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The problem of the time required for a diffusing molecule, within a large bounded domain, to first
locate a small target is prevalent in biological modeling. Here we study this problem for a small
spherical target. We develop uniform in time asymptotic expansions in the target radius of the
solution to the corresponding diffusion equation. Our approach is based on combining expansions
of a long-time approximation of the solution, involving the first eigenvalue and eigenfunction of the
Laplacian, with expansions of a short-time correction calculated by pseudopotential approximation.
These expansions allow the calculation of corresponding expansions of the first passage time density
for the diffusing molecule to find the target. We demonstrate the accuracy of our method in approx-
imating the first passage time density and related statistics for the spherically symmetric problem
where the domain is a large concentric sphere about a small target centered at the origin.

I. INTRODUCTION

Diffusion of a molecule to a spherical trap is a classi-
cal problem important in chemical kinetics. In an un-
bounded domain, the problem reduces to the Smolu-
chowski theory of reaction kinetics. In the context of bi-
ological processes, intracellular transport of biomolecules
and chemical reactions occur within closed domains with
complex geometries [1]. As a first passage time prob-
lem, this is closely related to the narrow escape prob-
lem, where a diffusing molecule escapes a closed domain
through a small opening on the boundary, and the long
time behavior has been studied using matched asymp-
totics [2–8]. There are many examples of this type of first
passage time problem in biological modeling, including
transport of receptors on the plasma membrane of a den-
drite [9, 10], intracellular virus trafficking [11], molecular
motor transport [12], binding of a transcription factor to
a segment of DNA within a nucleus [13], and export of
newly transcribed mRNA through nuclear pores [14].

Consider a bounded domain Ω ⊂ R3, containing a
small, absorbing spherical trap, Ωε ⊂ Ω, with radius
ε centered at rb ∈ Ω. We denote by ∂Ω the exterior
boundary surface to Ω, and by ∂Ωε the exterior bound-
ary to Ωε. The non-trap portion of Ω is denoted by
Ωfree = Ω \ {Ωε ∪ ∂Ωε}. Consider a molecule undergo-
ing Brownian motion within Ωfree. We denote by p(r, t)
the probability density that the molecule is at position
r ∈ Ωfree at time t and has not yet encountered the trap.
For D the diffusion constant of the molecule, p(r, t) sat-
isfies the diffusion equation

∂p

∂t
= D∇2p(r, t), r ∈ Ωfree, t > 0, (1.1a)

∂ηp(r, t) = 0, r ∈ ∂Ω, t > 0, (1.1b)
p(r, t) = 0, r ∈ ∂Ωε, t > 0, (1.1c)

p(r, 0) = δ(r − r0), r ∈ Ωfree, r0 ∈ Ωfree (1.1d)
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where ∂η denotes the partial derivative in the outward
normal direction, η, to the boundary. Let T label the
random variable for the time at which the molecule first
reaches ∂Ωε. The first passage time cumulative distribu-
tion is defined as

F(t) ≡ Prob[T < t] = 1−
∫

Ω

p(r, t)dr. (1.2)

The solution to (1.1) can be written in terms of an eigen-
function expansion with

p(r, t) =

∞∑
n=0

ψn(r0)ψn(r)e−λnt, (1.3)

where the eigenfunctions and eigenvalues satisfy

−D∇2ψn(r) = λnψn, r ∈ Ωfree, (1.4a)
∂ηψn = 0, r ∈ ∂Ω, (1.4b)
ψn(r) = 0, r ∈ ∂Ωε, (1.4c)

and the eigenfunctions are orthonormal in L2(Ωfree). We
order the eigenvalues so that 0 < λ0 ≤ λ1 ≤ . . . . In
the limit that the radius of the trap vanishes, the small-
est eigenvalue, subsequently called the principal eigen-
value, also vanishes (i.e., λ0 → 0). Similarly, the corre-
sponding eigenfunction, subsequently called the principal
eigenfunction, approaches ψ0(r) → 1√

|Ω|
as ε → 0. Cor-

responding to these limits, the first passage time T →∞
and limt→∞

∫
Ωfree

p(r, t)dr = 1 as ε→ 0. In what follows
we let diamS and |S| denote the diameter and volume
of the set S ⊂ R3. For 0 < ε � diam Ω the asymp-
totics of the principal eigenvalue are known, and given
by λ0 ∼ 4πD

|Ω| ε [2] (see also [15]). Note that to first order
in ε, λ0 depends only on the volume of Ω and not the
domain geometry. Higher order terms which depend on
other properties of the domain are discussed in the next
section.

The small ε asymptotics of λ0 motivate a large-time
approximation of p(r, t), based on a separation of time

mailto:isaacson@math.bu.edu
mailto:newby@math.utah.edu


2

scales. Truncating the eigenfunction expansion (1.3) af-
ter the first term gives the long time approximation,

p(r, t) ∼ 1

|Ω|
e−

4πD
|Ω| εt, λ1t� 1, ε� diam Ω. (1.5)

Note, however, that the initial condition (1.1d) is not
satisfied by this expansion. Instead, the initial condition
is modified so that the molecule starts from a uniformly
distributed initial position with

p(r, 0) =
1

|Ω|
. (1.6)

In other words, the long time behavior depends very little
on the initial position of the molecule because it is likely
to explore a large portion of the domain before locating
the trap. The first passage time density is f(t) ≡ d

dtF(t),
where F(t) is given by (1.2). The long-time, λ1t � 1,
approximation of the first passage time density is then

f(t) ∼ λ0e
−λ0t, for λ1t� 1, (1.7a)

∼ 4πDε

|Ω|
e−

4πD
|Ω| εt, for ε� diam Ω. (1.7b)

The first passage time is therefore approximately an ex-
ponential random variable, with mean

E[T ] ∼ 1

λ0
, for λ1t� 1, (1.8a)

∼ |Ω|
4πDε

, for ε� diam Ω. (1.8b)

An exponentially-distributed first passage time is an im-
portant assumption in course-grained models, such as
the reaction-diffusion master equation (RDME) [16–18].
(The RDME is a lattice stochastic reaction diffusion
model which assumes that reacting chemicals are well
mixed within a computational voxel.) More broadly, ex-
ponential waiting times are essential for jump processes
to be Markovian.

The above long-time approximation motivates several
questions. First, when is the non-exponential, short-time
behavior of the first passage time important? Second,
how does changing the initial position of the molecule
effect the approximation? It follows from (1.8a) that the
mean binding time is approximately independent of the
initial position. On the other hand, as we show here
the most likely binding time, called the mode, depends
strongly on the initial position. Recently, the importance
of the initial position in first passage times in confined
domains has been studied in the context of chemical reac-
tions [19], and shown to play a role in quantifying the dif-
ference between two or more identically distributed first
passage times [20, 21]. More generally, to estimate spa-
tial statistics for the position of the diffusing molecule
it is necessary to obtain expansions of not just the first
passage time density, f(t), but also the solution to the
diffusion equation, p(r, t).

The first passage time problem in a confined domain
has also been studied from the perspective of a continu-
ous time random walk (CTRW) on a finite graph of size
N [22]. Meyer and coworkers obtain exact results for the
Laplace transform, which is the moment generating func-
tion for the first passage time distribution, and expand
the moments for large N . They then reconstruct the
large N expansion of the first passage time distribution
from the moments. These results can also be interpreted
as an approximation of the first passage time distribution
in the large volume limit. This perspective is closely re-
lated to the one considered here; instead of an expansion
in large volume, we assume the domain volume is O(1)
and expand in terms of the small radius of the target.

Motivated by these and other examples, we develop a
uniform in time asymptotic approximation as ε → 0 of
the probability density, p(r, t) (see (2.42)), and the first
passage time density, f(t) (see (2.49)), that accounts for
non-exponential, small time behavior and the initial po-
sition of the molecule. The paper is organized as follows.
In Section II we further develop the long time approxima-
tion and present the complimentary short time correction
based on a pseudopotential approximation. Adding these
two estimates we derive a uniform in time asymptotic
expansion of p(r, t) for small ε. It must be emphasized
that what we call the “short time” correction is not an
asymptotic expansion of p(r, t) as t → 0, but instead is
a correction that when added to the long time expansion
for any fixed t and r gives an asymptotic expansion of
p(r, t) in ε. In Section IIC we use the results of Sec-
tion II to derive a small ε expansion of the first passage
time density (through terms of order O(ε2)). Finally,
in Section III these approximations are compared to the
exact solution, exact first passage time density, and sev-
eral other statistics for a spherical trap concentric to a
spherical domain.

II. UNIFORM ASYMPTOTIC
APPROXIMATION

Our basic approach is to first split p(r, t) into two com-
ponents: a large time approximation that will accurately
describe the behavior of p(r, t) for λ1t � 1, and a short
time correction to this approximation when λ1t 6� 1.
Note, both are defined for all times, but the latter ap-
proaches zero as t → ∞, and so only provides a signif-
icant contribution for λ1t 6� 1. It should be stressed
that the short time correction is not an asymptotic ap-
proximation of p(r, t) as t → 0, but instead serves as a
correction to the long time expansion for λ1t 6� 1. We
write p(r, t) as

p(r, t) = pLT(r, t) + pST(r, t), (2.1)

where pLT is the large time approximation and pST

is the short time correction. We will take pLT =
ψ0(r)ψ0(r0) exp [−λ0t] to be the long time approxima-
tion of the eigenfunction expansion (1.3) of p(r, t). With
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this choice, pLT and pST satisfy the projected initial con-
ditions

pLT(r, 0) = 〈ψ(r), δ(r − r0)〉ψ(r) = ψ(r)ψ(r0), (2.2)
pST(r, 0) = δ(r − r0)− ψ(r)ψ(r0). (2.3)

Here we have dropped the subscript and subsequently
identify ψ and λ as the principal eigenfunction and
eigenvalue respectively. Using (2.2) and (2.3) as ini-
tial conditions, and setting t = 0 in (2.1), then gives
p(r, t) = δ(r − r0) as required.

In the next two sections we derive asymptotic expan-
sions of pLT and pST for ε � diam Ω. The expansion of
pLT is based off the principal eigenvalue and eigenfunc-
tion expansions developed in [15]. The expansion of pST

adapts the pseudopotential method we first used in [23],
where uniform in time expansions of p(r, t) and the first
passage time cumulative distribution, Prob [T < t], were
obtained for Ω = R3 and rb the origin. We have found
that a direct pseudopotential approximation of (1.1) in
bounded domains with Neumann boundary conditions
breaks down for large, but finite times. For example, the
direct pseudopotential based expansion of Prob [T < t]
can become negative for large times. This inaccuracy in
the pseudopotential approximation arises from the non-
zero steady state solution to the limiting ε = 0 equation.
As we see in Section II B, by projecting out the principal
eigenfunction this problem is removed when expanding
pST. This motivated our use of the splitting p = pLT+pST.

A. Large time asymptotic expansion

Since the initial condition (2.2) is an eigenfunction of
the Laplacian, the long time density is given by

pLT(r, t) = ψ(r)ψ(r0)e−λt.

As discussed in the Introduction, there are well known
asymptotic approximations for small ε of ψ(r) and λ.
These then determine the small ε behavior of pLT(r, t).
The expansions of ψ(r) and λ are typically given in terms
of the corresponding no-trap problem where ε = 0. Let
G(r, r′, t) denote the fundamental solution to the diffu-
sion equation in Ω (i.e. the ε = 0 problem), then

∂

∂t
G(r, r′, t) = D∇2G(r, r′, t), r ∈ Ω, (2.4)

G(r, r′, 0) = δ(r − r′), r ∈ Ω,

with the no-flux Neumann boundary condition

∂ηG(r, r′, t) = 0, r ∈ ∂Ω. (2.5)

We will also need the corresponding solution to the
time-independent problem, the pseudo-Green’s function
U(r, r′), satisfying

D∇2U(r, r′) =
1

|Ω|
− δ(r − r′), r ∈ Ω, (2.6)

with the no-flux Neumann boundary condition

∂ηU(r, r′) = 0, r ∈ ∂Ω, (2.7)

and the normalization condition∫
Ω

U(r, r′)dr = 0. (2.8)

Within the derivative terms in (2.4) we can replace
G(r, r′, t) by G(r, r′, t)−|Ω|−1. Integrating the resulting
equation in t on (0,∞), and using the uniqueness of the
solution to (2.6) with the boundary condition (2.7) and
the normalization (2.8), we find∫ ∞

0

(
G(r, r′, t)− 1

|Ω|

)
dt = U(r, r′). (2.9)

Here the term |Ω|−1 is necessary to guarantee conver-
gence of the integral. Finally, we denote by γ the value
of the regular part of U(r, rb) at r = rb,

γ ≡ lim
r→rb

[
U(r, rb)− 1

4πD |r − rb|

]
. (2.10)

Let k̂ = 4πD. As derived in [15], the asymptotic ex-
pansions of the principal eigenvalue and eigenfunction for
small ε are

λ ∼ λLT ≡
k̂

|Ω|

(
1− k̂γε

)
ε, (2.11)

and

ψ(r) ∼ 1√
|Ω|

+ εψ(1)(r) + ε2ψ(2)(r)

=
1√
|Ω|

[
1− εk̂U(r, rb)− ε2k̂2

(
− γU(r, rb)

+
1

|Ω|

∫
Ω

U(r, r′)U(r′, rb)dr′

)]
+ ε2Ψ̄.

(2.12)

Here Ψ̄ denotes the spatial average of the second order
term and is given by [15]

Ψ̄ = − k̂2

2 |Ω|
3
2

∫
Ω

(U(r, rb))
2
dr. (2.13)

Note, the second order term in (2.12) is not explicitly de-
rived in [15], but can be found by solving equation (2.20)
(of [15]) with the normalization (2.13). The correspond-
ing expansion of the initial condition, pLT(r, 0), in ε is

pLT(r, 0) ∼ 1

|Ω|
+ w(1)(r, r0)ε+ w(2)(r, r0)ε2,

where the functions w(n)(r, r0) are obtained from sub-
stituting the asymptotic approximations of the princi-
pal eigenfunction and eigenvalue into (2.2) and collecting
terms in ε. We find that

w(1)(r, r0) = − k̂

|Ω|

(
U(r, rb) + U(r0, rb)

)
, (2.14)
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w(2)(r, r0) =
2Ψ̄√
|Ω|

+
k̂2

|Ω|
U(r, rb)U(r0, rb)

+
k̂2γ

|Ω|
[U(r, rb) + U(r0, rb)]

− k̂2

|Ω|2
∫

Ω

[U(r, r′) + U(r0, r
′)]U(r′, rb)dr′,

(2.15)

so that the small ε expansion of pLT(r, t) is then

pLT(r, t) ∼
[

1

|Ω|
+ w(1)(r, r0)ε+ w(2)(r, r0)ε2

]
e−λLTt.

(2.16)

B. Short time correction asymptotic expansion

To construct an asymptotic approximation to pST(r, t)
for small ε, we replace the trap boundary condition by
a sink term in the PDE involving a Fermi pseudopoten-
tial operator [24, 25], subsequently denoted by V . The
boundary condition pST(r, t) = 0 for r ∈ ∂Ωε is replaced
by the sink term

− V pST(r, t) ≡ −εk̂ ∂

∂ |r − rb|

[
|r − rb| pST(r, t)

]
r=rb

× δ(r − rb) (2.17)

For r = |r|, in the special case that rb = 0 is the origin,
this reduces to

− V pST(r, t) ≡ −εk̂ ∂
∂r

[rpST(r, t)]r=0 δ(r). (2.18)

Before we proceed with the pseudopotential approxi-
mation, it is instructive to consider why for an equivalent
problem in 1D, replacing the absorbing boundary condi-
tion with a sink term makes the problem easier to solve.
To see how this idea breaks down in higher dimensions,
and to motivate the pseudopotential operator, we apply
the Laplace transform to (1.1a) (with p replaced by pST

and the initial condition modified to (2.3)). We replace
the Dirichlet boundary condition (1.1c) by a delta func-
tion absorption term on the right hand side. If p̃ST(r, s)
denotes the Laplace transform of pST(r, t), then we find

−D∇2p̃ST + sp̃ST = δ(r − r0)− ψ(r)ψ(r0)

− Cδ(r − rb)p̃ST, (2.19)

so that absorption by the target occurs when the center
of the target is reached (at some rate C that is to be
determined). Using the Green’s function of the diffusion
equation (2.4), we can write the solution as

p̃ST(r, s) = G̃(r, r0, s)− ψ(r0)

∫
Ω

G̃(r, r′, s)ψ(r′)dr′

− Cp̃ST(rb, s)G̃(r, rb, s). (2.20)

To solve the above equation, we need only take
the limit r → rb and solve for p̃ST(rb, s). How-
ever, we observe that for dimensions greater than one
limr→rb

G̃(r, rb, s) = ∞, which is why the naive ap-
proach breaks down. There are a few different meth-
ods for adapting this idea to work in higher dimensions,
namely matched asymptotics [2] and pseudo potential op-
erators, which is the approach that we use here.

The pseudopotential operator, V , was developed so
that the operator

D∇2 − V

on Ω provides an asymptotic approximation in ε of D∇2

on Ωfree with a zero Dirichlet boundary condition on
∂Ωε [25]. It was originally constructed for approximating
hard core potentials in quantum mechanical scattering
problems [24, 25], but has also been used in the estima-
tion of diffusion-limited reaction rates in two-dimensional
periodic systems [26]. The operator was derived in [25]
by expanding the eigenfunctions (1.4), ψn(r), in a basis
of spherical harmonics and then analytically continuing
the domain of definition of each eigenfunction into the
interior of the sphere, Ωε. On Ω, it was found that for-
mally

D∇2ψn(r) + λnψn(r) = V ψn(r) +O(ε3).

When Ω = R3, it has been shown that the asymptotic ex-
pansion for small ε of the solution to the diffusion equa-
tion with pseudopotential interaction agrees with the di-
rect asymptotic expansion in ε of the exact solution to the
diffusion equation with a zero Dirichlet boundary condi-
tion, p(r, t) = 0 for r ∈ ∂Ωε, up through terms of order
O(ε2) [23].

The pseudopotential approximation for pST(r, t) is that

∂

∂t
pST(r, t) = D∇2pST(r, t)− V pST(r, t) (2.21)

for r ∈ Ω, with the initial condition (2.3) and a no-flux
Neumann boundary condition on ∂Ω. In [28–31] several
approaches are developed for rigorously defining pseu-
dopotential interactions (usually called point interac-
tions or singular perturbations of the Laplacian in those
works). Following these works, in particular [23, 31], we
split pST(r, t) into a regular part, φ(r, t), and a singular
part, q(t)U(r, rb), so that

pST(r, t) = φ(r, t) + q(t)U(r, rb). (2.22)

Here it is assumed that φ(r, t) is “nice” as r → rb. In
Appendix A we give a more detailed motivation for this
representation.

To find the asymptotic expansion of pST(r, t) for small
ε, we begin by formulating a closed integral equation for
φ(r, t). As described in [15], we can separate U(r, rb)
into a component that is regular at r = rb, denoted by
R(r, rb), and a singular part, k̂−1 |r − rb|−1, so that

U(r, rb) = R(r, rb) +
1

k̂ |r − rb|
.
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Note that the pseudopotential applied to the singular
part of U(r, rb) is zero. The action of the pseudopo-
tential on the representation (2.22) is therefore

V [φ(r, t) + q(t)U(r, rb)] = εk̂ [φ(rb, t) + γq(t)] δ(r − rb),

as γ = R(rb, rb) by (2.10). Substituting the representa-
tion (2.22) of pST(r, t) into (2.21), we find

∂φ

∂t
= D∇2φ− dq

dt
U(r, rb) + q(t)

(
1

|Ω|
− δ(r − rb)

)
− εk̂ (φ(rb, t) + γq(t)) δ(r − rb). (2.23)

We enforce the point boundary condition that the delta
function terms should cancel [23, 31] so that

q(t) = − εk̂

1 + εk̂γ
φ(rb, t). (2.24)

After substituting (2.24) into (2.22) and rearranging
terms we find that

pST(r, t) =

(
1− εk̂

1 + εk̂γ
U(r, rb)

)
φ(rb, t)

+ (φ(r, t)− φ(rb, t)). (2.25)

If the starting position is close to the target, the last term
on the right hand side is expected to be small. It fol-
lows that space and time are approximately decoupled,
which is consistent with the results of the CTRW ap-
proach found in [22].

By (2.24), equation (2.23) simplifies to

∂φ

∂t
= D∇2φ− dq

dt
U(r, rb) +

1

|Ω|
q(t). (2.26)

Using Duhamel’s principle we find that

φ(r, t) =

∫
Ω

G(r, r′, t)φ(r′, 0)dr′

−
∫ t

0

∫
Ω

G(r, r′, t− s)
(
dq

ds
U(r′, rb)− q(s)

|Ω|

)
dr′ds.

(2.27)

Integrating by parts we find∫ t

0

G(r, r′, t− s)dq
ds
ds =

∫ t

0

D∇2G(r, r′, t− s)q(s)ds

+ q(t)δ(r − r′)− q(0)G(r, r′, t), (2.28)

while the no-flux boundary condition implies∫
Ω

D∇2G(r, r′, t− s)U(r′, rb)dr′ (2.29)

=

∫
Ω

G(r, r′, t− s)D∇2U(r′, rb)dr′ (2.30)

=

∫
Ω

G(r, r′, t− s)
(

1

|Ω|
− δ(r′ − rb)

)
dr′ (2.31)

=
1

|Ω|
−G(r, rb, t− s). (2.32)

Using the two preceding identities, it follows that (2.27)
simplifies to

φ(r, t) = −q(t)U(r, rb) +

∫ t

0

G(r, rb, t− s)q(s)ds

+

∫
Ω

G(r, r′, t) [φ(r′, 0) + q(0)U(r′, rb)] dr′.

(2.33)

Eliminating q(t) with the point boundary condi-
tion (2.24) gives

φ(r, t) =

∫
Ω

G(r, r′, t)pST(r′, 0)dr′

+
k̂ε

1 + γk̂ε

[
U(r, rb)φ(rb, t)

−
∫ t

0

G(r, rb, t− s)φ(rb, s)ds

]
. (2.34)

We now use the integral equation (2.34) to find an
asymptotic expansion of pST(r, t) in ε. Let

pST(r, t) ∼ p(0)
ST (r, t) + p

(1)
ST (r, t)ε+ p

(2)
ST (r, t)ε2.

Similarly, we define the expansion of the regular part of
pST(r, t) by

φ(r, t) ∼ φ(0)(r, t) + φ(1)(r, t)ε+ φ(2)(r, t)ε2.

Using (2.24) we identify the expansion terms of pST(r, t)
as

p
(0)
ST (r, t) = φ(0)(r, t),

p
(1)
ST (r, t) = φ(1)(r, t)− k̂φ(0)(rb, t)U(r, rb),

p
(2)
ST (r, t) = φ(2)(r, t)− k̂

(
φ(1)(rb, t)− k̂γφ(0)(rb, t)

)
U(r, rb).

The principal eigenvalue and eigenfunction expansions of
the previous section imply that

pST(r, 0) ∼ δ(r− r0)− 1

|Ω|
−w(1)(r, r0)ε−w(2)(r, r0)ε2.

Substituting this expansion into (2.34) yields

φ(0)(r, t) = G(r, r0, t)−
1

|Ω|
, (2.35)

φ(1)(r, t) = k̂U(r, rb)φ(0)(rb, t) +
k̂

|Ω|
U(r0, rb)

− k̂
∫ t

0

G(r, rb, t− s)φ(0)(rb, s)ds

+
k̂

|Ω|

∫
Ω

G(r, r′, t)U(r′, rb)dr′,

(2.36)

and
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φ(2)(r, t) = −k̂2γU(r, rb)φ(0)(rb, t) + k̂U(r, rb)φ(1)(rb, t) + k̂2γ

∫ t

0

G(r, rb, t− s)φ(0)(rb, s)ds

− k̂
∫ t

0

G(r, rb, t− s)φ(1)(rb, s)ds−
∫

Ω

G(r, r′, t)w(2)(r′, r0)dr′. (2.37)

Evaluating (2.37) requires the calculation of φ(1)(rb, t) =
limr→rb

φ(1)(r, t). Let G0(r, r′, t) = G(r, r′, t)− 1
|Ω| . Us-

ing (2.9) we have that

U(r, rb)φ(0)(rb, t)−
∫ t

0

G(r, rb, t− s)φ(0)(rb, s)ds

=

∫ t

0

[
φ(0)(rb, t)− φ(0)(rb, t− s)

]
G0(r, rb, s)ds

+ φ(0)(rb, t)

∫ ∞
t

G0(r, rb, s)ds

− 1

|Ω|

∫ t

0

φ(0)(rb, s)ds.

Combining this expression with the identity

∫
Ω

G(r, r′, t)U(r′, rb)dr′ =

∫ ∞
t

G0(r, rb, s)ds,

reusing (2.9), and taking the limit r → rb, we find

φ(1)(rb, t) =
k̂

|Ω|

∫ ∞
t

φ(0)(rb, s)ds

+ k̂G(rb, r0, t)

∫ ∞
t

G0(rb, rb, s)ds

− k̂
∫ t

0

[
G(rb, r0, t− s)−G(rb, r0, t)

]
G0(rb, rb, s)ds.

(2.38)

Note, in the first integral G0(rb, rb, s) will scale like
s−3/2 as s → 0. This singularity is weakened by the
G(rb, r0, t− s)−G(rb, r0, t) term, which formally scales
like s as s → 0 (for fixed t > 0). As such, the overall
singularity in s is integrable. Similarly, G(rb, r0, t) will
cancel the effective singularity in t of the last integral.

We therefore find the recursive expansion formula that

Theorem II.1. The asymptotic expansion of pST(r, t)

for ε� diam Ω is given by

p
(0)
ST (r, t) = G(r, r0, t)−

1

|Ω|
, (2.39a)

p
(1)
ST (r, t) = −k̂

∫ t

0

G(r, rb, t− s)φ(0)(rb, s)ds

+
k̂

|Ω|

∫
Ω

G(r, r′, t)U(r′, rb)dr′

+
k̂

|Ω|
U(r0, rb),

(2.39b)

p
(2)
ST (r, t) = k̂2γ

∫ t

0

G(r, rb, t− s)φ(0)(rb, s)ds

− k̂
∫ t

0

G(r, rb, t− s)φ(1)(rb, s)ds

−
∫

Ω

G(r, r′, t)w(2)(r′, r0)dr′.

(2.39c)

As a short time correction to pLT(r, t), we expect as
t → ∞, pST(r, t) → 0 (away from the singularity at
r = rb). Using that limt→∞G(r, r0, t) = |Ω|−1, (2.8),
and (2.9) it is immediate that limt→∞ p

(0)
ST (r, t) =

limt→∞ p
(1)
ST (r, t) = 0 for r 6= rb. In Appendix B we

show that limt→∞ p
(2)
ST (r, t) = 0 for r 6= rb. Let

fST(t) ≡ φ(0)(rb, t) = G(rb, r0, t)−
1

|Ω|
, (2.40)

Ū ≡ U(r0, rb). (2.41)

Combining Theorem II.1 with the long time expan-
sion (2.16) we find,

Theorem II.2. For ε� diam Ω,

p(r, t) ∼ G(r, r0, t)−
1

|Ω|
(
1− e−λLTt

)
− εk̂

|Ω|
[
U(r, rb)e−λLTt − (1− e−λLTt)Ū

]
+ ε

k̂

|Ω|

∫
Ω

G(r, r′, t)U(r′, rb)dr′

− εk̂
∫ t

0

G(r, rb, t− s)fST(s)ds.

(2.42)

Note, based on Theorem II.1 one can derive an expan-
sion of p(r, t) valid through terms of O(ε2). That said,
this expression is of sufficient complexity that we do not
summarize it here.
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C. First passage time density

Denote by T the first passage time (FPT) for the diffus-
ing molecule to exit through ∂Ωε. The FPT cumulative
distribution is defined as

F(t) ≡ Prob[T < t] = 1−
∫

Ω

p(r, t)dr. (2.43)

Substituting (2.1) into (2.43), we find that F(t) = 1 −√
|Ω|ψ(r0)e−λt −

∫
Ω
pST(r, t)dr, where ψ and λ are the

principal eigenfunction and eigenvalue satisfying (1.4) for
n = 0. From (2.22) it follows that

∫
Ω
pST(r, t)dr =∫

Ω
φ(r, t)dr, so that

F(t) = 1−
√
|Ω|ψ(r0)e−λt −

∫
Ω

φ(r, t)dr. (2.44)

Define the cumulative distribution of a standard expo-
nential random variable as

Y (τ) ≡ 1− e−τ . (2.45)

Then, the FPT cumulative distribution corresponding to
the leading order asymptotic expansion of the long time
approximation can be written as FLT(t) ≡ Y (λLTt) = 1−
e−λLTt (see Introduction and (2.11)). Since λ = O(ε), we
write the uniform approximation to the FPT cumulative
distribution in terms of the two time scales t and τ = λt.
Here τ denotes a shrunken time-scale. Notice from (2.35)
that at leading order,

∫
Ω
φ(r, t)dr ∼

∫
Ω
φ(0)(r, t)dr = 0.

Substituting (2.12), (2.36), and (2.37) into (2.44) and
collecting terms in powers of ε yields F(t) ∼ Fε(t, λt),
where

Fε(t, τ) ≡

[
1− εk̂Ū + 2ε2Ψ̄

√
|Ω|

− ε2k̂2

(
1

|Ω|

∫
Ω

U(r0, r
′)U(r′, rb)dr′ − γŪ

)]
Y (τ)

+
(
εk̂ − ε2k̂2γ

)∫ t

0

fST(s)ds+ ε2k̂

∫ t

0

φ(1)(rb, s)ds.

(2.46)

Here Ū and fST(t) are defined in (2.40) and φ(1)(rb, t)
is given by (2.38). In evaluating the various spatial inte-
grals we have made use of the identities

∫
Ω
G(r, r′, t)dr =

1 and
∫

Ω
U(r, r′)dr = 0. An explicit asymptotic expan-

sion of F(t) can then be obtained by using that λ ∼ λLT.
The uniform approximation of the FPT cumulative dis-
tribution is therefore F(t) ∼ Fε(t, λLTt).

By definition, the FPT density function is f(t) ≡
d
dtF(t). We denote the expansion of the long time scale
approximation, λe−λt, by

fLT(t) =
d

dt
FLT(t) = λLTe

−λLTt (2.47)

=
εk̂

|Ω|

(
1− k̂γε

)
e−

k̂
|Ω| (1−k̂γε)εt (2.48)

(see (2.11)). Formally differentiating the asymptotic ex-
pansion Fε(t, λLTt), we find

Theorem II.3. The asymptotic expansion of f(t) for
ε� diam Ω is given by

f(t) ∼

[
1− εk̂Ū + 2ε2Ψ̄

√
|Ω|

− ε2k̂2

(
1

|Ω|

∫
Ω

U(r0, r
′)U(r′, rb)dr′ − γŪ

)]
fLT(t)

+
(
εk̂ − ε2k̂2γ

)
fST(t) + ε2k̂φ(1)(rb, t). (2.49)

Since we have derived the expansion of f(t) by formal
differentiation of the expansion of F(t), we obtain terms
that are of higher order than O(ε2) in (2.49) (as fLT(t)
is O(ε)). However, for brevity we ignore the ε depen-
dence of λLT when referring to the order of the approx-
imation. In other words, when referring to the “lead-
ing order”, “first order”, or “second order” expansion of
f(t), we mean those terms arising from the derivative of
the corresponding order expansion of Fε(t, λLTt), treating
Y (λLTt) as O(1). As such, the “leading order” expansion
of f(t) will be fLT(t), the “first order” expansion will be(

1− εk̂Ū
)
fLT(t) + εk̂fST(t),

and the “second order” expansion will be (2.49).

III. A SPHERICAL TRAP CONCENTRIC TO A
SPHERICAL DOMAIN

To illustrate our asymptotic results we consider the
problem of a diffusing molecule searching for a small
spherical trap of radius ε centered at the origin. We as-
sume the trap is contained within a larger, concentric,
spherical domain with unit radius. As this problem is
exactly solvable, we will use the exact solution formu-
lae summarized in this section to study the accuracy of
our asymptotic expansions from the preceding sections
as both ε and the number of expansion terms are varied.

Denote by p(r, t) the spherically symmetric probability
density for a diffusing molecule to be a distance r from
the origin at time t. We assume the trap is centered at
the origin, so that rb = 0, and let r = |r|, r0 = |r0|. For
p(r, 0) = δ(r − r0)/r2, we have that

p(r, t) =

∫∫
∂B1(0)

p(r, t)dS, (3.1)

where ∂B1(0) denotes the boundary of the unit sphere.
The advantage of this geometry is that an exact so-

lution to the diffusion equation (1.1) is known [32]. We
find

p(r, t) =

∞∑
n=1

αnφn(r0)φn(r)e−λnt, ε < r < 1, (3.2)
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where

φn(r) =
1

r

[
sin(
√
λn(1− r))√
λn

− cos(
√
λn(1− r))

]
,

αn =
∫ 1

ε
(φn(r))

2
r2dr, and the eigenvalue λn is given

implicitly by

tan−1(

√
λn
D

)− (1− ε)
√
λn
D

+ nπ = 0. (3.3)

The corresponding first passage time density is

f(t) = − d

dt

∫ 1

ε

p(r, t)r2dr =
2

r0

∞∑
n=0

bnλne
−λnt, (3.4)

where

bn =

[√
D

λn

(
ε− cos((1− ε)

√
λn
D

)

)

+
D

λn
sin((1− ε)

√
λn
D

)

]

×

 (1 + λn
D ) sin((r0 − ε)

√
λn
D )

(1− ε)(1 + λn
D )− 1

 . (3.5)

In the remainder of this section, we list the quantities
necessary to compute the asymptotic expansions of p(r, t)
and f(t) for small ε. Recalling that rb = 0, Ū is then
given by [2]

Ū = U(r0,0) =
1

4πD

(
1

r0
+
r2
0

2
− 9

5

)
. (3.6)

It follows from (2.10) that

γ = − 9

20πD
, (3.7)

and from (2.13) that

Ψ̄ =
−72π

175 |Ω|
3
2

.

The fundamental solution G(r0,0, t) = g(r0, 0, t)/4π,
where g(r, r0, t) denotes the spherically-symmetric
Green’s function for the ε = 0 Neumann problem (see
Appendix C), is given by

G(r0,0, t) =
1

|Ω|
+

∞∑
n=1

cne
−µnt, (3.8)

G(0,0, t) =
1

|Ω|
+

∞∑
n=1

ane
−µnt, (3.9)

where

an =
1

2π

(
1 +

µn
D

)
, cn = an sinc(

√
µn
D
r0), (3.10)

with sinc(x) = sin(x)/x. The eigenvalues, µn, satisfy

tan−1(

√
µn
D

)−
√
µn
D

+ nπ = 0. (3.11)

Note that by comparing (3.3) to (3.11) it follows that
limε→0 λn = µn. Integrating (2.42) over the unit sphere
we find

p(r, t) ∼ g(r, r0, t)− 3
(
1− e−λLTt

)
− 3εk̂

[
U(r,0)e−λLTt − (1− e−λLTt)Ū

]
+
εk̂

|Ω|

∫ 1

0

g(r, r′, t)U(r′,0)(r′)2dr′

− εk̂
∫ t

0

g(r, 0, t− s)fST(s)ds.

(3.12)

The asymptotic expansion of the first passage time den-
sity, f(t), can be evaluated directly from (2.49). Here we
use (2.9) and (3.8) to express U(r, r′) as an eigenfunction
expansion. We find that∫

Ω

U(r0, r
′)U(r′,0)dr′ =

∞∑
n=1

cn
µ2
n

. (3.13)

The short time correction to the first passage time density
is given by∫ t

0

fST(s)ds = U(r0,0)−
∞∑
n=1

cn
µn
e−µnt, (3.14)

while

G(rb, r0, t)

∫ ∞
t

G0(rb, rb, s)ds

=

(
1

|Ω|
+

∞∑
n=1

cne
−µnt

) ∞∑
m=1

am
µm

e−µmt. (3.15)

To evaluate the time convolution,∫ t

0

[
G(rb, r0, t− s)−G(rb, r0, t)

]
G0(rb, rb, s)ds,

in (2.38) we use the Python quad routine. The integral is
split into a short time portion, s ∈ (0, s∗), and a long time
portion, s ∈ (s∗, t). s∗ is chosen sufficiently small that
G(rb, rb, s) can be approximated by a Gaussian evalu-
ated at the origin, (4πDs)−3/2, with the same absolute
error tolerance we use in evaluating the preceding series
(see Appendix D).

A. Results

We now study the error between the exact spatial and
first passage time densities from the preceding section,
p(r, t) and f(t), and their asymptotic approximations for
small ε. In what follows we keep R = 1, D = 1, and
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FIG. 1. Relative error in approximating the principal eigen-
value, λ, by λLT. Observe that the error decreases like ε2 as
expected from (2.11).

vary ε between 10−4 and 10−1. The tolerances we used
in evaluating the various series of the previous section are
given in Appendix D.

While we are interpreting our spatial and time units
as non-dimensionalized, these choices are also consistent
with using spatial units of µm and time units of seconds.
With these units the overall domain has roughly the ra-
dius of a yeast cell nucleus. We may therefore interpret
the trap as a DNA binding site that a diffusing protein
is searching for. While trap radii for DNA binding sites
are not generally experimentally measured, the width of
some DNA binding potentials have been measured. For
example, the LexA protein binding potential was found
to have a width of approximately .5nm [33].

The long time approximation of the first passage time
density is the single exponential λ exp(−λt), with the
time-scale λ−1. The principal eigenvalue λ is given im-
plicitly by (3.3) (with n = 0) and has the asymptotic ap-
proximation λ ∼ λLT (see also (2.11)). Hence, for small
ε, the long time approximation of the first passage time
density is asymptotic to fLT(t) = λLT exp(−λLTt). As de-
scribed at the end of Section IIC, we refer to fLT(t) as
the leading order approximation of f(t) as ε → 0. (We
will also interchangeably refer to fLT(t) as either the large
time or long time approximation.)

The implicit equation (3.3) can be solved numerically
to calculate λ to arbitrary precision by a root finding
algorithm (e.g., Newton’s method). In Fig. 1 we com-
pute the relative error, |λ− λLT|λ−1, of the asymptotic
approximation, λLT, as compared to the numerically es-
timated value of λ (computed to machine precision). We
see that as ε → 0, the relative error between the two
decreases like ε2, as expected from (2.11).

In Fig. 2, we show the leading order spatial density
approximation (blue or light gray curve), the first order
expansion (green dashed curve), and the exact spatial
density (black curve). These curves plot

p(0)(r, t) = g(r, r0, t)− 3 + 3e−λLTt, (3.16)

the expansion (3.12), and p(r, t) (3.2) respectively. The
spatial density is shown as a function of r at four dif-
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FIG. 2. (Color online) The spatial density function p(r, t)
(black curve) and its asymptotic expansions for small ε at sev-
eral time points. The blue (light gray) curve gives the leading
order expansion (3.16), p(0)(r, t), while the green dashed curve
gives the first order expansion (3.12). We use a logarithmic
x-axis to emphasize the solution behavior near the target.
r0 = 0.8 and ε = 0.001 (similar to the width of measured
DNA binding potentials [33]).

ferent time points. For this figure we set r0 = 0.8 and
ε = 0.001. The density is initially concentrated around
the initial position at t = 0.001 and slowly fills the re-
gion ε < r < 1 until the density is approximately uniform
at t = 1. The only visible difference between the lead-
ing order approximation and the exact result is near the
absorbing boundary, r = ε, where the exact solution dis-
plays a boundary layer that is lost in the leading order
approximation. The first order expansion (3.12) reintro-
duces this boundary layer and is indistinguishable from
the exact solution at the scale of the graph.

In the remainder of this section we focus on the ap-
proximation of the first passage time. The only free pa-
rameters in the model are the radius of the trap, ε, and
the initial distance from the trap, r0. The long time
approximation, fLT(t), is independent of r0. It follows
that the accuracy of fLT(t) in approximating f(t) im-
proves when the initial distance from the trap is large
(i.e., ε� r0 ≤ 1). In other words, the long time approxi-
mation is best when the particle is likely to explore a large
portion of the domain before locating the trap. When the
initial distance from the trap is small (i.e., ε < r0 � 1),
we might expect the short time contribution to be signif-
icant since there is a higher probability that the particle
will quickly locate the trap before exploring the rest of
the domain. In Fig. 3, we show the asymptotic expan-
sion of the first passage time density (2.49) for ε = 0.05
and r0 = 0.3. With this choice the initial distance of
the particle from the trap is small. Moreover, since the
accuracy of the expansion (2.49) should decrease as ε
increases, taking ε = 0.05 demonstrates the worst case
behavior of the expansion for biologically relevant values
of ε.
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FIG. 3. (Color online) The first passage time density, f(t), for r0 = 0.3 and ε = 0.05. Asymptotic approximations of varying
order are compared to the exact solution. The left plot uses a logarithmic t-axis and linear f -axis, while the right is linear in t
and logarithmic in f .
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FIG. 4. (Color online) The first passage time density, f(t), for r0 = 0.8 and ε = 0.05. Asymptotic approximations of varying
order are compared to the exact solution. See Fig. 3 (left panel) for the legend.

In Fig. 3(left) the density function is shown with t on a
log scale to accentuate the small time behavior. There is
a significant difference between the long time approxima-
tion (near-flat, bottom, light blue curve) and the exact
solution (uppermost, green curve). The first and second-
order uniform approximations correct for this difference.
The large-time behavior is shown in Fig. 3(right) with
f on a log scale. For all except the shortest times the
curve is linear, reflecting the exponential long-time be-
havior. We see that on this time-scale there is very little
visible difference between each curve. Fig. 4 is the same
as Fig. 3, except that r0 = 0.8 so that the initial dis-
tance from the trap is larger. In this case the peak in
the density occurs at a larger time. In both cases, the
qualitative difference between the exact solution and the
long-time approximation is a time lag before the expo-
nential long time behavior dominates. The time-scale for
this time lag is roughly the diffusive transit time to cover
the initial distance from the trap (i.e., r2

0/D).

The absolute error of these approximations is shown in
Fig. 5 for r0 = 0.3 and r0 = 0.8. In both cases, the max-
imum error is noticeably decreased as the order of the
asymptotic expansion is increased. Comparing the first
and second order expansions, we see the main increase
in accuracy results for times less than t = 1. Points in
time where one of the approximations crosses the exact
solution result in locally increased accuracy (the cusp-
like drops in the expansion errors). Interestingly, when
r0 = 0.8 the long time approximation is more accurate
for large times than the first- or second-order uniform
approximations. Note, however, the error in each expan-
sion at these times is substantially smaller than for short
to moderate times.

Finally, we examine the max norm error,
maxt≥0 |fexact(t)− f(t)|, as a function of ε for dif-
ferent values of r0. The time points this error was
numerically evaluated over are the same as those used
for the graphs in Fig. 5, and are given in Appendix D.
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FIG. 5. (Color online) Absolute error of the first passage time density approximation for r0 = 0.3 and r0 = 0.8 with ε = 0.05.
See Fig. 3 (left panel) for the legend.
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FIG. 6. (Color online) The max norm error of the approxi-
mation as a function of ε. Solid curves show the error of the
long-time approximation fLT(t). The dashed curves show the
second order uniform approximation. Note that the r0 = 0.65
and r0 = .9 curves for the large-time approximation are in-
distinguishable.

The result shown in Fig. 6 confirms the asymptotic
convergence of the approximation as ε → 0. The
large-time approximation (2.47) error (solid lines) shows
linear convergence, while the second order uniform
approximation (2.49) error (dashed line), which includes
short time behavior, shows cubic convergence.

As stated in the Introduction, the mean binding time
is well approximated by the r0-independent large-time
approximation. That is, E[T ] ∼ 1/λ, where λ is given
by (2.11). However, other statistics may be of interest
that depend strongly on r0. One example is the mode,
defined as the most likely binding time, call it τm, where
f(τm) = max0≤t<∞ f(t). Since the large-time approxi-
mation is an exponential distribution, the corresponding
approximation of the mode is τm ∼ 0. In figure Fig. 7,
we compute the mode by numerically maximizing the
first passage time density. The exact mode is compared
to first (dash dotted curves) and second order (dashed
curves) approximations of the mode as a function of r0.
Each of the indicated curves are drawn for three differ-
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FIG. 7. (Color online) The mode of the binding time distribu-
tion, defined as the most likely binding time, as a function of
r0. Solid curves show the exact solution, dash dotted curves
the first order approximation, and the dashed curves the 2nd
order approximation.

ent values of ε. For ε = 10−3, the difference between each
curve is indistinguishable. Notice that as ε decreases the
mode increases, particularly for larger values of r0, in-
dicating that the large time approximation of the mode
becomes less accurate as ε→ 0.

IV. DISCUSSION

Although the first passage time of a Brownian particle
in a confined geometry is a well-studied problem, an ana-
lytical characterization that includes short-time behavior
of the survival probability density has been unresolved.
The asymptotic approximation of the long-time behav-
ior establishes a link between the spatial characteristics
of the problem (i.e., the starting position of the parti-
cle and the space dependent survival probability density)
and the short time behavior. That is, the long time ap-
proximation loses information about the initial position
and treats the survival probability density as uniform in
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space. Consequently, the long time approximation is in-
sufficient if one is interested in statistics that depend on
these spatial characteristics.

Using a multiple time-scale perturbation approach, we
develop a long time expansion and a corresponding short
time correction to this expansion of the solution to the
diffusion equation in a bounded domain containing a
small, absorbing spherical trap. The long time approx-
imation is derived from the matched asymptotic expan-
sions of [2], while the short time correction is derived by
modification of the pseudopotential method used in [23].
Combining these expansions we develop a uniformly ac-
curate (in time) approximation of the survival time cu-
mulative distribution and the first passage time density.
To study the accuracy of our method, we consider a ex-
ample problem where the domain and trap are concentric
spheres. By assuming radial symmetry, we have available
for comparison the exact solution to the example prob-
lem. Our results show excellent quantitative agreement
for all times over a range of physiologically realistic values
of ε. Moreover, they demonstrate the applicability of our
expansions to estimating statistics that depend critically
on the initial position of the diffusing particle.

Our approach should also be applicable to two-
dimensional systems and multiple targets. Pseudopo-
tentials have already been used to approximate rates
of diffusion limited reactions in two-dimensional pe-
riodic systems [26]. Likewise, pseudopotentials were
originally developed to study many-particle scattering
problems [25, 28, 30]. While we are unaware of their
use for approximating first passage processes in many-
body/target systems, it should be feasible to adapt the
techniques previously used in the quantum mechanical
scattering context, allowing the extension of our work to
multi-target systems.
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Appendix A: Motivation for assumed form of
solution to (2.21)

In [27–30] several approaches for rigorously defining
pseudopotential-like interactions are presented (usually
called point interactions or singular perturbations of the
Laplacian in those works). In the approach of [28–30],
the Laplacian plus point interaction operator, D∇2 +
αδ(r), is rigorously constructed so as to be equivalent to
the Laplacian with pseudopotential, D∇2−V (see (2.17)
for the definition of the pseudopotential, V , and [28, 29]
for details on the construction of D∇2 + αδ(r)). The

splitting (2.22) is rigorously justified by these works, and
in the context of the diffusion equation goes back at least
as far as [31].

We now give a formal motivation for the split-
ting (2.22) by studying the Laplace transform of (2.21).
Again, we refer to the references [28–31] for the rigor-
ous justification. Our analysis is similar to that given in
Section II.A of [34] (where Ω = R3). Denote by g̃(s) the
Laplace transform of a function, g(t). Taking the Laplace
transform of (2.21) we find

−D∇2p̃ST(r, s) + sp̃ST(r, s) =− V p̃ST(r, s) + δ(r − r0)

− ψ(r)ψ(r0),

for r ∈ Ω and s > 0, with the Neumann boundary con-
dition that ∂η p̃ST(r, s) = 0 for r ∈ ∂Ω. We assume the
coefficient of δ(r − rb) within the pseudopotential term
is finite, and subsequently denote it by B(s) (as in [34]),

−B(s)δ(r − rb) ≡ −V p̃ST(r, s)

= −εk̂ ∂

∂ |r − rb|

[
|r − rb| p̃ST(r, s)

]
r=rb

× δ(r − rb).

Recalling that G(r, r0, t) is the Green’s function for the
ε = 0 problem (2.4), we may then write

p̃ST(r, s) = G̃(r, r0, s)− ψ(r0)

∫
Ω

G̃(r, r′, s)ψ(r′)dr′

−B(s)G̃(r, rb, s)

= H(r, s)−B(s)G̃(r, rb, s),

where H(r, s) subsequently denotes the first two terms.
Substituting the preceding equation for p̃ST(r, s) into the
definition of B(s) we find

B(s) = εk̂

[
H(rb, s)−B(s)

(
R̃(rb, rb, s)−

1

k̂

√
s

D

)]
.

Here we have split G̃(r, r′, s) into a part that is regular
at r = r′, R̃(r, r′, s), and an explicit singular part so
that

G̃(r, r′, s) = R̃(r, r′, s) +
e−|r−r

′|
√

s
D

k̂ |r − r′|
.

Solving for B(s) we find

B(s) =
εk̂H(rb, s)

1 + εk̂R̃(rb, rb, s)− ε
√

s
D

.

Here we see how the pseudopotential corrects the naive
point sink approximation, as given by (2.20). The addi-
tion of the radial derivative in the definition of V allows
the pseudopotential to remove r−1 type singularities in
three-dimensions. This allows the unknown coefficient,
B(s), to be determined.
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Using the last equation for B(s), we find that

p̃ST(r, s) = H(r, s)− εk̂H(rb, s)G̃(r, rb, s)

1 + εk̂R̃(rb, rb, s)− ε
√

s
D

.

We may write

p̃ST(r, s) = φ̃(r, s) + q̃(s)U(r, rb), (A.1)

where

q̃(s) = − εk̂H(rb, s)

1 + εk̂R̃(rb, rb, s)− ε
√

s
D

and

φ̃(r, s) = H(r, s) + q̃(s)
(
G̃(r, rb, s)− U(r, rb)

)
.

As the singular part of U(r, rb) is k̂−1 |r − rb|−1 [15],
φ̃(r, s) is regular at r = rb for s > 0. Formally, taking
an inverse Laplace transform of (A.1) gives the represen-
tation (2.22) of pST(r, t).

Appendix B: Limit as t→ ∞ of p(2)ST

In this appendix we show that as t→∞, p(2)
ST (r, t)→ 0

for r 6= rb. As in the last appendix, g̃(s) will denote the
Laplace transform of a function, g(t). We first collect
some basic identities that will aid in evaluating the limit:

Lemma B.1.∫
Ω

w(2)(r, r0)dr = k̂2γU(r0, rb) + 2Ψ̄
√
|Ω|

− k̂2

|Ω|

∫
Ω

U(r0, r
′)U(r′, rb)dr′,

(B.1)∫
Ω

U(r0, r
′)U(r′, rb)dr′ = lim

s→0

U(r0, rb)− φ̃(0)(rb, s)

s
,

(B.2)∫
Ω

(U(r, rb))
2
dr = lim

s→0

∫
Ω

G̃(rb, r
′, s)U(r′, rb)dr′.

(B.3)

Proof. The first identity follows immediately from the
definition of w(2) (2.15) and (2.8). In the right hand
side of (B.2) we replace the U terms with time integrals
of G by (2.9), switch the order of integration, and evalu-
ate the spatial integral using the semigroup property of
G to find that∫

Ω

U(r0, r
′)U(r′, rb)dr′ =∫ ∞

0

∫ ∞
t

[
G(r0, rb, s)−

1

|Ω|

]
dsdt. (B.4)

As∫ ∞
t

[
G(r0, rb, s)−

1

|Ω|

]
ds =

U(r0, rb)−
∫ t

0

[
G(r0, rb, s)−

1

|Ω|

]
ds,

recalling the definition of φ(0)(rb, s) (2.35) we see that∫
Ω

U(r0, r
′)U(r′, rb)dr′

=

∫ ∞
0

(
U(r0, rb)−

∫ t

0

φ(0)(rb, s
′)ds′

)
dt

= lim
s→0

∫ ∞
0

(
U(r0, rb)−

∫ t

0

φ(0)(rb, s
′)ds′

)
e−stdt.

(B.2) then follows by definition of the Laplace transform.
Finally, by (2.8) we have that∫

Ω

G̃(rb, r
′, s)U(r′, rb)dr′ =

∫
Ω

G̃0(rb, r
′, s)U(r′, rb)dr′.

Using (2.9), we have that lims→0 G̃0(rb, r
′, s) =

U(rb, r
′). A dominated convergence argument then im-

plies (B.3).

We are now ready to evaluate the limit of p(2)
ST (r, t)

as t → ∞. By dominated convergence and (2.9), it is
immediate from (2.39c) that

lim
t→∞

p
(2)
ST (r, t) =

k̂2γ

|Ω|
U(rb, r0)− k̂

|Ω|

∫ ∞
0

φ(1)(rb, s)ds

− 1

|Ω|

∫
Ω

w(2)(r′, r0)dr′,

= − k̂

|Ω|

∫ ∞
0

φ(1)(rb, s)ds−
2Ψ̄√
|Ω|

+
k̂2

|Ω|2
∫

Ω

U(r0, r
′)U(r′, rb)dr′,

(B.5)

where the last line follows by (B.1). By definition of the
Laplace transform,∫ ∞

0

φ(1)(rb, s)ds = lim
s→0

lim
r→rb

φ̃(1)(r, s).

From the definition of φ(1)(r, t) (2.36) we find that

φ̃(1)(r, s) = k̂φ̃(0)(rb, s)
[
U(r, rb)− G̃0(r, rb, s)

]
+

k̂

|Ω| s

[
U(r0, rb)− φ̃(0)(rb, s)

]
+

k̂

|Ω|

∫
Ω

G̃(r, r′, s)U(r′, rb)dr′.
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Substituting into (B.5), and using (B.2), (B.3), and the
definition of Ψ̄ (2.13) we find

lim
t→∞

p
(2)
ST (r, t) = − k̂

2U(rb, r0)

|Ω|

× lim
s→0

lim
r→rb

[
U(r, rb)− G̃0(r, rb, s)

]
. (B.6)

The limit of the bracketed term can be evaluated by split-
ting U and G̃0 into regular and singular parts (at r = rb).
We write that

G0(r, rb, t) = R0(r, rb, t) +
1

(4πDt)
3/2

e−|r−rb|/4Dt,

where R0(rb, rb, t) is finite as t → 0. Using (2.9) we see
that

U(r, rb) = R̃0(r, rb, 0) +
1

k̂ |r − rb|
,

where R̃0(r, rb, s) denotes the Laplace transform of R.
As such,

lim
r→rb

[
U(r, rb)− G̃0(r, rb, s)

]
= R̃0(rb, rb, 0)

− R̃0(rb, rb, s) +
1

k̂

√
s

D
.

Evaluating the s limit in (B.6), it follows that as t → 0,
p

(2)
ST (r, t)→ 0.

Appendix C: Spherically-symmetric Neumann
Green’s function

Let g(r, r0, t) denote the spherically symmetric solution
to the diffusion equation, satisfying

∂g

∂t
= D

1

r2

∂

∂r

[
r2 ∂g

∂r

]
, r ∈ [0, 1) ,

∂g

∂r
= 0, r = 1,

with the initial condition that g(r, r0, 0) = δ(r − r0)/r2.
With this choice,

g(r, r0, t) =

∫∫
∂B1(0)

G(r, r0, t)dS,

for ∂B1(0) the boundary of the unit sphere. Here
G(r, r0, t) denotes the solution to the corresponding
three dimensional diffusion equation (2.4). Note also the
normalization that∫ 1

0

g(r, r0, t)r
2dr = 1 =

∫∫∫
Ω

G(r, r0, t)dr.

By eigenfunction expansion we find

g(r, r0, t) = 3

+ 2

∞∑
n=1

(
1 +

µn
D

)
sinc(

√
µn
D
r) sinc(

√
µn
D
r0)e−µnt,

where the eigenvalues µn satisfy (3.11) and we use the
convention that

sinc(x) =
sin(x)

x
.

Appendix D: Numerics

When evaluating the series for the exact solution (3.4)
and asymptotic approximation (2.49), we sum until the
magnitude of the last added term drops below a given
error threshold. We used an error threshold of 10−14 for
the exact solution and 10−7 for the uniform approxima-
tion. The figures are generated with 1000 equally-spaced
points for 10−3 ≤ t ≤ 1 and 500 equally-spaced points
for 1 < t < 30.
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