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We present quantitative measurements of time-dependent flagellar waveforms for freely swimming
biflagellated algal cells, for both synchronous and asynchronous beating. We use the waveforms in
conjunction with resistive force theory as well as a singularity method to predict a cell’s time-
dependent velocity for comparison with experiments. While net propulsion is thought to arise
from asymmetry between the power and recovery strokes, we show that hydrodynamic interactions
between the flagella and cell body on the return stroke make an important contribution to enhance
net forward motion.

Flagella, micron-sized appendages of many eukaryotic
cells, play a critical role in locomotion and biological fluid
flows [1, 2]. Eukaryotic flagella and structurally similar
cilia [3] contain an array of microtubules organized into
an axoneme. Flagella are driven by dynein molecular
motors that hydrolyze ATP to “walk” along one micro-
tubule while attached to a neighbor, generating stress
leading to bending. Ciliary motility is essential for hu-
man life; defects in flagellar (ciliary) function can result
in a variety of human diseases such as infertility, cystic
kidney disease and retinal dystrophy [4]. For decades,
the eukaryotic green alga Chlamydomonas [5] has been
used as a model organism for studies of flagellar motil-
ity [6, 7]. Much remains to be learned experimentally
about the dynamics of flagella on freely swimming cells.

Chlamydomonas reinhardtii is a single cell with a body
diameter ∼ 10 µm and two anterior flagella each 10-
15 µm in length. It swims at low Reynolds number
(Re ∼ 10−2) where viscous effects dominate inertia, and
therefore the total net force and torque on the cell body
can be assumed to vanish at any instant in the absence
of an external force [8]. For instance, an algal cell would
come to a complete stop in ∼ 0.1 ms if the flagella were
to stop beating [9]. Cylindrical (radius r ∼= 125 nm) flag-
ella beat with a waveform that apparently optimizes the
swimming efficiency [10]. Net forward motion is achieved
by coordinated beating of the twin flagella at 45-60 Hz
in a breaststroke motion, which propels the organism at
a mean speed of 100-200 µm/s [11]. C. reinhardtii can
vary the beat frequency of its flagella to switch between
synchronous and asynchronous beating states [6, 7] and
change direction, thus producing a random walk [12–14].

This paper presents the first quantitative experimental
measurements of the time-dependent deformations of the
flagella (including local curvature and local velocity) of
freely swimming biflagellated cells, in both synchronous
and asynchronous states. Here, the detailed information
on the flagellar deformations first is used to identify the
structure of the stroke as a traveling wave of curvature
propagating along the flagellum. The experimental data
further allow us to characterize the desynchronization

events between the two flagella. Finally, we use mea-
surements of both the flagellar deformations and the in-
stantaneous velocity of the cell to demonstrate that the
generation of forward motion crucially depends on hy-
drodynamic interactions between cell and flagella.

Experiments are performed using a microscope and
a high-speed camera to capture the motion of the cells
swimming in a thin film with a thickness of h ≈ 15 µm,
about 1.5− 2.0 times the body diameter, so cells cannot
rotate about their swimming axis (see details [15]). Al-
though we have recorded data for hundreds of cells, in
only a small fraction of cases do the full lengths of both
flagella remain in focus for complete beat cycles, and thus
are suitable for quantitative analysis. The depth of field
of the 40x, 0.75 N.A. objective used in this study is less
that 1µm (1/15th of the thin film thickness); as a con-
sequence, the flagellar contours are 2D projections that
closely approximate the actual 3D waveforms. Apply-
ing these stringent criteria to data collected from freely
swimming cells, we have been able to fully analyze the
flagellar contours for about 10 complete cycles. Micro-
scope images are preprocessed using digital Fourier filters
to minimize halo artifacts surrounding the cell. After in-
tensity thresholding, the pixels belonging to each flagel-
lum are determined based on their locations and are then
tracked from the point of body attachment to the tip of
the flagellum. The center-line of each flagellum in each
frame is found using a 6th order polynomial fit to the
parametrized pixel locations (for a similar analysis, see
Ref. [16]). The center-line points r(s, t) are then used
to calculate the local velocities V(s, t) = ∂r/∂t of the
flagellum as a function of time t and arc length s (in the
laboratory frame of reference). An elliptical fit is used
to determine the body center for the measurement of cell
velocity U(t), and to determine the length of the semi-
major and semi-minor axes a, b of the cell body, as well
as the body frame coordinate system (x‖, x⊥) relative to
the cell’s axis.

In Fig. 1, flagellar waveforms at several instants des-
ignated 1-8 are shown for a cell demonstrating first syn-
chronous and then asynchronous beating along with the
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FIG. 1: (color online) The body velocity (a) and instan-
taneous body angle change (b) as a function of time for a
cell demonstrating both synchronous and asynchronous beat-
ing. (c) Flagellar waveforms at several instants, with cur-
vature (color-coded as in Fig. 2) and vectors showing the
time-dependent velocity V along each flagellum. (Also see
movies [15].)

corresponding instantaneous cell body velocity, and the
body angle change with respect to the initial instant. For
synchronized motion (1-4), the cell first extends its flag-
ella and then sweeps them rearward to pull its body for-
ward (power stroke, e.g. 4), while during the backward
motion of the cell (recovery stroke, e.g. 2) it moves them
closer to the body in the direction opposite to its move-
ment, apparently reducing the body displacement in the
reverse direction. The tips of the flagella move with a
speed of ∼ 1mm/s during the power and recovery stroke.
The oscillatory behavior of the cell is interrupted when
the two flagella become asynchronous (near ∼ 0.05s); the
cell body starts to wobble (4-7) as two flagella beat at
different frequencies. This desynchronization event lasts
∼ 40ms, and it causes the cell to change its orientation by
∼ 8◦. (see video [15].) A longer interval of asynchronous
motion could produce a larger angle change, as suggested
by observations of less frequent but more extended peri-
ods of flagellar phase difference drifts on cells anchored
to micropipettes [12].

Fig. 2(a) represents measurements of the time depen-
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FIG. 2: (color online) (a) Representative space-time curvature
plots along the center line of each flagellum for a single cell,
using opposite signs for the two flagella. Propagating waves
are evident. (b) The normalized mean square net curvature
∆, averaged over the the flagellar length, and (c) the velocity
correlation C (see text) are shown as a function of time for two
different cells, one showing asynchronous motion near 0.05
s (circles), and the other showing only synchronous motion
(squares). (See additional figure [15].)

dent curvature κ(s, t) along the centerline of two flagella
beating at different frequencies. The data on curvature
shows that the power and recovery strokes performed by
the two flagella each consists of a single finite region of
high curvature of constant sign and amplitude propa-
gating from the base to the tip of the flagella at a con-
stant speed. This propagation speed of the curvature can
be calculated from the displacements of each curvature
peak. We find wave speeds of 885 and 802 µm/s for the
two flagella (with a standard deviation of the slope less
than 20 µm/s). The periodic generation of these bending
waves supports models of active bending [17], in which
the microtubules on one side of the axoneme slide rela-
tive to the other. The magnitude of the displacement is
measured to be about 400 nm.

We further characterize quantitatively the desyn-
chronzation events by two different methods. First,
we compute the normalized net curvature ∆(t) =
L2

〈

(κ1 + κ2)
2
〉

, where κ is the signed local curvature
of each flagellum (1,2), and the brackets indicate aver-
aging over the flagellar length L; ∆ is defined to vanish
in the symmetric synchronous state. We also consider
the velocity correlation along the two flagella C(t) =
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〈

V1,‖V2,‖

〉

/(
〈

V1,‖
2
〉 〈

V2,‖
2
〉

)1/2, where V‖ is the projec-
tion of the velocity along the major axis in the body
frame. As shown in Fig. 2(b-c) both measures provide
a clear signature of the desynchronization event, during
which the velocities along two flagella are almost anti-
correlated and ∆ reaches a maximum, while the body
velocity is nearly zero. One of the flagella performs an
extra beat during this desynchronization event, consis-
tent with earlier observations [6, 7, 13].
During these desynchronization events, the cells wob-

ble along their trajectories due to unequal torques from
the two flagella. A preliminary study of about 80 freely
swimming cells shows that fluctuations larger than 4 or
7 degrees occur approximately 10% or 3% of the time,
with frequency decreasing exponentially with increasing
angle. Therefore, substantial fluctuations are not uncom-
mon, though only the largest ones produce phase slips
and substantial angle change [6, 7, 12–14], observed here
directly for freely swimming cells. Wobble events clearly
can affect the paths taken by individual cells and may
contribute to diffusion in natural environments [12–14].
We now return to the general case of synchronized

beating and investigate the hydrodynamic origins of for-
ward motion in swimming Chlamydomonas. Fig. 3 repre-
sents the instantaneous velocity of the cell centroid mea-
sured for a single Chlamydomonas alga over more than
three consecutive stroke periods. The precise deforma-
tions of the flagella were simultaneously captured with
high-speed imaging recording at 500 fps and the dimen-
sions of this particular organism were measured as: major
axis a = 8.24 ± 0.35µm, minor axis b = 7.74 ± 0.05µm
and flagellar length L = 13.0±0.8µm. The sign of the in-
stantaneous velocity alternates corresponding to forward
and backward motion, which is the typical signature of
the power-recovery stroke.
The fluid flow around the swimming cell can be com-

puted from the detailed parametrization of the experi-
mentally recorded flagellar deformations. This computa-
tion allows us to compare theoretical and experimental
swimming velocities and identify the origin of forward
motion. Here the Reynolds number Re is small and the
hydrodynamics is governed by the viscosity dominated
Stokes equations:

∇ · u = 0 , −∇p+ µ∇2u = 0 , (1)

subject to the boundary and equilibrium conditions

u = UΣ on Σ , u → 0 at ,∞ (2)
∫∫

Σ

(σ · nΣ) dΣ = 0 ,

∫∫

Σ

r × (σ · n) dΣ = 0 , (3)

where p is the pressure field, u is the velocity field, UΣ is
the velocity at the surface of the swimmer, σ is the hy-
drodynamic stress tensor, r is the position vector, Σ rep-
resents the surface of the swimmer and nΣ is the normal
vector to the surface. Given the geometry of this swim-
ming Chlamydomonas cell, these equations were solved
approximately using two different semi-analytical mod-
els: first a local drag model referred to as resistive force

theory (RFT) in the literature, then a singularity method
(SM) which accounts to first order for non-local hydro-
dynamic interactions.

The RFT only takes into account local effects and ne-
glects any hydrodynamic interactions between different
parts of the swimmer [18]. This method is widely used
[18–20] and assumes, at each point along the flagella, the
local hydrodynamic force per unit length f(s) to be lin-
ear in the local velocity of the flagellum V (s). Similarly,
the hydrodynamic force on the cell F is assumed to be
linear in the velocity of the cell U . Along the flagella,
f(s) depends on two drag coefficients C‖ and C⊥, char-
acterizing the hydrodynamic drag in the tangential and
normal direction to the centerline of the flagella. Likewise
on the cell body, F depends on the drag coefficient in the
direction of the major and minor axis of the ellipsoidal
body D‖ and D⊥. The values for the drag coefficients
on the slender flagella (C‖, C⊥) and on the ellipsoidal
cell body (D‖, D⊥) can be derived analytically. In this
work, we used standard expressions which can be found
in [21] and [22]. From the parametrization of the flagellar
deformations, we compute the swimming velocity of the
cell with the RFT model by imposing the equilibrium
conditions in equation 3, see Fig.3. The instantaneous
velocity computed by the RFT reproduces the character-
istic signature of the power-recovery strokes and alter-
nates sign. The average velocity predicted is 67µm.s−1

which is significantly lower than the 125µm.s−1 measured
experimentally. Two main factors can explain this dis-
crepency. Considering first the power stroke, the maxi-
mal forward velocity measured is 35% higher than that
computed by the RFT. This is likely due to the thin film
flow conditions around the cells in the experiment, which
differ from the 3D infinite flow conditions assumed in the
RFT, see eq. 2. The film thickness h is more than two
orders of magnitude larger than flagellar radius r, so the
effect of the thin film condition on the flagella is expected
to be negligible [31]. However, h is only 1.5 − 2.0 times
thicker than the diameter of the cell body. This proxim-
ity to the free boundaries will decrease significantly the
drag experienced by the cell body in the experiment com-
pared to the drag in infinite flow. This decreased drag
corresponds to an increase in the measured instantaneous
velocity. The drag experienced by a solid sphere moving
parallel to a single free boundary located at 0.75 − 1.0
diameter from its center has been shown analytically to
decrease by 16−20% compared to the drag in infinite flow
conditions [23]. No equivalent theory has been derived
for the case of two free boundaries. One may expect how-
ever the drop in drag to double under these conditions,
by analogy to the case of solid boundaries [23], and hence
to account for the higher velocities observed experimen-
tally compared to those obtained by the RFT. Next we
consider the recovery stroke. In this case, the magnitude
of the negative velocities observed are 40% lower than
estimated with the RFT. During the recovery stroke, the
two flagella move closer to the cell body and the RFT
is anticipated to breakdown due to significant non-local
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hydrodynamic interactions between the different parts of
the microorganism.
In order to further investigate the effect of hydrody-

namic interactions, we used a second method to model
the flow around the swimming organism. In this model,
the hydrodynamics is solved with a singularity method
(SM), for which singular fundamental solutions to the
Stokes equations are distributed along the major axis of
the ellipsoidal cell body and along the centerlines of both
flagella. The singularity distribution satisfies the no-slip
condition (eq. 2) to first order on the deforming surface.
We use the singularity distributions from non-local slen-
derbody theory to represent the flagella [24] and a sep-
arate system of singularities to represent the ellipsoidal
body [22]. Hydrodynamic interactions between distant
parts of the flagella are modelled by the non-local slen-
derbody theory and interactions between the cell body
and the flagella are taken into account via an extension
to Faxéns laws for elliptical bodies [25]. Details of the
method can be found in [26]. The singularity distribu-
tion and the swimming velocity of the cell body can be
deduced from the equilibrium condition 3. During the
power stroke, the SM and the RFT are in close agree-
ment (Fig. 3) and both predict forward velocities lower
than those observed because of the infinite flow domain
assumption, see Fig. 3. This agreement is expected since
the flagella remain far from the cell body during the pow-
erstroke and non-local hydrodynamic interactions are not
significant. The effect of hydrodynamic interactions is
most evident during the recovery stroke, when the neg-
ative backwards velocities computed with the non-local
SM are 40% lower than those computed with the RFT.
These lower backward velocities are in closer agreement
with experimental observations and the average velocity
computed by the singularity method is 88µm.s−1.
Comparing the instantaneous velocities obtained from

the RFT and the SM with the measured velocities allows
us to identify the hydrodynamic origin of the average
forward velocity of swimming Chlamydomonas. During
the recovery stroke, the RFT predicts backwards instan-
taneous velocities which are nearly equal to the positive
forward velocities during the power stroke. This sym-
metry contrasts with the experimental measurements for
which the backwards velocities are significantly lower
than the forward velocities. The RFT only accounts
for the local hydrodynamics, for which the drag-based
thrust is solely due to the anisotropy in the drag coeffi-
cients (D⊥ > D‖) [8]. RFT with constant coefficients has
been shown experimentally to be sufficient to describe
the time-dependent motion of freely swimming sperma-
tozoa [20]. For the power-recovery strokes, our analysis
challenges the common view of a drag-based thrust re-
lying solely on drag anisotropy. By accounting for hy-
drodynamic interactions to first order, the implemented

SM obtains lower negative backward velocities during the
recovery stroke than the RFT, in agreement with exper-
imental observations. This allows us to identify hydro-
dynamic interactions between cell body and flagella as a
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FIG. 3: Comparison of measured (circles) and estimated oscil-
latory instantaneous velocity of the cell body. The velocity is
estimated using resistive force theory (dash-dotted line) and
the singularity method (solid line).

significant contributing mechanism to forward motion.

Our results contrast with a recent RFT analysis [27] of
propulsive forces on the flagellum of Chlamydomonas. In
that work, flagellar waveforms were studied on mutant
uniflagellate cells in which the beating of a single flagel-
lum causes the cell body to spin like a top in the opposite
direction (c.f. Fig. 1 of Ref. [27]). Because of greater dis-
tance between the flagellum and cell body on the return
stroke (c.f. Fig. 4 of Ref [27]) in this unusual geometry,
their data were adequately described by an RFT model.
We show this is not the case for freely swimming, bi-
flagellate Chlamydomonas cells, where RFT (which can
not account for hydrodynamic effects) does not describe
well the measured cell body velocity on the return stroke
when the flagella pass very close to the cell body (Fig.
1). However, a singularity model that accounts for these
hydrodynamic interactions agrees well with our return
stroke data, demonstrating that the cell uses these in-
teractions to enhance net forward motion, offering new
insight into the mechanics of freely swimming cells.
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[7] U. Rüffer and W. Nultsch, Cell Motil. Cytoskel. 41, 297

(1998).
[8] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601

(2009).
[9] A. Hamel, C. Fisch, L. Combettes, P. Dupuis-Williams,

and C. N. Baroud, Proc. Natl. Acad. Sci. U S A 108,
7290 (2011).

[10] D. Tam and A. E. Hosoi, Proc. Natl. Acad. Sci. U S A
108, 1001 (2011).

[11] J. S. Guasto, K. A. Johnson, and J. P. Gollub, Phys.
Rev. Lett. 105, 168102 (2010).

[12] M. Polin, I. Tuval, K. Drescher, J. P. Gollub, and R. E.
Goldstein, Science 325, 487 (2009).

[13] R. E. Goldstein, M. Polin, and I. Tuval, Phys. Rev. Lett.
103, 168103 (2009).

[14] S. Rafai, L. Jibuti, and P. Peyla, Phys. Rev. Lett. 104,
098102 (2010).

[15] See supplementary material for movies and additional
figures.

[16] P. V. Bayly, B. L. Lewis, P. S. Kemp, R. B. Pless, and
S. K. Dutcher, Cytoskeleton 67, 56 (2010).
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