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We study the coupling between backward- and forward-prajiag wave modes, with the same group ve-
locity, in a composite right/left-handed nonlinear traission line. Using an asymptotic multiscale expansion
technique, we derive a system of two coupled nonlinear @tihgér equations governing the evolution of the
envelopes of these modes. We show that this system suppeatiety of backward- and forward propagating
vector solitons, of the bright-bright, bright-dark and ld@right type. Performing systematic numerical sim-
ulations in the framework of the original lattice that magléhe transmission line, we study the propagation
properties of the derived vector soliton solutions. We shioat all types of the predicted solitons exist, but
differ on their robustness: only bright-bright soliton®pagate undistorted for long times, while the other types
are less robust, featuring shorter lifetimes. In all casasanalytical predictions are in a very good agreement
with the results of the simulations, at least up to times efdtder of the solitons’ lifetimes.

PACS numbers: 41.20.Jb, 42.65.Tg, 78.20.Ci

I. INTRODUCTION [15, 16] envelope solitons, described by an effective maar
Schroddinger (NLS) equation, was reported. Notice that in

Left-handed (LH) metamaterials are artificial, effectvel €arlier studies on RH-TL models it was shown that two (or
homogeneous structures, featuring negative refractidexin MOre) solitons propagating with the same group velocity, ca
at specific frequency bands where the effective permigtivit € described by a system of two (or more) NLS equations [17]
and permeability: are simultaneously negative [1-3]. In fact, (S€€ also [18] for theoretical as well as experimental tejul
all known realizations of LH metamaterials rely on the use ofSuch coupled NLS equations have been studied extensively
common right-handed (RH) elements and, thus, in a realisti#? nonlinear optics and mathematical physics; see, e.g.,
situation such a composite material features both a LH and Befs. [19-21] and references therein. They are well-knavn t
RH behavior, in certain frequency bands. Physically spepki  9iVe rise to a variety of vector solitons, including brigiright
the difference between the two is that in the LH (RH) regime (BB), bright-dark (BD), and dark-dark (DD) ones.
the energy and the wave fronts of the electromagnetic (EM) In this work, we study analytically and numerically the in-
waves propagate in the opposite (same) directions, givéeg r teraction between backward- and forward-propagating soli
to backward- (forward-) propagating waves. tons in a nonlinear CRLH-TL. Our model is a nonlinear ver-

Transmission line (TL) theory constitutes a convenientsion of a generic CRLH-TL model, particularly relevant to
framework for the analysis of LH metamaterials. Such arthe context of LH metamaterials (see, e.g., Refs. [2, 4] Th
analysis relies on the connection of the EM properties of th&onsidered nonlinear element in the unit cell of the TL is the
medium ¢ and ) with the electric elements of the TL's unit shunt capacitor, which simulates the presence of a hetacest
cell, namely the serial and shunt impedance. As mentionettire barrier varactor (HBV) diode [6] (the capacitance @& th
above, in practiceomposite right/left-handed (CRLIdjJruc- HBV diode depends on the applied voltage). Starting from
tures are quite relevant, giving rise to pertinent CRLH-TLthe discrete lump element model of the CRLH-TL, we de-
models. These models are, in fact, dynamical lattices whicliive a nonlinear lattice equation. First, we study the linea
can be used for the description of a variety of metamaterials’€gime and show that, for certain frequency bands, RH- and
based devices and systems, such as resonators, directiohdl-modes can propagate with the same group velocity. Next,
couplers, antennas, etc [1-4]. we treat the nonlinear lattice equation in the framewortef t

Nonlinear CRLH-TLs, with a serial or/fand shunt quasi-discretgor quasi-continuuapproximation (see, e.g.,
impedance depending on voltages or currents, have aldd5, 22, 23] and [19] for a review): we thus seek for envelope
attracted attention. Such structures may be realized bgoliton solutions of the nonlinear lattice model, charezésl
inserting diodes — which mimic voltage-controlled nonéine by adiscrete carrierand acontinuum envelopand employ
capacitors — into resonant conductive elements (such a& asymptotic multi-scale expansion method, to derive a sys
split-ring resonators) [5-7]. Such nonlinear CRLH-TL tem of two coupled NLS equations. Each of these equations
models have been used in various works dealing, e.g., witAescribes the evolution of the envelope of a backward- (LH-)
the parametric shielding of EM fields [8], the long-short wav and a forward-propagating (RH-) mode.
interaction [9], or soliton formation [10-12]. Experiment A systematic analysis of the system of the NLS equations
in nonlinear CRLH-TLs have also been performed (seaevealsthe existence —in certain frequency bands— of thifee
the review [13]), and formation of bright [14, 15] or dark ferent types of vector solitons: (a) a backward-propagatin



bright soliton coupled with a forward-propagating brigblis L

ton; (b) a backward-propagating bright soliton coupledvwait In § I " § In+1
forward-propagating dark soliton; (c) a backward-propmga =~ . " L d! »: """"
dark soliton coupled with a forward-propagating brighti-sol R L I

ton. This way, we propose —and study in detail— all possible \V L, Ce ,—E V,

vector solitons in this nonlinear CRLH-TL setting, highiig
ing how individual soliton components interact via the non-
linearity induced by the insertion of the HBV diodes. Impor- - | -
tantly, our analysis suggests how the characteristics lfamp

tude, width, etc) of each solitonic mode can control the ones  FIG. 1: The unit-cell circuit of the nonlinear CRLH model.
of the other mode; this possibility arises from the fact that

the relevant parameters of each soliton are connectedhéth t

ones of the o?her solito_n, thus providing a means to adjustye inductancel » and capacitanc€'z, while the LH ones
e.g., the amplitude or width of the LH mode by changing the ¢ the inductancé ;, and capacitanc€’,. We assume that

parameters of the RH mode. ~ the TL is loaded with a nonlinear capacitancg;( while the

The above analytical predictions are then tested against dpapacitance”;, will be assumed to be fixed and voltage in-
rect numerical simulations, which are performed in the 8am gependent). This can be implemented by proper insertion of
work of the original nonlinear lattice model. The results of gigges in the TL (see, e.g., pertinent experiments as well as
the simulations verify the existence of the aforementionednegretical work in Refs. [10~16]); in other words, we assum
types of vector solitons in the full TL model, but also offer that the shunt capacite?y, is nonlinear (see details below).

important informz_ﬂion r_egardi_ng their robustness. In ip_art Let us now consider Kirchhoff’s voltage and current laws
ular, results of direct simulations performed for long téne for the unit-cell circuit of Eia. 1. which respectively read
indicate that bright-bright (BB) solitons are the most rstbu 9- & P y

among the members of the vector soliton family. Indeed, the

mixed [dark-bright (DB) or bright-dark (BD)] types are fodin Vi1 = Vy, + LR% +U,, 1)
to be less robust; however, the DB solitons in a specific fre- dt p

guency band, although they are deformed during their evolu- I =7 I+ % cny 2
tion, are found to be more robust than those in other bands, as " AL dt( RVa), 2)

well as the bright-dark solitons, which are destroyed fa th

same propagation time. The observed long-time behaviouvhereU,, is the voltage across the capacitarice and Iy,
of the above solitons of the mixed type may be qualitativelyis the current across the inductby,. The above equations,
explained —in the framework of the effective coupled NLStogether with the auxiliary equatiol§, = L.dI;/dt and
description— by the following fact: in the less robust casesl, = Cr.dU,, /dt, lead to the following system:

the continuous-wave background carrying the dark soligon i

prone to modulational instability [18, 24], while in the neor 4 2 a2V,
robust case is not. In any case, our results indicate the exis LRLLC'L@(CRVn) + LL@(CRVn) + LROLW
tence of all three types, robustness of BB solitons andglarti 22

or substantial deformation of the other types. We can thus —L1Or—5 (Vg1 + Vi1 = 2V,) +V,, = 0. 3)
conclude that bright-bright (LH-RH), as well as dark-bitigh dt

(LH-RH) solitons in certain frequency bands, have a better

chance to be observed in experiments. To proceed further, we now consider a specific voltage-

The paper is organized as follows. In Section II, we intro-dependence for the nonlinear capacita6ge Here, we will
duce the nonlinear CRLH-TL model and the pertinent latticeassume that — for sufficiently small values of the voltage
equation, and derive the system of the two coupled NLS equa= the functionC’z(V;,) can be approximated as follows, via a
tions (relevant details are also appended in an Appendix). | Taylor expansion:

Section Ill, we present analytical and numerical results fo
ﬁggf:)’g/rp(:eoﬁi\l/ue;g)r:ss.ol|ton Finally, in Section IV, we summa Cr(Vi) ~ Cro + Choo (Ve — Vo) + §CRo(Vn W2 (@)

whereCro = Cr(Vp) is a constant capacitance correspond-

Il. THE MODEL AND ITSANALYTICAL ing to the bias voltag#), while C, andC, also assume
CONSIDERATIONS constant values, depending on the particular forr'gfV’).
Below, we will further discuss this approximation, in coane
A. Thenonlinear CRLH-TL model tion with the HBV diode, used in the experiments described in

Ref. [13] (similar varactor-type diodes were also used & th
We consider a generic CRLH-TL, composed by both right-€xperiments of Ref. [7]).
and left-handed elements, as shown in its unit-cell circuit Next, substituting Eq. (4) into Eqg. (3) and using the scale
shown in Fig. 1 [2, 4]. The (RH) elements of this TL are transformationg — wy,t [wherew?, = (L.Cgro)~'] and
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V, — [0%0(201%0)‘1]1/,“ we obtain: for sufficiently smallV’, by Taylor expanding Eq. (8) one ob-
tains EqQ. (4), where the constant parameter values invelreed
d*V, o d? A Cro = 1 pF, Cry = —0.24 pF/V andCr, = —0.08 pF/\V2
_ B2 _ 1 “Ro ‘ RO : :
dtd P dt? (Va1 + Vo1 = 2Va) + (1467 dt? To this end, the values of the normalized parametgfsand
d2V2 d2v3  qiv2 d*v3 1 appearing in Eq. (5) take the following values:
52Vn 52 n 52 n n no__ 0
* T e TR g Th g ’
(5) 0~ 1.1, B =~ 0.35, u=~—0.9. 9)
where the constant parametérss andy are given by: Below, we will use these values for the purposes of our an-
alytical and numerical considerations (we have checked tha
fse frE 20;;0 other values lead to qualitatively similar results). Nettbat
6= I = I w= 30—/201%0- (6)  ourchoice leads t6 > 1, i.e., we consider the case where the
S S RO

TL has a more pronounced LH character; however, when con-

In the above expressiong,. and f., denote series and shunt Sidering the linear setting (see next subsection), thismpater
frequencies, whilefz; denotes the characteristic frequency Will also assume other values, corresponding to the batance
related to the RH part of the unit-cell circuit, respectyéhe ~ and RH-dominated behaviour as well.

above frequencies are defined as:

fo = 1 Fan = 1 B. Linear analysis
be 27T\/LRCL’ i 27T\/LLCRO’
Fr = 1 @) We now assume plane wave solutions of Eq. (5), of the form
M 9 VIaCro V., = V,expli(kn — wt)], wherek andw denote the wave
number and angular frequency, respectively, while the ampl
Note that if fee/fsn = 1, i.e.,0 = 1, then the CRLH-TL tude of the wave i¥, < 1. Substituting the above ansatz into
is usually referred to asalanced in the sense that the char- Eq. (5), and keeping only the linear terms/ix we obtain the
acteristic impedances of the purely LH- and RH-TL, definedfollowing linear dispersion relation:
asZ; = \/L,/Cr andZr = \/Lr/Cro, are equal, i.e.,
Z1, = Zr [2]. On the other hand, ifsc/fsn > 1,i1.€.,6 > 1,
the LH part of the TL dominates, in the sense that the TL has
a more pronounced LH behaviour (the serial branch features a
capacitive character while the shunt branch an inductie).on The above resultis illustrated in Fig. 2, where we plot tlee fr
In the opposite case./fsn < 1, i.e.,6 < 1, the RH part quencyf/ fq, as a function of the wave numbie(in rad/cell),
of the TL dominates and the TL has a more pronounced RHor three different values af (note that here we consider one
behaviour (the serial branch features an inductive charact period ofk, i.e.,—7 < k; < 7). Itis clear that fo¥ = 1.0954
while the shunt branch a capacitive one). (top panel) there exist two frequency bands where EM wave
It is now relevant to adopt physically relevant parametempropagation is possible: the RH-band [high-frequency band
values for Eq. (5). For applications in the microwave fre-depicted by dashed (blue) line], far0954 < f < 1.4535,
quency range (e.g., for microstrip lines [2] or coplanaregev  and the LH-band [low-frequency band depicted by solid (red)
uide structures loaded with SRRs [3] — cf. also Ref. [23] forline], for 0.7538 < f < 1. In the same casé (= 1.0954),
recent work), typical values of the capacitances and inducthere exists a gap far < f/fsn < ¢, where EM wave propa-
tances involved in the CRLH structure are of the order of pFgation is not possible.
and nH, respectively. Here, we will use the valiies= 1 nH, In the case wheré = 1 (corresponding, e.g., to the value
Cr = 0.1 pF, andL; = 0.12 nH; thus, the frequencies in Cr = 0.12 pF) the gap vanishes (cf. middle panel of Fig. 2)
Eqgs. (7) take the valuek. = 15.92 GHz, f;, = 14.53 GHz  and the TL is balanced. In the balanced case, EM wave prop-
and frg = 5.03 GHz. On the other hand, as concerns the paagation is possible in two frequency bands as well: the RH-
rameters involved with the nonlinear capacitf, we assume band [high-frequency band — cf. dashed (blue) line] with
that the pertinent capacitance corresponds to a HBV diodd, < f/fs. < 1.405 and the LH-band [low-frequency band
which is characterized by the following equation [6] (semal - cf. solid (red) line] with0.7117 < f/fsn < 1.
[7], where the same form af'(V) is used, but different pa- Finally, for 6 = 0.7746 (corresponding, e.g., t6¢';, =
rameter values): 0.2 pF), agap appears again ok f/fs, < 1 (bottom panel
of Fig. 2). In this case too, there exist a RH-frequency band
and a LH-frequency band, féx588 < f/fs < 0.7746 and
1 < f/fsn < 1.317, respectively. Note that in all cases, the
RH.. and LH; branches correspond to positive or negatiye
whereCjy = 1.53 fF/um? is the capacitance corresponding respectively.
to bias voltagely, = 0.2V, Ay, = 650 um? is the device Thus, generally, in the linear setting — and for a given fre-
areaV,, = 12 Vis the breakdown potential, and the exponentquency —the EM waves may either propagate in the RH region
m = 2.7 results from fitting experimental data. It is clear that, (forward wave propagation) or in the LH region (backward

w — (1 + 62 + 432 sin? g) w4+62=0.  (10)

br

C(V) = CjoAua (1 + |VL|) _m, (8)
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FIG. 2: (Color online) The dispersion relation showing tleemal-
ized frequencyf/ fsh as a function of the wave numbk(in rad/cell)
for different values ofé, i.e., § = 1.0954 (top panel),d = 1
(middle panel), and = 0.7746 (bottom panel). The solid (red)
and dashed (blue) lines show the dispersion relation in thednd
RH-frequency regions, respectively; Rknd LH. denote branches
with &k > 0 ork < 0. If 6 # 1 a gap is formed; the width of the gap
is|0 — 1| for 6 > 1 (top panel) o¥ < 1 (bottom panel).
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FIG. 3: (Color online) The group velocity, as a function of the
normalized frequency/ fsn (for 6 = 1.0954). The solid (red) and
dashed (blue) lines indicate branches corresponding tbkheand
RH. regimes, respectively. The intersection of the group \Bioc
curves with the horizontal solid (black) line depicts frequaies of
modes with the same group velocity, = 0.1. Regions I, II, Ill and
IV indicate possible interactions between Lidnd RH; modes with
the samey, but different signs of GVD.

wave propagation). However, _in t_he nonlinear setting,. coutn Fig. 3, we show the dependence of the group velagjtyn
pling between modes propagating in the LH and RH regime ishe normalized frequency/ f.y, for the values of used in

possible (see, e.g., relevant earlier work in Refs. [17). 13-

Fig. 2. Notice that the figure depicts only the group-velpcit

low we will demonstrate that this is the case indeed, andystudbranches with), > 0 — see solid (red) and dashed (blue) lines
the coupling (interaction) between LH and RH modes with— corresponding, respectively, to the Lknd RH, branches

equal group velocities. Since the latter are tangents idige
persion curves, inspection of Fig. 2 shows that it is poedib!
identify domains, belonging to the RHand LH; branches,
exhibiting parallel tangents, i.e., equal group velositie

of the dispersion curves; the branches with< 0 (pertinent

to the LH, and RH. branches of the dispersion curve) are
mirror symmetric with respect to the ones shown in the figure,
due to the parity of the dispersion relation.

To further elaborate on this, we may use Eq. (10) to obtain Considering a horizontal cut of the group-velocity curves,

the group velocity, = dw/0k:

w3B%sink
w52

Vg =

say atv, = 0.1 or v, = 0.075 (see horizontal lines in the

top and bottom panels of Fig. 3), it is readily observed that,
indeed, a LH and a RH. mode can share a common group
velocity (and interact in the nonlinear regime, as mentibne
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above). In fact, inspection of the group-velocity curvesy s diffraction, formation of topological defects, and everapé

in the top panel of Fig. 3, shows that the maximum possibldransitions, as in Refs. [25-27].

commony, is given byv,, .. = 0.1339, the local maximum

of vy, occurring atf = 0.9391, in the (shorter in height) LH

frequency band. Then, one can divide each of the LH and C. Nonlinear analysis: coupled NL S equationsand solitons

RH group-velocity curves into two sub-regions, depending

on the sign of the group-velocity dispersion (GVD)y, /dw, To describe the coupling between a RH and a LH nonlin-
where such coupling with equal group velocities may occurear mode with equal group velocities, we will use the quasi-
These subregions are: (a) the sub-ban@smbB8 < f/ fsn < discrete approximation, which takes into regard the inttere
0.9391) and 1 (0.9391 < f/fsn < 1) for the LH-frequency discreteness of the system (see, e.g., Ref. [19] for a review
band, characterized by positive and negative GVD respecand Refs. [15, 23] for relevant recent work). Generallys thi
tively, and (b) the sub-bands 1L (0954 < f/fsn < 1.1195)  approach allows for the description of quasi-discrete epee
and IV (1.356 < f/fa < 1.4535) for the RH-frequency solitons (usually satisfying an effective NLS model), cdwar
band, again characterized by positive and negative GVD reterized by adiscrete carrierand a slowly-varyingontinuum
spectively. Thus, nonlinear LH and RH modes of equal envelope In our case, since we are interested in the descrip-
can feature the following four different possible inteiags: tion of two different modes, we seek for a solution of Eq. (5)

. . in the form:
1. LH-mode in band Il and RH-mode in band, Izoth fea- )
turing negative GVD. V,=c¢ Z Vi(X,T)exp(ib;) + c.c., (12)
2. LH-mode in band | and RH-mode in band INere, the J=1
LH (RH) mode features positive (negative) GVD. where “c.c.” denotes complex conjugate. In Eq. (12), sub-

scriptsj = 1, 2 correspond to the LH and RH modé,( X, T')
are unknown (continuous) slowly-varying envelope funasio
depending on the slow scal&S= ¢(n —v4t) (Wherev, is the

4. LH-mode in band Il and RH-mode in band:IHere, the ~€ommongroup velocity) andl” = ¢*t, while exp(if;), with

LH (RH) mode features negative (positive) GVD. 0; = kjn — wjt, are the (discrete) carriers of frequencigs
and Wavenumbers Finally, e is a formal small parameter

It is clear that the above set of possibilities arises froe th setting the field amplltude and the slow scales of the eneelop
existence of the gap in the considered case Wwith 1.0954.  functions.
A similar situation also occurs far < 1, e.g., ford = 0.7746 At this point, we should note that the field, as expressed
as in the bottom panels of Figs. 2 and 3. On the other hand, fan Eq. (12) is, in fact, the leading-order form of a more gen-
d = 1 the gap does not longer exist and, thus, the only possieral ansatz employing multiple time and space scales. $n thi
ble interaction is between a LH-mode with positive GVD andcontext, use of a formal multi-scale expansion method leads
a RH-mode with negative GVD,; this interaction can occur forto a hierarchy of equations at various powers,ofvhich are
group velocities), < 0.175, i.e., beneath the dashed horizon- solved up to the third-order. Here, we will present the main
tal line in the middle panel of Flg 3. This possibility, hovee,  results and provide further details in Appendix A. Parteiy,
is already taken into regard — cf. case (2) above; furtheemor from the first- and second-order problems [i.e., at ord¥rg
soliton formation in the balanced CRLH-TW (= 1) has al-  (linear limit) andO(€?), respectively] we derive the dispersion
ready been studied in the literature [11]. For these reasonselation, Eqg. (10), and the group velocity, Eq. (11). Fingdit
below we will proceed by analyzing the case correspondinghe next order((e3), we obtain the following coupled NLS
to § = 1.0954, which offers all possible scenarios; it is clear equations:
that the case aof = 0.7746 shares similar qualitative features; 1
this similarity extends beyond the linear wave case and into 9rV1 + 2D1<9XV1 (911[Va* + g12|V2]?) Vi = 0, (13)
the nonlinear solitonic one.

Although, as explained above, we are not going to analyze i9r Vs + D2<9XV2 (9211V1[* + g22[V2]?) V2 = 0, (14)
soliton formation and soliton in the special case of the bal-
anced CRLH-TL witho = 1, it is worth mentioning the fol-

3. LH-mode in band | and RH-mode in band, Ibloth fea-
turing positive GVD.

where the normallzed GVD coefficienfs;, the self-phase
lowing. In the case of — 1, the dispersion relation exhibits a Medulation (SPM) coefficienig;;, and the cross-phase mod-
Dirac point, namely it is approximately linear in the vidinof glatlon_(CPM).coefﬂment@j’g,j (with j = 1,2) are respec-
k=0, ie,w~ +[l+ (3/2)k] - cf. middle panel of Fig. 2. tvely givenby:

The emergence of Dirac points is particularly interesting i 02w, w;; + 362

the two-dimensional (2D) setting of triangular and hexago- D; = o2 Ve cot k; — (= 62)% , (15)
nal lattices arising in different contexts, such as optRs],[ J TN

atomic Bose-Einstein condensates [26], and the so-cdiied p wi(w? — %)

tonic graphene [27]. This has also led to an interest in this 9ii = m (B —4;), (16)
subject from a rigorous mathematical perspective [28]s It i 5 '72 )

thus quite interesting that, in principle, 2D balanced CRLH Y (wj — %) (61— Bs_,) (17)
TLs may host a variety of fundamental effects, such as cbnica 9331 = 2(wj —62) B 284l
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FIG. 4: (Color online) The nonlinearity coefficiengs; [solid (red)
lines] andgs2 [dashed (blue) lines] as functions ff f., for interac-
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11-111 (bottom right). The parametef takes the valué = 1.0954.
Stars (in black) in each panel depict parameter values usesla-
vant simulations —see Figs. 6 and 7 (corresponding to topéetfel),
Figs. 9 and 10 (top right), Figs. 13 and 14 (bottom left), adl a®
Figs. 15 and 16 (bottom right) below.

where the coefficientd; and Bs;_; are defined in Appendix
A. It is now useful to remark that, for all four possible wave
interactions mentioned in the previous Section, the SPMcoe

ficientsg;; are negative —see Fig. 4. Then, measuring nor-

malized time7" and densitieV;|? in units of |[D;|~! and
|D1/g;;| respectively, we express Eqgs. (13)-(14) in the fol-
lowing form:

i0rVi + §a§V1 + (MR- vi=0, (18)
d
iaT‘/2+§3§<‘/2+ (MeVi? = |V2]?) Va =0, (19)

where

. D, 912 921
s =sign(D1), d=—=, 1= 7 2 =7 -
| D1 |g22] |g11]

(20)

As seen from Egs. (18)-(19), in the absence of CPM cou-

pling (\; = 0) the evolution of either the LH modeg, or the
RH modeVl; is described by a single NLS equation. The lat-
ter, supports soliton solutions of the bright or the darketyp

depending on the sign of dispersion coefficient (see, e.g.,

Ref. [20]): in particular, the modg, (13) supports bright soli-
tons fors < 0 (d < 0) or dark solitons fors > 0 (d > 0).
These conditions, however, are modified fgr# 0, and var-
ious types ofcoupled(alias vector) solitons can be found in
the full version of Egs. (18)-(19). Below we will present siee
types of coupled backward- and forward-propagating sudito
belonging, respectively, to the LH and RH frequency bands.

In principle, four types of vector solitons are, in prin@pl
possible:

e bright-brightsolitons, in the form:

Vi(X,T) = ajsech(bX)exp(—inT), (21)
Vo(X,T) = agsech(bX)exp(—ivaT), (22)

e bright-dark(BD) solitons, in the form:

Vi(X,T) = ajsech(bX)exp(—inT), (23)
Vo(X,T) = astanh(bX)exp(—ivaT), (24)

e dark-bright(DB) solitons, in the form:

Vi(X,T) = artanh(bX)exp(—inT), (25)
Vo(X,T) = agsech(bX)exp(—ivaT), (26)

e dark-dark(DD) solitons, in the form:

Vi(X,T) = ajtanh(bX)exp(—inT), (27)
Vo(X,T) = astanh(bX)exp(—ivaT). (28)

In the above equations, » andv; » denote the amplitudes
and frequencies of each soliton, whilés the (common) in-
verse width of the solitons.

Now, each of the above ansatz is substituted in Egs. (18)-
(19), leading to a set of equations connecting the soliten pa
rameters. Particularly, the equations connecting the iampl
tudesa; » with the inverse widttb are of the form:

(a;/b)* = —aj, (29)
(a;/b)* = (1) ey, (30)
(a;/b)* = (=1)°ay, (31)
(a;/b)* = ay, (32)

for the BB, BD, DB and DD solitons respectively, where pa-
rametersy; (j = 1, 2) are given by:

d\1 + s SsAo +d
=—— = 33
R T V5 VLl R D VO S (33)
On the other hand, the frequencies of the BB, BD, DB and DD
solitons are respectively given by:

d

s

= —2p? = ——p? 34

141 2 ) [} 2 ) ( )

v = —ng — /\1a§, vy = ag, (35)
d

vy = a%a vy = _§b2 - AQa%a (36)

vy = ai —\a3, vy =ai— \aj. (37)

It is clear that each type of vector soliton is characterizgd

five independent parameters, connected by a set of four equa-
tions; thus, each of the above vector solitons are chaiaeter

by one free parameter. Furthermore, the fact that the param-
eters of each soliton component depends on the ones of the
other component, clearly highlights an important positjbil
arising from the nonlinear coupling of the solitonic modes:



one can control, e.g., the characteristics (amplitudethwid of mass defined as:

etc) of a LH-soliton by means of the parameters of its RH N

sibling. dom N V2
Requiring that the right-hand sides of Eqgs. (29)-(32) are anNN V2

positive, it can be concluded that the existence of each type "

of vector soliton is determined by the signs of parameigrs  and the second one, is a power-like quantity defined as:

in particular, BB solitons exist fotr; < 0 andas < 0, BD

solitons exist fore; < 0 andas > 0, DB solitons exist for n=N

a1 > 0 andas < 0, while DD solitons exist fori; > 0 P(t) = Z /8 (41)

andas > 0. On the other hand, we should mention that the n=—N

signs of«; depend on frequency, through the frequency de-

pendence of the parameters involved in Egs. (33). Thus, fo\f”ith .2N +1 being the lattice size. The above qugntities can
each different type of mode interaction [see cases (1)H(4) j readily be determined for each type of vector solitons that i

Section 11.B], below we will present results for the sign dan predic_ted analytically in the framework of the coupled NLS
magnitude) ofy; in bands II-IV, I-IV, I-Ill and II-1ll, and ac- ~ €guations. .

cordingly determine which type of soliton is possible. This !N all simulations, which have been performed by means of
way, we will show that BB, BD and DB solitons can exist in & fixed-step 4th-order Runge-Kutta scheme with a time step
certain frequency bands, while DD solitons do not exists thi equal to 0.01, we have fixed the V?"“‘? of the small parameter
is due to the fact that, andas are either of opposite signs 2S¢ = 0.02, and we have used periodic boundary conditions.

or both negative, as is attested to by Figs. 5 (top panel)l 8, 1Use of the Iatte_r leads to the requirement that the Wave_numbe
and 12. k of a dark soliton component must be equalta;/p, with

Before proceeding with the presentation of the coupled soli?’ P €Z gndq also bemg odd. . .
ton solutions we make the following comments. First, vector N @ll figures below (Figs. 6-16), except if stated otherwise

solitons will be found in a stationary form; however, using we show the density plots df,, the spatial profile ob;, at

these stationary solutions, one can also find travellinigosol t = 2000, as well as the time evolution of the center of mass

solutions, with an additional free parameter, i.e., th®eity X(t) anddt.he qhuantitylP(.t). . fthe simulati hould
C, by means of the following Galilean boost: Regarding the evolution time of the simulations, we shou

note the following. Most of our simulations are performed fo
Vi(X,T) — Vi(X — CT,T) relatively large normalized times - tyr_)ically up to~ 1.07
, ) in some cases. However, given our time normalization, the
X exp {f {CX + (C_) T] } . (38) physical unit time (set by the frequengy, = 14.529 GHz)
S 2 is very small, namely, = (27fs,)~t ~ 11 picoseconds
(X, T) —» V(X -CT,T) (see Sec. II.A). Actually, since all characteristic freqcies
i 2 of the system (see Eq. (7)) are in the microwave regime, all
x expq— |CX+ | —|T| . (39 characteristic times are less than a nanosecond and, thus, o
d 2 ) . : ; 9
viously, simulations for time even of the order of0” are

Second, it is interesting to note that, contrary to what ferof ~€Xtremely time-consuming. Nevertheless, our results éor n
the case in the mathematically studied multi-componerit var Malized times up to = 10" (corresponding to a physical time
ants of the NLS equation [21], the model of Egs. (18)-(19)°f the order c_>f a tenth of mllllsecon_d)_, demonst_rate a good
does not necessarily respect the condifign= ). The latter agreement with our analytical predictions in suitable sase
condition ensures the existence of an underlying Hamioni (S€€ Pelow). Furthermore, the results of such long simula-
structure and is customary in other physical applicatisosl tions can also be used as a reliable indication of the safiton

as atomic physics [29]). Nevertheless, as we will see bebv%obustness. Hence, in the case where the solitary waves are
this is not a necessary condition for the existence of thetexa [0UNd to be very robust, we expect that they would survive for
soliton solutions considered below. the longer time scales that would render them experimentall

observable.

X(t) = , (40)

1. SOLITONINTERACTIONSIN DIFFERENT

FREQUENCY BANDS. NUMERICAL RESULTS B.  BD, BB and DB solitonsin bands11 and IV.

First, we consider the interaction between a backward prop-
agating soliton, with a frequency lying in band II, and a for-
_ ) ward propagating soliton, with a frequency lying in band IV
Let us now proceed to study numerically the evolution Of(for 5 = 1.0954). In this cases = —1 (cf. Fig. 3) and —

the coupled solitons presented in the previous sectionén thyo|iowing the analysis of the previous Section— we find three

framework of the fully discrete model of Eq. (5). _ different types of vector solitons in certain sub-bands:
In order to compare the analytical approximations with the

results of numerical simulations, we will make use of two di- e If 0.94 < f1/fsn < 0.96 thena; < 0 andas > 0;
agnostic quantities: the first one is the evolution of theteen thus, BD solitons exist, with the frequency of the bright

A. Numerical procedure.
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FIG. 6: (Color online) Bright-bright solitons in regionsIN. Top
left: density plot of the space-time evolution Gf obtained numer-
ically. The top right panel compares the analytical and micak
—& 1 profiles of V,, att = 2000. The bottom panels show the time evo-
' ’ ’ lution of the center of mass (left) and the power diagnosigh().
1'sh The parameters used afg/ fsn = 0.96545 and f/ fon = 1.36535,
which givesk; = —0.4061 andk. = 1.8576, i.e. a bright-bright
FIG. 5: (Color online) Parameters for soliton interactiambands  soliton in bands Il and IV (this particular choice corresgsrto the
Il and IV. Top panel: The dependence of the coefficientgsolid points depicted by stars in Fig. 5). The difference in the @mcan
(blue) line] anda; [dashed (red) line] on the normalized frequency be attributed to the approximate nature of our solution.
f1/fsn. Bottom panel: The dependence of the parameXerthin
solid (blue) line],\2 [dashed (blue) line] and [bold solid (red) line]
on the normalized frequencf / fsn. e.g., Ref. [30]). A very interesting sub-case, correspogtd
A = —1 (i.e., equal SPM and CPM coefficients), would ren-
der Egs. (18)-(19) the completely integrable Manakov syste
(dark) soliton component being in the LH (RH) fre- [31]; in such a case, in the bottom panel of Fig. 5, the curve
quency band. for parameter! would intersect the curves for, 5, with all
) parameters taking the valuel. However, we have checked
¢ gé)'%lf J1/fan f O'%it:]heno‘lﬁ 0 arflda2 <0 thubs,_ that other, physically relevant, choices of the values efith-
S0 ;r?ni:)('s 'dWI . ?hsoFéﬁnfs requen%lesd €Y ametew does not lead to the Manakov case [the chosen value
onen the LH-and one in the Rh-frequency band. § = 1.0954 only leads to symmetric NLS Egs. (18)-(19)].
o If 0.98 < fi/fan < 1thenay > 0 anday < 0 Utilizing the above mentioned BB soliton solution, we can

thus, DB solitons exist, with the frequency of the dark €xpress the voltage, (¢) in Eq. (5) in terms of the original
(bright) soliton being in the LH (RH) frequency band. coordinates: andt as follows:

Here, we will focus on the BB soliton case (BD and DB soli- Va(t) = Vo[Ri(n,t)cos(kin — Qit)
tons will be studied below). In particular, we will invesiig + Ra(n,t)cos(kan — Qat), (42)
the dynamics of a BB soliton corresponding to the frequency _ _
value f1/fs, = 0.965: for this value, the dispersion coeffi- where functiong?, and R, have the following form:
cientd becomes! ~ —1 = s, the CPM coefficients, » take o
the values\; = Ay = A = —1.7, while a; = ay = 0.487 Ry = sechV2le(n - vyt)), (43)
(see the intersection point of the relevant curves depioyed
a star in Fig. 5). In this case, the BB soliton has a (common Ry =
for both components) group velocity, = 0.1288, which oc-
curs when the (normalized) carrier frequencies for the raodeln the above equationg,is an arbitrary parameter, while the
V1 andV; take, respectively, the valugs/ f;, = 0.965 (as  solution amplitudé’, and the frequencieQ; (j = 1,2) are
mentioned above) anfb/ fsn = 1.365. Notice that other BB given by:
soliton solutions, do not obeying the above particular ¢ond
tions (\; = X2 andd = —1) exist as well, as per our analysis
of the previous Section.

At this point, we should mention that this choice of the pa-
rameter values leads symmetricoupled NLS Egs. (18)-(19) with w; = f;/fs. Now, substituting Eq. (42) into Egs. (40)
(and also to symmetric BB solitons of equal amplitudes —seeand (41) we obtain (for sufficiently smad) our diagnostic

gi1

g22

sech[V20e(n — v,t)]. (44)

20
m, QJ :CLJJ +621€|D1|, (45)

Dy
g11

V0:26
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FIG. 8: (Color online) Parameters for solitons in bands | &id

2.42 obiot i st Shown is the dependence of the coefficients[solid (blue) line]
-500, © Py e anda. [dashed (red) line] on the normalized frequerfey f.,,. Stars
0 ° 1t0 15 < 10° 0 5 1t° 15 10" depict parameter values used for the simulations showrgm Biand

10 below.
FIG. 7: (Color online) The bright-bright soliton of Fig. 6 ésolved

until ¢ = 10°. All the panels are similar to that of Fig. 6 except for _ .
. . . 6 (for 0 = 1.0954). Itis observed that; < 0 andas > 0 and,
the top right. In this panel, snapshots of the soliton at 2 x 10 thus, solely BD solitons exist in bands I-IV.

andt = 107 are compared to the initial condition of the simulation : - . .

in order to examine its robustness under a very long evaldiine. Employlng_ the solutions (23)-(24), we can "_"ga'n approxi-
mate a solution of Eq. (5) for the voltadé, (¢), in terms of
the original coordinates andt, as follows:

quantities: Va(t) = Vo[¥y(n,t)cos(kin — Qit)
2 + Wy(n,t)cos(kan — Qat)], 47
X() = vgt,  P(t) = 1 (1+ &) (46) 2l 1) costlan = at)] “n
ex/ﬁ g22 where
In Figs. 6 and 7 we show the outcome of the simulations for a1
short and long times, respectively, of a bright-bright tewli Wy = Vo sech[eb(n — vgt)], (48)
with ¢ = 1 and N = 500. The parameters used afg/ fo, =
0.965 and f»/fsn = 1.365, which givesk; = —0.406 and g
ks = 1.857. In Fig. 6, it is evident that the agreement between V2 = G2 tanheb(n — vgt)]. (49)

analytical and numerical results pertaining to the solpoor
file, and the evolution of the center of mass and power diagh this case, the solution amplitudig and the frequencie;
nostics, is very good. In the case shown in Fig. 7, we havéj = 1, 2) are given by:
performed a very long simulation, up to normalized times
t = 107. Itis clear that that the initial pulse does not spread
out, which indicates the soliton robustness: the top paofels
the figure — and particularly the snapshots of the pulse profil
att = 107 — clearly show that the soliton persists as a stable In order to get an expression for the center of mass similar
object up to the end of this long simulation time. We note into that of the bright-bright soliton (46), we must define it as
passing that a fragment of the soliton is backscattered when
the soliton starts its motion at= 0 (due to the approximate  x ;) = M — d’_Nq,g o cot(ks) sin(20t),  (51)
nature of our analytical solution profile). Notice that désp Wio— %3 2 "
this emission and the subsequent interaction of the fragmen
with the “distilled” solitary wave, the coherent structue Wwhere
renv?;sttfig?]tllﬁztreagf?e?reserves its characteristics througheut F(t) = ‘I’io . \11570(61)]\/' D+ 5_219\11570[1 ~ cos(201)].
(52)
Substituting Eq. (47) into Egs. (51) and (41) we can once
C. BD solitonsin bandsl and 1V again obtain relevant expressions (provided th& small
enough) for the center of mass and power:

Next, we consider the interaction between a backward prop- V2
agating soliton, with a frequency in band I, and a forward Xa(t) = vgt, Py(t) = =2 F(t). (53)
propagating soliton, with a frequency in band 1V; in thiseas eb
s = +1 (cf. Fig. 3). In Fig. 8 we show the dependence of the Figures 9 and 10 show the evolution of a BD soliton (and its
parametersy; and as on the normalized frequenc / fsn characteristics) in bands | and IV with = 1 and N = 1220.

Dy

gi1

V() = 2¢ 1%} 5 Qj = Wj + EQVj|D1|. (50)
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0.0485 i i FIG. 11: (Color online) Same as Fig. 8, but for soliton intti@ns in

bands I and IlI. Stars depict parameter values used for thelations
shown in Figs. 13 and 14 below.

500 10tOO 1500 500 lOtOO 1500

FIG. 9: (Color online) Bright-dark solitons in regions I-1Vop left:

density plot of the time evolution df;, obtained numerically. The soliton can be attributed to the fact that the background of

. , : : the dark soliton component, namely a continuous-wave (cw),
top right panel compares the analytical and numerical potf1/, . . ; . .
att — 2000. The bottom panels show the time evolution of the centerl SUbject to the modulational instability (see Refs. [14])2
of mass (left) and the power diagnostics (right). The patersaised 1 Nis pointis explained in more detail in Appendix B.
are fi/fen = 0.8831 andkz = 57/8 ~ 1.9625, which givesk; =
—1.0404 and f2/ fsn = 1.3748 (see corresponding points depicted

by stars in Fig. 8), i.e. a bright-dark soliton in the | and I&hiols. D. DB solitonsin bandsl-I11 and I1-111
(b)
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n
4000 0.05 N
(d) —Numerical —48
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-2000 FIG. 12: (Color online) Same as Fig. 8, but for soliton intti@ns
© in bands Il and Ill. Stars depict parameter values used ®siimu-
0G5 10 15 lations shown in Figs. 15 and 16 below.
t x 10* t x 10*
FIG. 10: (Color online) The bright-dark soliton of Fig. 9 igodved Finally, we consider the cases of coupled solitons in bands

until ¢ = 2% 10°. All the panels are similar to that of Fig. 9 except for | @nd 1ll, as well as in bands Il and IIl. In both cases, as is
the top right. In this panel, snapshots of the solitoh-at2x 10° and ~ Observed in Figs. 11 (bands I-ll) and 12 (bands II-1I), we
t = 5 x 10° are compared to the initial condition of the simulation. find thata; > 0 anday < 0 and, thus, solely DB solitons
Notice that the center of mass is not bounded [ptdV, N1; thiscan  exist in these bands. Following our previous consideration
be caused by the soliton splitting. In this setting, the ntatibnal ~ we may use the DB soliton solutions of Egs. (25)-(26) and ap-

instability of the background (see the discussion of AppeBdap-  proximate the voltag¥;, (¢) in Eq. (5), in terms of the original
pears to be responsible for the breakup of the wavepacket. coordinates, as follows:

Vn(t) = V()[(I)l(n, t) COS(leL — Qlt)

The parameters used afg/ fo, = 0.8831 andky = 57/8 ~ + ®a(n,t) cos(kan — Qat)], (54)
1.9625, which givek; = —1.0404 and f2/ fsn, = 1.3748. In

this case, it is clear that although BD solitons do exist, theWhere functions>, and® are given by:

agreement between analytical and numerical results bexome ®; = tanhleB(n — v,t)], (55)
worse over time. Also, as shown in the top right panel of

Fig. 10, the pulse profile indicates that the BD soliton is not o, = @2 1011 sech[eB(n — vgt)] (56)
a robust object. The observed long-time behaviour of the BD a1 | g22 I
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FIG. 13: (Color online) Dark-bright solitons in regionsll:ITop FIG. 15: (Color online) Dark-bright solitons in regionslll- Top
left: density plot of the time evolution df;, obtained numerically. left: density plot of the time evolution df,, obtained numerically.
The top right panel compares the analytical and numeriazilps The top right panel compares the analytical and numeriazilps

of V,, att = 2000. The bottom panels show the time evolution of of V,, at¢ = 2000. The bottom panels show the time evolution of
the center of mass (left) and the width diagnostic (righ&xafeters  the center of mass (left) and the width diagnostic (righ&raPheters

used arek; = —67/5 ~ —1.884 and fo/fa, = 1.1002, which  used arék; = —37/23 ~ —0.4095 and f2/fs = 1.1162, which
gives f1/fsn = 0.8003 and ke = 0.1232 (cf. points depicted by givesfi/fsn = 0.965 andks = 0.2758 (cf. stars in Fig. 12), i.e. a
stars in Fig. 11), i.e. a dark-bright soliton in bands | arid Il dark-bright soliton in bands Il and III.
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FIG. 14: (Color online) The dark-bright soliton of Fig. 13esolved  FIG. 16: (Color online) The dark-bright soliton of Fig. 15&golved

until £ = 2 x 10°. All the panels are similar to that of Fig. 13 yntil ¢ = 2 x 10°. All the panels are similar to that of Fig. 15 except

except for the top right. In this panel, snapshots of thet@olat  for the top right. In this panel, snapshots of the solitoh-at10° and

t =2x10” andt = 5 x 10” are compared to the initial condition of ¢ — 9 x 10° are compared to the initial condition of the simulation.

the simulation in order to examine its robustness underyaleegthy  Notice that, as in Fig. 10, the center of mass is not boundexd in

time evolution. [~N, NJ; as in that case, the soliton splits at long evolution times.
In this setting too, as per the analysis of Appendix B, the ufed
tional instability of the background appears to be resgmador the

while the rest of the soliton parameters are: breakup of the wavepacket.
Dy 9
Vo=2 — Q= w, i|D1l. 57 .
0 =26 r |l =@l ®N  areks = —6n/5 ~ —1.884 and fo/ fun — 11002, which

gives f1/fsn = 0.8003 andky = 0.1232, in bands | and Ill,

Figures 13 and 14 show the outcome of the simulations foandk; = —37/23 &~ —0.4095 and f»/ fsn, = 1.1162, which

a DB soliton in bands | and Il (withy;, = 3 and N = 3333), gives f1/fsn = 0.965 andky = 0.2758, in bands Il and I,

while Figs. 15 and 16 correspond to a DB soliton in bands llrespectively. In the latter case, the relatively large &alof
and Il (withv; = 3 and N = 1553). The parameters used the number of particles and ef.; used are motivated by the
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necessity of a vanishing tail for the bright component at theagation properties and the potential robustness of theterve
edges of the lattice. As seen in this set of figures, DB sditon solitons, were then investigated for each of the possil#e sc
in bands II-11l and I-1ll do exist, as predicted in theory. Fu  narios. This was done by means of direct numerical simula-
thermore, it is observed that the former are less robust thations of the full CRLH-TL nonlinear lattice model, using as
the latter, as seen both from their stronger deformation anahitial conditions the analytical forms of solitons pregid by
the fact that they “lose” their solitary wave characteriearl the perturbation theory. In the simulations, apart fromete
In fact, as observed in the top right panel of Fig. 16 and exiution of the shape, we also studied the evolution of the cen-
plained in Appendix B, the cw background of the dark solitonter of mass and a power-like quantity of the various solitons
is subject to the modulation instability, as in the case ef in Our numerical results have confirmed the existence of the var
teractions in bands I-IV. Contrary, DB solitons in bandé$ll-1 ious types of solitons predicted analytically, but have ats
seem to essentially preserve their structure even in thg lonvealed their distinct robustness characteristics. Iniqaddr,
evolution of Fig. 14; in this case, as is also explained in Ap-we found that bright-bright solitons feature a robust pggpa
pendix B, the cw background carrying the dark soliton is mod-ion over long times. On the other hand, as concerns solitons
ulationally stable. This fact can —at least qualitativedyplain  of the mixed-type (namely dark-bright and bright-dark gnes
the different long-time behaviour of the DB solitons obsstv we found that, in specific frequency bands (bands I-lll)kear
in Figs. 16 and 14 and the fact that DB solitons in bands I-IlIbright solitons are more robust than those in other banels (i.
are more robust than the ones in bands II-111. [I-111) or bright-dark solitons: dark-bright solitons inamds
[I-11l and bright dark solitons preserve their shape onlyfie
nite times and, for sufficiently long evolutions, they arther
IV. CONCLUSIONS destroyed (bright-dark) or are significantly deformed kdar
bright). A qualitative explanation of the above behavioaym
be attributed to the fact that the continuous-wave backgtou

In conclusion, we have used both analytical and numeri . . .
cal techniques to study the existence, stability and dynamQ!c the dark SOI'K.m was found to t.’e —in the effective NLS
icture— modulationally (un)stable in bands (I-IV and ll}-I

ics of coupled backward- and forward-propagating soliton "

in a composite right/left-handed (CRLH) nonlinear trarsmi h | hat f I ¢ soli

sion line (TL). The considered form of the TL was a quite _We can thus postulate that from all types of solitons pre-
dicted analytically, bright-bright and dark-bright onda (

generic one, finding applications to the modelling of a wide ) 4
range of LH systems and devices, with “parasitic” RH behav-bands I-111) are the most likely ones to be experimentally ob
ior, such as resonators, antennas, directional couplena servable. In all cases, our numerical results were found to
others [1-4] ’ ’ ' corroborate the analytical predictions, at least up toitheg

Our analysis started with the derivation of a nonlinear Iat-Olurlng which the solitary waves propagate robustly.

tice equation governing the voltage across the fundament%l It WOUIdI be_ mtere;tllng todSth'.dy oth?r types of nonlinear
(unit cell) element of the transmission line. In the linear ©REH-TL lattice models modelling realistic structures com

regime, we derived the dispersion relation for small-atafk posed_ bydITH-metamattle(;ifgls. hln fchat f99ar.d' afper:tineetzgt in-
linear plane waves and showed that they may either propaga resting direction would be the investigation of the dfec

in a right-handed (RH) high-frequency region, or in a left- O damping and driving, which may lead to robust nonlinear
handed (LH) low-frequency region. We also identified fre_waveforms, which would constitute dynamical attractors in

quency bands where RH- and LH-modes can propagate witﬁUCh settings. Additionally, the study of higher-dimemnsib
the same group velocity. settings is a particularly challenging problem. In the lat-

Using the above result, we then investigated the possibilf-je.r con_text,l in addition to _smplz_r (yet.genlume:.); higher-
ity of nonlinearity-assisted coupling between LH- and RH- imensional, or even quasi-one-dimensional) solitary evav

modes. This way, in order to analytically treat the nonlmea structu_res, more complex v_vaveforms —such as vortu_:es— may
lattice equation, we used the so-called quasi-discreteoapp be realizable. The explaration of such states and theirdyna
mation. The latter is a variant of the multi-scale pertuidrat ical robustness will be reported in future publications.

method, which takes into regard the discreteness of thersyst . Acknowledgments. J.C. acknowledges financial support
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space- and time-scales, a system of two coupled non”ne&}artially supported by the Special Account of Research tSran

Schradinger (NLS) equations for the unknown voltage enve®f the University of Athens.

lope functions. This system was then used to predict the exis
tence of coupled backward- and forward-propagating swdito

of the bright-bright, bright-dark and dark-bright typespec- Appendix A: The perturbation scheme

tively. Importantly, the analysis of such a nonlinear caugpl

suggests that it is possible to control the characterig¢tics, Our analytical approximation relies on the use of the quasi-
amplitude, width, etc), e.g., of a LH soliton with the onesof continuum approximation, which is a variant of the method of
RH soliton. multiple scales [32]. We introduce new independent terrpora

The above mentioned existence results, as well as the propariables;t,, = ¢t (m = 0,1,2,...), and accordingly ex-



pand the time derivative operator 8s = 0y, + €0y, +
Next, we seek solutions of Eq. (5) in the form:

Vo = Z € U (Em) + c.C.

m=1

(A1)

(recall that subscript denotes the lattice site). Then, we

substitute Eq. (Al) into Eq. (5) and employ a continuum ap-

proximation for functiongu,,,, i.€., um, — um(z), where

x = nh andh is the lattice spacing (the latter parameter does
not appear in the results below, as one may readily rescale

13

Eq. (A10), we may determine from Eq. (A4), the unknown
field us:

(] - 02 S 0 2 exp(i26
Z G 2w7,2k exp(i20;)
2[(&]1 —+ U]Q) — 52(601 + LLJQ) ]
— Vi Vs 01+ 06
Gg(wl—l—wz,kl—i—kz) 1 QGXP( ( 1 2)

2[(w1 — wa)! = 0% (w1 — wa)?]

ViVy exp(i(61 — 02)

asx/h). Furthermore, we introduce the new spatial variables 2

Ty = €"x and, thus9, = 0,, + €0z, + .. ..
We now seek for a solution in the form:

2
uy = E ‘/j(Il,IQ,...,
j=1

where subscripts = 1 andj = 2 correspond to the LH
and RH frequency band$j; is an unknown complex enve-
lope function,f; = kjxo — w;to, while the wavenumbers;
and frequencies; satisfy the dispersion relation provided in
Eq. (10). Substituting Eq. (A2) into Eq. (5), and equating co
efficients of like powers ot, we obtain the following (first
three) perturbation equations:

tl, tQ, .. ) exp(iGj) + c.c., (AZ)

O(E) ﬁoul = 0, (A3)
0(62) : i/QUQ + ﬁlul + Nou% =0, (A4)
O(e3) : Lyus + Louy + No[u1u2 + pud] =0, (A5)

where the operators are given by

Ly = 84+ 14 62 + 4% sin? k—ﬂ 8—2+52 (AB)
° T i 12
- : 2 ki 0?
L, = 2 (14 6% +4p2 J) =
v = Aoman T ( + 0% + 4% sin” 2) Dtodiy
3
— 2if%sinkj—mr— o (A7)
~ 82 82
Ly = (14624452 2k (2 9_ Y
2 < + 6% + 43" sin ) <8t2 8t08t2>
34 4
- St Btgf)tgﬂ oSk G252
2 s 2 84
— 4 kj—e— —2iB%sink;—0— (A8
sk w20 sk gag g (AB)
- ot 02
Ny = 2 A9
0 <6t4 +o 6t0) (A9)

Next, substituting Eq. (A2) into Eq. (A4), we obtain the
non-secularity condition:

: 82 ¢ip k.
v w;B” sin k; (“)_V_O’ (A10)
oty 2w? — (1462 +482sin>~ 5) dx1
which suggests that; = V;(X,z2,--- ,t2,...), Where

X = x1 — vy, t1, while the group velocities,; result self-
consistently as,, = dw;/0k; [cf. Eqg. (11)]. Employing

Ga(wy — wa, k1 — k)
=Y Fj(x,ma, - ,t1,t2, ) +CoC., (Al1)
j=1
where functions?,; (w,, k;) are given by:
— (14 6% + 4B sin” k;)(2w;)?
+ (2w))* + 62, (A12)
Gy= — (1402 ap?sin?(ER) 0 12
+ (w1 +w2)t + 6%, (A13)
Gi= — (1+6 +45%sin2 (22 (0 — )2
+ (w1 —w)t + 0% (A14)
On the other hand, functiod§ (x1, z2, - - - , t1,t2,...) canbe

derived at the orde®(¢*), by means of the equation:

Loug + Nou? =0, (A15)
which leads to the result:
= —ﬂ. (A16)
' wj + 62

To this end, we arrive at the following expression fer

2
— Z chj2 exp(i20;) — c3ViVa exp(i(61 + 62)

j=1
—eyV1 V5 exp(i(01 — 02) — Z co;|V; > +c.c., (Al7)
=1
where
4w? (4w? — 6°) (A18)
Ci = —————
J GJ (2w;,2k;)
2[(&]1 + w2)4 — 52 (wl =+ U]Q)Q]
= A19
“s Ga(w1 + w2, k1 + ko) (A19)
2[(w1 —wa)* = 8% (w1 — wa)’]
cy = , A20
* G4(w1 — W2, ky — k2) ( )
2wj2»52
Coj; = w;,l T 52. (A21)
Finally, defining the coefficients:
Aj = co; + ¢j, (A22)
B3_; = co3—j +c3+cq, (A23)
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and using the variable¥ = 1 — v4t; = e(n — v4t) and A general study of Eq. (B4) is provided in Ref. [24]. Here,

T = t, = €t, we derive from the non-secularity condition at we may study a simpler case, where solely one cw (which

O(e?) the coupled NLS equations (18)-(19). carries a dark soliton) is present (i.¢.= 0), so as to explain
the observed in simulations long-time behaviour of BD and
DB solitons. In this case, and jf,po < 0 then the cw is

Appendix B: Modulational instability modulationally unstable, becauke{,} # 0 and, thus,
experience exponential growth. Using the above arguments,
In this Appendix, we provide results for the modulational we find the following for the BD and DB solitons in bands

instability of plane wave solutions of Egs. (18)-(19) (dista |-V and II-1ll (as well as I-11):

can be found, e.g., in Refs.[18, 24]). First we note that

Egs. (18)-(19) possess exact cw solutions, of constantiampl

tudesVj (o), of the form:

V; = Vi) exp (—ig;) B1 o _
i = Vi) oxp (=ip3) (B1) 1. BD solitons in bands I-1Vin this cases = +1,d < 0
. 2 12 I andV; o) = 0; hencepip, < 0 and the cw background
Whe.rg% - (Vj(o) B AJV3—3‘=(Q)) T .(W'th J = L ?)' The- of the dark soliton component is modulationally unsta-
stability of the above cw solutions is studied by introdggcin ble.
the following ansatz into Egs. (18)-(19), 2. DB solitons in bands Il and Ilin this cases = —1,
, d > 0 andVy) = 0; hence,pip2 < 0 and the cw
Vi = (Vo) +¢5) expli;) (B2) background of the dark soliton component is modula-

. . . - tionally unstable.
wherey; is a small perturbation. Then, linearizing the result- y

ing equations with respect t¢;, and assuming that
;= pjcos(KpX — Q,,T) + ig;j sin(K,X — Q,,T), (B3)

where K, and(, are the wavenumber and the frequency of
perturbation, we derive a homogeneous system of four equa-

tions for the perturbation amplitudges andg,. Requiring that 3. DB solitons in bands | and Ijlin this cases = +1,
the system admits a nontrivial solution, we derive the fato d > 0andVy() = 0. Contrary to the previous cases, we
ing dispersion relation fof2, and K : now havep1p; > 0 and, therefore, the cw background
of the dark soliton component is modulationally stable.
Q= (p1 + p2)% + p1p2 —7 =0, (B4)
where
sKg us 5 o . .
n=— |35 +%V | (BS) The above results qualitatively explains the differengion
time behaviour of the BD and DB solitons in bands I-1V, 11-lI
dK? [dK? ) (cf. snapshots at = 5 x 10° and att = 2 x 10° in the top
P2 = 55 +2V50) | » (B6)  right panels of Figs. 10 and 16 respectively) and DB solitons
in bands I-1Il (cf. snapshot at = 5 x 10° in the top right
v = sdMAaViig) Vao)- (B7)  panel of Fig. 14).
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