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Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-
dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We
find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its
Eulerian counterpart, the spatial structure of the scale-to-scale energy flux changes significantly. In
particular, its features appear to correlate with the positions of Lagrangian Coherent Structures
(LCS). We show that the LCS tend to lie at zeros of the scale-to-scale flux, and therefore that the
LCS separate regions that have qualitatively different dynamics. Since LCS are also known to be
impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of
an LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS by
making clear the role they play in the flow dynamics in addition to the kinematics.

PACS numbers: 47.10.Fg, 47.27.De, 89.75.Fb

The complex nonequilibrium dynamics of flowing flu-
ids are in principle completely described by the Navier–
Stokes equations. For all but the simplest situations,
however, these nonlinear partial differential equations are
essentially intractable. Practical problems thus require
either numerical solution of the equations, which brings
its own difficulties, or some kind of suitable reduction
of the complexity of the problem: one wishes to cap-
ture with as much fidelity as possible the full flow dy-
namics by considering only a finite number of degrees
of freedom. Such an approach is ubiquitous in statisti-
cal physics; fluid mechanics, however, has so far resisted
acceptable simplification by traditional techniques.

A possible reason for the failure of the usual tools of
statistical mechanics to describe fluid flows is that we
have not yet discovered the right degrees of freedom
with which to describe the system. Although various
ways to choose these degrees of freedom have been sug-
gested [1, 2], perhaps none is more appealing than a
decomposition of the flow into “coherent structures”—
regions of the flow field that are distinguishable in time
and space and over which some dynamical property or
properties of the flow are strongly correlated. A huge va-
riety of coherent structures have been described in fluid
flows [3, 4]. Structures may be defined relative to a fixed
coordinate system, in which case they are Eulerian, or rel-
ative to the motion of individual fluid elements, in which
case they are Lagrangian. The canonical Eulerian struc-
ture is a vortex; the most common Lagrangian object is
the so-called Lagrangian Coherent Structure (LCS) [5].
LCS are codimension-one material objects (e.g., curves in
a two-dimensional flow) that are the most important bar-
riers to mixing of a passive scalar such as dye [6]. Much
more difficult than defining structures, however, has been
linking them quantitatively to flow dynamics. In partic-

ular, we seek connections between dynamical structures
and the spectral transport of energy and momentum be-
tween different length and time scales that makes Navier–
Stokes dynamics both rich and difficult to describe.

In this Letter, we demonstrate such a link for a partic-
ular type of coherent structure in an experimental quasi-
two-dimensional, weakly turbulent flow. To determine
the spectral dynamics of the flow, we use filter-space tech-
niques [7–13] to measure the scale-to-scale flux of energy
as a function of space and time. As we showed previ-
ously, this energy flux is persistent along the Lagrangian
trajectories of fluid elements [14]. We therefore devel-
oped a novel analysis tool, averaging the flux along such
trajectories to produce Lagrangian-averaged flux fields.
These new fields have features that align strikingly well
with LCS; indeed, the LCS frequently lie along zeros of
the Lagrangian-averaged flux. By measuring the change
in flux along line segments that are locally transverse to
LCS, we find this observation to be statistically robust:
on the average, LCS separate regions of scale-to-scale en-
ergy flux of opposite sign. Thus, we show that LCS,
whose role as kinematic transport barriers is well estab-
lished [15], also play a key role in the flow dynamics. Our
observations bolster the growing consensus that LCS are
a very promising type of coherent structure for tractably
describing complex fluid flows, and demonstrate a clear
connection between a particular type of coherent struc-
ture and the nonlinear dynamics of the flow.

Our experimental data come from a quasi-two-
dimensional electromagnetically driven thin-layer flow
that is described in detail elsewhere [16, 17]. A layer
of salt water (4 mm × 86 cm × 86 cm, 16% NaCl by
mass) lies below a similarly thin layer of fresh water and
above a square array of permanent magnets arranged in
stripes of alternating polarity. The half-wavelength of the
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stripe pattern is L = 2.54 cm; each magnet is 1.27 cm
in diameter and has a magnetic field of roughly 0.3 T
at its surface [18]. Imposing a steady electric current
through the salt water produces Lorentz forces that drive
fluid motion, which becomes unsteady, spatially disor-
dered, and weakly turbulent when the current is large.
In the results discussed below, the Reynolds number is
Re = UL/ν = 220 (where U is the measured root-mean-
square velocity and ν is the kinematic viscosity), well into
the disordered regime. The Reynolds number defined in
this way characterizes the nondimensional strength of the
forcing rather than the extent of any turbulent cascades.
We seed the flow with 51 µm fluorescent tracer particles
that lie on the interface between the salt water layer and
the less-dense fresh water layer, and the particles accu-
rately track the fluid motion [19]. We image them with
a 4 megapixel digital camera at 60 frames per second,
avoiding possible boundary effects by limiting the field
of view to a central 32 cm × 24 cm region. In the re-
sulting movies we track about 35 000 particles per frame
with a multi-frame predictive tracking algorithm [20]. Al-
though the particle loading is high, they are typically
separated by at least 15 diameters and so are unlikely to
interact. We measure Lagrangian particle velocities by
differentiating the trajectories. Eulerian velocity fields
are then produced by projecting the spatially dense La-
grangian data onto a basis of incompressible streamfunc-
tion eigenmodes [16]. Because particles are confined to
the interface and because the basis is carefully chosen, the
resulting velocity fields approximate two-dimensional, in-
compressible flow very closely.

We locate the LCS in the velocity fields using the re-
cently described method based on geodesics of the Rie-
mannian metric derived from the Cauchy–Green strain
tensor [21]. We use a modified algorithm to locate the
hyperbolic transport barriers (LCS) from the experimen-
tal data [22]. The algorithm takes in the experimentally
measured velocity field and smooths the data in space
to remove noise in the velocity gradient fields. For the
defined time interval, a flow map is calculated and the
corresponding Cauchy–Green tensor is calculated at each
point. The eigenvalues and eigenvectors of the Cauchy–
Green tensor correspond respectively to the local stretch-
ing rates and directions of fluid elements. The eigenvec-
tor corresponding to the smaller eigenvalue forms a vec-
tor field that is everywhere tangent to the LCS. Using
this property, we calculate strainlines (trajectories of the
eigenvector field) and apply the necessary conditions to
identify the LCS [21].

To obtain scale-to-scale energy flux fields, we use a
filter-space technique (FST) [8–10]. The idea of an FST
is straightforward. Briefly, applying a low-pass spatial fil-
ter to the equation of motion for energy yields a new ex-
pression. Each term in the filtered equation corresponds
to a term in the original equation, with one exception: a
new term that arises from the nonlinearity that accounts
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FIG. 1. (color online.) Example scale-to-scale energy flux
fields. (a) Flux field with no Lagrangian averaging (T = 0).
(b–d) Lagrangian-averaged flux fields, with averaging time
T = 1 s, T = 2 s, and T = 5 s, respectively. The scale bar
indicates the forcing length L, and the filter scale is r/L =
1.75 in all cases.

for coupling between the scales removed by the filter and
the scales that are retained. This term, analogous to
the Reynolds stress that appears when the Navier–Stokes
equations are averaged, directly measures the energy flux
Π(r) through the filter scale r. But unlike assessing the
spectral properties of the flow by working in the Fourier
domain, Π(r) is a function of space, and is given by

Π(r) = −
[

(uiuj)
(r) − u

(r)
i u

(r)
j

]

∂iu
(r)
j . (1)

Here ui is a velocity component; summation is implied
over repeated subscripts. The superscript (r) denotes
filtered quantities with length scales smaller than r re-
moved. Following previous work [10, 14], we used a low-
pass Gaussian filter to implement the FST because it
is well behaved in both real space and frequency space.
With this sign convention, Π(r) > 0 denotes transfer to
smaller scales (larger wavenumbers), and Π(r) < 0 de-
notes transfer to larger scales (smaller wavenumbers). An
example scale-to-scale energy flux field, with r/L = 1.75
where the spatially averaged flux vanishes, is shown in
Fig. 1a. The spatial resolution is about 1.5 mm, the typ-
ical distance between tracked particles.
Π(r) is itself a dynamical variable, and the energy flux

fields are not stationary in time. Thus, it is natural to
ask what energy flux a fluid element experiences as it is
swept along by the flow [14]. In particular, we consider
the average scale-to-scale energy flux along Lagrangian
trajectories. Rather than using measured trajectories,
which can be short, to make this calculation, we construct
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Lagrangian trajectories by a posteriori integrating the
equations of motion of virtual tracers through the time-
resolved velocity fields [6, 23]. The virtual tracers sample
the time-resolved energy-flux fields as they move. We
define the Lagrangian-averaged energy flux over a time
T as

1

T

∫ t+T

t

Π(r)(x(τ)) dτ, (2)

where the integral is taken over a Lagrangian trajectory
x(τ). By uniformly seeding the entire observation re-
gion with virtual tracers, we can measure the Lagrangian-
averaged flux as a function of space, as shown in fig. 1b–d.
In principle it would be possible to measure Lagrangian-
averaged flux along observed trajectories of actual parti-
cles as well, but it is typically much noisier due to short
or broken trajectories [6, 23]. As the averaging time T
increases, the scale-to-scale energy flux field is stretched
and folded in a manner reminiscent of scalar mixing.
To examine the convergence properties of this

Lagrangian-averaged flux, we compared its spatial av-
erage as a function of T with the corresponding spatial
average of the instantaneous, Eulerian flux field. In two-
dimensional turbulence, energy is expected to be trans-
ported from the scale at which it is injected to larger
length scales (smaller wavenumbers) in an inverse energy
cascade [24]. In terms of Π(r), we would expect negative
values on the average for length scales r >

∼ L. In fig. 2, we
show the spatially averaged scale-to-scale energy flux as a
function of r for Lagrangian averaging times ranging from
T = 0 (the Eulerian case) to 10 s. Note that the eddy
turnover time of our flow, defined simply as the ratio of L
to the root-mean-square velocity, is 2.4 s. Although the
Lagrangian-averaged flux is not identical to the Eulerian
case, the overall shape and behavior are very similar. As
expected, 〈Π(r)〉 > 0 for small r and 〈Π(r)〉 < 0 for large
r, with 〈Π(r)〉 = 0 at r/L = 1.75. Thus, the Lagrangian
averaging appears to be well behaved.
Having shown that these Lagrangian-averaged flux

fields are statistically reasonable, we now consider more
carefully their spatial structure. As we mentioned above,
the features of these fields resemble the stretched and
folded patterns commonly observed when a passive scalar
such as dye is mixed by fluid advection. In the passive
scalar case, the mixing is known to be organized by LCS
[6]. Surprisingly, we find the same phenomenon for our
Lagrangian-averaged scale-to-scale energy flux fields: the
LCS appear to organize this dynamical field, which is cer-
tainly not passive, as well.
Figure 3a shows the same Lagrangian-averaged flux

field as in fig. 1d, but now with the LCS overlaid. We
calculated the LCS over a 5 s time window (approxi-
mately two eddy turnover times), matching the time T
used for the Lagrangian averaging. The correspondence
between the LCS and the Lagrangian-averaged flux is
immediately apparent; in particular, the LCS lie nearly
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FIG. 2. (color online.) Spatial mean of the Lagrangian-
averaged flux as a function of filter scale, for different averag-
ing times T . Although the details change somewhat from the
Eulerian case (T = 0) to the Lagrangian case, the qualitative
behavior is very similar.

at the zeros of the flux field, and thus tend to separate
regions with oppositely signed Lagrangian-averaged flux.
To show this result in more detail, a portion of the flux
field is magnified in fig. 3b. We note that the LCS do not
match the zeros of the flux field exactly; nonetheless, the
correspondence is remarkably close. To quantify it, we
measured the variation of the Lagrangian-averaged flux
over short line segments transverse to the LCS, as shown
in gray in fig. 3b. In fig. 3c, we show the variation of
the Lagrangian-averaged flux along this example trans-
verse line segment. Consistent with our qualitative ob-
servations, the Lagrangian-averaged flux is negative on
one side of the LCS, positive on the other, and passes
through zero near the point where the transverse line
segment intersects the LCS.

To quantify the relationship between LCS and the
Lagrangian-averaged energy flux statistically, we deco-
rated all the LCS with such transverse line segments
all along their lengths, found the flux along each seg-
ment, and computed the overall average of the ensemble
of 6.5× 105 segments. The result, also plotted in fig. 3c,
confirms our observations from the example segment: the
Lagrangian-averaged energy flux is zero near LCS, posi-
tive on one side, and negative on the other. On average,
the distance between an LCS and the zero-flux contour is
0.067 cm; to experimental precision, they coincide. Note
that we assign a directionality to each line segment so
that the energy flux increases from left to right; other-
wise, the average over the ensemble would vanish since
the Lagrangian-averaged flux is equally likely to be posi-
tive or negative on any given side of an LCS. The magni-
tude of the flux, however, is unchanged by our choice of
directionality. And indeed, this magnitude is on the order
of 0.05 cm2s−3, much larger than the overall spatial av-
erage of 0.01 cm2s−3. Thus, our results are statistically
significant, and indicate that LCS do tend to separate
regions of oppositely signed Lagrangian-averaged energy
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FIG. 3. (color online.) Lagrangian-averaged scale-to-scale
energy flux and LCS. (a) The same Lagrangian-averaged flux
field shown in Fig. 1d with the LCS overlaid. The scale bar
indicates the forcing length L. LCS tend to separate regions
of opposite energy flux. (b) A magnified view of the same flux
field and LCS shown in (a). An example line segment per-
pendicular to an LCS is shown in gray. (c) The Lagrangian-
averaged flux along the example transverse line shown in (b),
plotted in gray, and the flux averaged over the full ensemble
of transverse lines. On the average, LCS separate regions of
scale-to-scale energy flux of opposite sign.

flux, and therefore regions that are dynamically distinct.

Although this lowest-order statistical characterization
is clear, deviations do occur. Not every LCS separates re-
gions of oppositely signed flux, nor does every LCS lie on
zeros of the Lagrangian-averaged flux. In Figure 3, how-
ever, we have only shown the Lagrangian-averaged flux
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FIG. 4. LCS and Lagrangian-averaged energy flux through
scale r/L = 2.09. The scale bar indicates the forcing length
L. At different scales, different LCS align with zeros of scale-
to-scale energy flux.

fields for a filter scale of r/L = 1.75. Figure 4 overlays
LCS on the Lagrangian-averaged flux through a differ-
ent length scale, r/L = 2.09, where the inverse energy
transfer is the strongest. Comparing, we observe LCS
that lie on zeros of the flux field at one scale, but not an-
other (one is marked with an arrow). This result suggests
that each LCS has a characteristic dynamical length scale
at which it best divides the Lagrangian-averaged energy
flux. We also note that although we expect our results to
remain valid at higher Reynolds numbers, we cannot ac-
cess them in our current apparatus without driving sub-
stantial out-of-plane flow [16]. Future studies will explore
these questions and hypotheses.

To summarize, by defining a Lagrangian-averaged
scale-to-scale energy flux and comparing its spatial struc-
ture to LCS, we have shown that LCS, on average,
separate regions of opposite energy flux in quasi-two-
dimensional weak turbulence. Our findings add a link
between LCS and the flow dynamics to the already well
established connection between LCS and flow kinemat-
ics, thus enhancing our understanding of the role played
by LCS and solidifying the choice of LCS as a “good”
set of coherent structures for decomposing complex flow
fields. Future work, and particularly future theoretical
studies, should aim to place our empirical findings on a
stronger mathematical foundation.
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