǫB(n− vgt)], (55)

Φ2 =

√

−α2

α1

∣

∣

∣

∣

g11
g22

∣

∣

∣

∣

sech[ǫB(n− vgt)], (56)



11

n

t

 

 

(a)

−500 0 500
0

500

1000

1500

2000

−0.02

−0.01

0

0.01

0.02

−500 0 500 1000

−0.02

0

0.02

n

V
n

 

 

(b) Numerical
Analytical

0 500 1000 1500
−100

0

100

200

300

t

X
d
(t

)

 

 

(c)

Numerical
Analytical

0 500 1000 1500
0.25

0.26

0.27

0.28

0.29

t

P
(t

)

 

 

(d) Numerical
Analytical

FIG. 13: (Color online) Dark-bright solitons in regions I-III. Top
left: density plot of the time evolution ofVn obtained numerically.
The top right panel compares the analytical and numerical profiles
of Vn at t = 2000. The bottom panels show the time evolution of
the center of mass (left) and the width diagnostic (right). Parameters
used arek1 = −6π/5 ≈ −1.884 andf2/fsh = 1.1002, which
givesf1/fsh = 0.8003 andk2 = 0.1232 (cf. points depicted by
stars in Fig. 11), i.e. a dark-bright soliton in bands I and III.
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FIG. 14: (Color online) The dark-bright soliton of Fig. 13 isevolved
until t = 2 × 105. All the panels are similar to that of Fig. 13
except for the top right. In this panel, snapshots of the soliton at
t = 2× 105 andt = 5× 105 are compared to the initial condition of
the simulation in order to examine its robustness under a very lengthy
time evolution.

while the rest of the soliton parameters are:

V0 = 2ǫ

√

ν1

∣

∣

∣

∣

D1

g11

∣

∣

∣

∣

, Ωj = ωj + ǫ2νj |D1|. (57)

Figures 13 and 14 show the outcome of the simulations for
a DB soliton in bands I and III (withν1 = 3 andN = 3333),
while Figs. 15 and 16 correspond to a DB soliton in bands II
and III (with ν1 = 3 andN = 1553). The parameters used
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FIG. 15: (Color online) Dark-bright solitons in regions II-III. Top
left: density plot of the time evolution ofVn obtained numerically.
The top right panel compares the analytical and numerical profiles
of Vn at t = 2000. The bottom panels show the time evolution of
the center of mass (left) and the width diagnostic (right). Parameters
used arek1 = −3π/23 ≈ −0.4095 andf2/fsh = 1.1162, which
givesf1/fsh = 0.965 andk2 = 0.2758 (cf. stars in Fig. 12), i.e. a
dark-bright soliton in bands II and III.
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FIG. 16: (Color online) The dark-bright soliton of Fig. 15 isevolved
until t = 2× 105. All the panels are similar to that of Fig. 15 except
for the top right. In this panel, snapshots of the soliton att = 105 and
t = 2 × 105 are compared to the initial condition of the simulation.
Notice that, as in Fig. 10, the center of mass is not bounded into
[−N,N ]; as in that case, the soliton splits at long evolution times.
In this setting too, as per the analysis of Appendix B, the modula-
tional instability of the background appears to be responsible for the
breakup of the wavepacket.

arek1 = −6π/5 ≈ −1.884 andf2/fsh = 1.1002, which
givesf1/fsh = 0.8003 andk2 = 0.1232, in bands I and III,
andk1 = −3π/23 ≈ −0.4095 andf2/fsh = 1.1162, which
givesf1/fsh = 0.965 andk2 = 0.2758, in bands II and III,
respectively. In the latter case, the relatively large values of
the number of particles and ofnu1 used are motivated by the
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necessity of a vanishing tail for the bright component at the
edges of the lattice. As seen in this set of figures, DB solitons
in bands II-III and I-III do exist, as predicted in theory. Fur-
thermore, it is observed that the former are less robust than
the latter, as seen both from their stronger deformation and
the fact that they “lose” their solitary wave character earlier.
In fact, as observed in the top right panel of Fig. 16 and ex-
plained in Appendix B, the cw background of the dark soliton
is subject to the modulation instability, as in the case of in-
teractions in bands I-IV. Contrary, DB solitons in bands I-III
seem to essentially preserve their structure even in the long
evolution of Fig. 14; in this case, as is also explained in Ap-
pendix B, the cw background carrying the dark soliton is mod-
ulationally stable. This fact can –at least qualitatively–explain
the different long-time behaviour of the DB solitons observed
in Figs. 16 and 14 and the fact that DB solitons in bands I-III
are more robust than the ones in bands II-III.

IV. CONCLUSIONS

In conclusion, we have used both analytical and numeri-
cal techniques to study the existence, stability and dynam-
ics of coupled backward- and forward-propagating solitons
in a composite right/left-handed (CRLH) nonlinear transmis-
sion line (TL). The considered form of the TL was a quite
generic one, finding applications to the modelling of a wide
range of LH systems and devices, with “parasitic” RH behav-
ior, such as resonators, antennas, directional couplers, among
others [1–4].

Our analysis started with the derivation of a nonlinear lat-
tice equation governing the voltage across the fundamental
(unit cell) element of the transmission line. In the linear
regime, we derived the dispersion relation for small-amplitude
linear plane waves and showed that they may either propagate
in a right-handed (RH) high-frequency region, or in a left-
handed (LH) low-frequency region. We also identified fre-
quency bands where RH- and LH-modes can propagate with
the same group velocity.

Using the above result, we then investigated the possibil-
ity of nonlinearity-assisted coupling between LH- and RH-
modes. This way, in order to analytically treat the nonlinear
lattice equation, we used the so-called quasi-discrete approxi-
mation. The latter is a variant of the multi-scale perturbation
method, which takes into regard the discreteness of the system
by considering the carrier (envelope) of the wave as a discrete
(continuum) function of space. Employing this approach, we
derived, in the small-amplitude approximation and for certain
space- and time-scales, a system of two coupled nonlinear
Schrödinger (NLS) equations for the unknown voltage enve-
lope functions. This system was then used to predict the exis-
tence of coupled backward- and forward-propagatingsolitons,
of the bright-bright, bright-dark and dark-bright type, respec-
tively. Importantly, the analysis of such a nonlinear coupling
suggests that it is possible to control the characteristics(e.g.,
amplitude, width, etc), e.g., of a LH soliton with the ones ofa
RH soliton.

The above mentioned existence results, as well as the prop-

agation properties and the potential robustness of these vector
solitons, were then investigated for each of the possible sce-
narios. This was done by means of direct numerical simula-
tions of the full CRLH-TL nonlinear lattice model, using as
initial conditions the analytical forms of solitons predicted by
the perturbation theory. In the simulations, apart from theevo-
lution of the shape, we also studied the evolution of the cen-
ter of mass and a power-like quantity of the various solitons.
Our numerical results have confirmed the existence of the var-
ious types of solitons predicted analytically, but have also re-
vealed their distinct robustness characteristics. In particular,
we found that bright-bright solitons feature a robust propaga-
tion over long times. On the other hand, as concerns solitons
of the mixed-type (namely dark-bright and bright-dark ones),
we found that, in specific frequency bands (bands I-III), dark-
bright solitons are more robust than those in other bands (i.e.,
II-III) or bright-dark solitons: dark-bright solitons in bands
II-III and bright dark solitons preserve their shape only for fi-
nite times and, for sufficiently long evolutions, they are either
destroyed (bright-dark) or are significantly deformed (dark-
bright). A qualitative explanation of the above behaviour may
be attributed to the fact that the continuous-wave background
of the dark soliton was found to be –in the effective NLS
picture– modulationally (un)stable in bands (I-IV and II-III)
I-III.

We can thus postulate that from all types of solitons pre-
dicted analytically, bright-bright and dark-bright ones (in
bands I-III) are the most likely ones to be experimentally ob-
servable. In all cases, our numerical results were found to
corroborate the analytical predictions, at least up to the times
during which the solitary waves propagate robustly.

It would be interesting to study other types of nonlinear
CRLH-TL lattice models modelling realistic structures com-
posed by LH-metamaterials. In that regard, a pertinent in-
teresting direction would be the investigation of the effects
of damping and driving, which may lead to robust nonlinear
waveforms, which would constitute dynamical attractors in
such settings. Additionally, the study of higher-dimensional
settings is a particularly challenging problem. In the lat-
ter context, in addition to simpler (yet genuinely higher-
dimensional, or even quasi-one-dimensional) solitary wave
structures, more complex waveforms –such as vortices– may
be realizable. The exploration of such states and their dynam-
ical robustness will be reported in future publications.
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Appendix A: The perturbation scheme

Our analytical approximation relies on the use of the quasi-
continuum approximation, which is a variant of the method of
multiple scales [32]. We introduce new independent temporal
variables,tm = ǫmt (m = 0, 1, 2, . . .), and accordingly ex-
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pand the time derivative operator as∂t = ∂t0 + ǫ∂t1 + . . ..
Next, we seek solutions of Eq. (5) in the form:

Vn =
∑

m=1

ǫmumn(tm) + c.c. (A1)

(recall that subscriptn denotes the lattice site). Then, we
substitute Eq. (A1) into Eq. (5) and employ a continuum ap-
proximation for functionsumn, i.e., umn → um(x), where
x = nh andh is the lattice spacing (the latter parameter does
not appear in the results below, as one may readily rescalex
asx/h). Furthermore, we introduce the new spatial variables
xm = ǫmx and, thus,∂x = ∂x0

+ ǫ∂x1
+ . . ..

We now seek for a solution in the form:

u1 =

2
∑

j=1

Vj(x1, x2, . . . , t1, t2, . . .) exp(iθj) + c.c., (A2)

where subscriptsj = 1 and j = 2 correspond to the LH
and RH frequency bands,Vj is an unknown complex enve-
lope function,θj = kjx0 − ωjt0, while the wavenumberskj
and frequenciesωj satisfy the dispersion relation provided in
Eq. (10). Substituting Eq. (A2) into Eq. (5), and equating co-
efficients of like powers ofǫ, we obtain the following (first
three) perturbation equations:

O(ǫ) : L̂0u1 = 0, (A3)

O(ǫ2) : L̂0u2 + L̂1u1 + N̂0u
2
1 = 0, (A4)

O(ǫ3) : L̂1u2 + L̂2u1 + N̂0[u1u2 + µu31] = 0, (A5)

where the operators are given by

L̂0 =
∂4

∂t40
+

(

1 + δ2 + 4β2 sin2
kj
2

)

∂2

∂t20
+ δ2, (A6)

L̂1 = 4
∂4

∂t30∂t1
+ 2

(

1 + δ2 + 4β2 sin2
kj
2

)

∂2

∂t0∂t1

− 2iβ2 sin kj
∂3

∂t30∂x1
, (A7)

L̂2 =

(

1 + δ2 + 4β2 sin2
kj
2

)(

∂2

∂t21
+ 2

∂2

∂t0∂t2

)

− 6
∂4

∂t20∂t
2
1

+ 4
∂4

∂t30∂t2
β2 cos kj

∂4

∂t20∂x
2
1

− 4iβ2 sin kj
∂3

∂t0∂t1∂x1
− 2iβ2 sin kj

∂4

∂t20∂x
2
2

, (A8)

N̂0 =

(

∂4

∂t40
+ δ2

∂2

∂t20

)

. (A9)

Next, substituting Eq. (A2) into Eq. (A4), we obtain the
non-secularity condition:

∂Vj
∂t1

+

[

ωjβ
2 sin kj

2ω2
j − (1 + δ2 + 4β2 sin2

kj

2 )

]

∂Vj
∂x1

= 0, (A10)

which suggests thatVj = Vj(X, x2, · · · , t2, . . .), where
X = x1 − vgj t1, while the group velocitiesvgj result self-
consistently asvgj = ∂ωj/∂kj [cf. Eq. (11)]. Employing

Eq. (A10), we may determine from Eq. (A4), the unknown
field u2:

u2 = −
2
∑

j=1

4ω2
j (4ω

2
j − δ2)

Gj(2ωj, 2kj)
V 2
j exp(i2θj)

−2[(ω1 + ω2)
4 − δ2(ω1 + ω2)

2]

G3(ω1 + ω2, k1 + k2)
V1V2 exp(i(θ1 + θ2)

−2[(ω1 − ω2)
4 − δ2(ω1 − ω2)

2]

G4(ω1 − ω2, k1 − k2)
V1V

∗
2 exp(i(θ1 − θ2)

−
2
∑

j=1

Fj(x1, x2, · · · , t1, t2, · · · ) + c.c., (A11)

where functionsGj(ωj , kj) are given by:

Gj = − (1 + δ2 + 4β2 sin2 kj)(2ωj)
2

+ (2ωj)
4 + δ2, (A12)

G3 = − (1 + δ2 + 4β2 sin2(
k1 + k2

2
))(ω1 + ω2)

2

+ (ω1 + ω2)
4 + δ2, (A13)

G4 = − (1 + δ2 + 4β2 sin2(
k1 − k2

2
))(ω1 − ω2)

2

+ (ω1 − ω2)
4 + δ2. (A14)

On the other hand, functionsFj(x1, x2, · · · , t1, t2, . . .) can be
derived at the orderO(ǫ4), by means of the equation:

L̂2u2 + N̂2u
2
1 = 0, (A15)

which leads to the result:

Fj = −
2ω2

j δ
2

ω4
j + δ2

. (A16)

To this end, we arrive at the following expression foru2:

u2 = −
2
∑

j=1

cjV
2
j exp(i2θj)− c3V1V2 exp(i(θ1 + θ2)

−c4V1V ∗
2 exp(i(θ1 − θ2)−

2
∑

j=1

c0j |Vj |2 + c.c., (A17)

where

cj =
4ω2

j (4ω
2
j − δ2)

Gj(2ωj, 2kj)
, (A18)

c3 =
2[(ω1 + ω2)

4 − δ2(ω1 + ω2)
2]

G3(ω1 + ω2, k1 + k2)
, (A19)

c4 =
2[(ω1 − ω2)

4 − δ2(ω1 − ω2)
2]

G4(ω1 − ω2, k1 − k2)
, (A20)

c0j =
2ω2

j δ
2

ω4
j + δ2

. (A21)

Finally, defining the coefficients:

Aj = c0j + cj , (A22)

B3−j = c03−j + c3 + c4, (A23)
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and using the variablesX = x1 − vgt1 ≡ ǫ(n − vgt) and
T = t2 ≡ ǫ2t, we derive from the non-secularity condition at
O(ǫ3) the coupled NLS equations (18)-(19).

Appendix B: Modulational instability

In this Appendix, we provide results for the modulational
instability of plane wave solutions of Eqs. (18)-(19) (details
can be found, e.g., in Refs.[18, 24]). First we note that
Eqs. (18)-(19) possess exact cw solutions, of constant ampli-
tudesVj(0), of the form:

Vj = Vj(0) exp (−iϕj) , (B1)

whereϕj =
(

V 2
j(0) − λjV

2
3−j,(0)

)

T (with j = 1, 2). The

stability of the above cw solutions is studied by introducing
the following ansatz into Eqs. (18)-(19),

Vj = (Vj(0) + ψj) exp(iϕj) (B2)

whereψj is a small perturbation. Then, linearizing the result-
ing equations with respect toψj , and assuming that

ψj = pj cos(KpX −ΩmT ) + iqj sin(KpX −ΩmT ), (B3)

whereKp andΩp are the wavenumber and the frequency of
perturbation, we derive a homogeneous system of four equa-
tions for the perturbation amplitudespj andqj . Requiring that
the system admits a nontrivial solution, we derive the follow-
ing dispersion relation forΩp andKp:

Ω4
p − (ρ1 + ρ2)Ω

2
p + ρ1ρ2 − γ = 0, (B4)

where

ρ1 =
sK2

p

2

(

sK2
p

2
+ 2V 2

1(0)

)

, (B5)

ρ2 =
dK2

p

2

(

dK2
p

2
+ 2V 2

2(0)

)

, (B6)

γ = sdλ1λ2V
2
1(0)V

2
2(0). (B7)

A general study of Eq. (B4) is provided in Ref. [24]. Here,
we may study a simpler case, where solely one cw (which
carries a dark soliton) is present (i.e.,γ = 0), so as to explain
the observed in simulations long-time behaviour of BD and
DB solitons. In this case, and ifρ1ρ2 < 0 then the cw is
modulationally unstable, becauseIm{Ωp} 6= 0 and, thus,ψj

experience exponential growth. Using the above arguments,
we find the following for the BD and DB solitons in bands
I-IV and II-III (as well as I-III):

1. BD solitons in bands I-IV: in this case,s = +1, d < 0
andV1(0) = 0; hence,ρ1ρ2 < 0 and the cw background
of the dark soliton component is modulationally unsta-
ble.

2. DB solitons in bands II and III; in this cases = −1,
d > 0 andV2(0) = 0; hence,ρ1ρ2 < 0 and the cw
background of the dark soliton component is modula-
tionally unstable.

3. DB solitons in bands I and III; in this cases = +1,
d > 0 andV2(0) = 0. Contrary to the previous cases, we
now haveρ1ρ2 > 0 and, therefore, the cw background
of the dark soliton component is modulationally stable.

The above results qualitatively explains the different long-
time behaviour of the BD and DB solitons in bands I-IV, II-III
(cf. snapshots att = 5 × 105 and att = 2 × 105 in the top
right panels of Figs. 10 and 16 respectively) and DB solitons
in bands I-III (cf. snapshot att = 5 × 105 in the top right
panel of Fig. 14).
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