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This paper presents a model of network formation in repeated games where the players adapt
their strategies and network ties simultaneously using a simple reinforcement learning scheme. It
is demonstrated that the co-evolutionary dynamics of such systems can be described via coupled
replicator equations. We provide a comprehensive analysis for three-player two-action games, which
is the minimum system size with non-trivial structural dynamics. In particular, we characterize the
Nash Equilibria (NE) in such game, and examine the local stability of the rest points corresponding
to those equilibria. We also study general N-player networks via both simulations and analytical
methods, and find that in the absence of exploration, the stable equilibria consist of star motifs as
the main building blocks of the network. Furthermore, in all stable equilibria the agents play pure
strategies, even when the game allows mixed NE. Finally, we study the impact of exploration on
learning outcomes, and observe that there is a critical exploration rate above which the symmetric
and uniformly connected network topology becomes stable.

PACS numbers: 02.50.Le,87.23.Cc,87.23.Ge,05.45.-a

I. INTRODUCTION

Networks depict complex systems where nodes corre-
spond to entities and links encode interdependencies be-
tween them. Generally, dynamics in networks is intro-
duced via two different approaches. In the first approach,
the links are assumed to be static, while the nodes are en-
dowed with internal dynamics (epidemic spreading, opin-
ion formation, signaling, synchronizing and so on). And
in the second approach, nodes are treated as passive ele-
ments, and the main focus is on the evolution of network
topology.
More recently, it has been suggested that separating

individual and network dynamics fails to capture realis-
tic behavior of networks. Indeed, in most real–world net-
works both attributes of individuals (nodes) and topology
of the network (links) evolve in tandem. Models of such
adaptive co-evolving networks have attracted significant
interest in recent years both in statistical physics [1–5]
and game theory and behavioral economics communi-
ties [6–11].
To describe coupled dynamics of individual attributes

and network topology, here we suggest a simple model of
co–evolving network that is based on the notion of inter-
acting adaptive agents. Specifically, we propose network–
augmented multi–agent systems where the agents play
repeated games with their neighbors, and adapt both
their behaviors and the network ties depending on the
outcome of their interactions. To adapt, the agents use
a simple learning mechanism to reinforce (penalize) be-
haviors and network links that produce favorable (unfa-
vorable) outcomes. Furthermore, the agents use an ac-
tion selection mechanism that allows to control explo-
ration/exploitation tradeoff via a temperature-like pa-
rameter. We have previously demonstrated [12] that the
collective evolution of such a system can be described
by appropriately defined replicator dynamics equations.
Originally suggested in the context of evolutionary game
theory (e.g., see [13, 14]), replicator equations have been

used to model collective learning in systems of interact-
ing self–interested agents [15]. Ref. [12] provided a gen-
eralization to the scenario where the agents adapt not
only their strategies (probability of selecting a certain
action) but also their network structure (the set of other
agents that play against). This generalization results a
system of coupled non-linear equations that describe the
simultaneous evolution of agent strategies and network
topology.

Here we use the framework suggested in [12] to examine
the learning outcomes in networked games. We provide a
comprehensive analysis of three-player two-action games,
which are the simplest systems that exhibit non-trivial
structural dynamics. We analytically characterize the
rest-points and their stability properties in the absence
of exploration. Our results indicate that in the absence of
exploration, the agents always play pure strategies even
when the game allows mixed Nash equilibria. For the
general N-player case, we find that the stable outcomes
correspond to star-like motifs, and demonstrate analyti-
cally the stability of a star motif. We also demonstrate
the instability of the symmetric network configuration
where all the pairs are connected to each other with uni-
form weights.

We also study the the impact of exploration on the co-
evolutionary dynamics. In particular, our results indicate
that there is a critical exploration rate above which the
uniformly connected network is a globally stable outcome
of the learning dynamics.

The rest of the paper is organized as follows: we
next derive the replicator equations characterizing co-
evolution of network structure and strategies of agents.
In Section III we focus on learning without exploration,
describe Nash equilibria of the game, and characterize
the rest-points of learning dynamics according to their
stability properties. We consider the the impact of ex-
ploration on learning in Section IV, and provide some
concluding remarks in Section V.
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II. CO-EVOLVING NETWORKS VIA

REINFORCEMENT LEARNING

Let us consider a set of agents that play repeated
games with each other. We differentiate agents by in-
dices x, y, z, . . .. At each round of the game, an agent
has to choose another agent to play with, and an action
from the pool of available actions. Thus, time–dependent
mixed strategies of agents are characterized by a joint
probability distribution over the choice of the neighbors
and the actions.
We assume that the agents adapt to their environment

through a simple reinforcement mechanism. Among dif-
ferent reinforcement schemes, here we focus on (stateless)
Q-learning [16]. Within this scheme, the agents’ strate-
gies are parameterized through, so called Q–functions
that characterize relative utility of a particular strategy.
After each round of game, the Q functions are updated
according to the following rule,

Qi
xy(t+ 1) = Qi

xy(t) + α[Ri
x,y(t)−Qi

xy(t)] (1)

where Ri
x,y(Q

i
x,y) is the expected reward (Q value) of

agent x for playing action i with agent y, and α is a
parameter that determines the learning rate (which can
set to α = 1 without a loss of generality).
Next, we have to specify how agents choose a neighbor

and an action based on their Q-function. Here we use the
Boltzmann exploration mechanism where the probability
of a particular choice is given as [17]

pixy =
eβQ

i
xy

∑

ỹ,j e
βQ

j

xỹ

(2)

Where, pixy is the probability that the agent x will play
with agent y and choose action i. Here the inverse tem-
perature β ≡ 1/T > 0 controls the tradeoff between
exploration and exploitation; for T → 0 the agents al-
ways choose the action corresponding to the maximum
Q–value, while for T → ∞ the agents’ choices are com-
pletely random.
We now assume that the agents interact with each

other many times between two consecutive updates of
their strategies. In this case, the reward of the i–th agent
in Equation 1 should be understood in terms of the aver-
age reward, where the average is taken over the strategies
of other agents, Ri

x,y =
∑

j A
ij
xyp

j
yx, where Aij

xy is the re-

ward (payoff) of agent x playing strategy i against the
agent y who plays strategy j. Note that generally speak-
ing, the payoff might be asymmetric.
We are interested in the continuous approximation to

the learning dynamics. Thus, we replace t + 1 → t+ δt,
α → αδt, and take the limit δt → 0 in (1) to obtain

Q̇i
xy = α[Ri

x,y −Qi
xy(t)] (3)

Differentiating 2, using Eqs. 2, 3, and scaling the time
t → αβt we obtain the following replicator equation [15]:

ṗixy
pixy

=
∑

j

Aij
xyp

j
yx −

∑

i,j,ỹ

Aij
xỹp

i
xỹp

j
ỹx + T

∑

ỹ,j

pjxỹ ln
pjxỹ
pixy

(4)
Equations 4 describe the collective adaptation of the

Q–learning agents through repeated game–dynamical in-
teractions. The first two terms indicate that the proba-
bility of playing a particular pure strategy increases with
a rate proportional to the overall goodness of that strat-
egy, which mimics fitness-based selection mechanisms in
population biology [13]. The second term, which has an
entropic meaning, does not have a direct analogue in pop-
ulation biology [15]. This term is due to the Boltzmann
selection mechanism that describes the agents’ tendency
to randomize over their strategies. Note that for T = 0
this term disappears, so the equations reduce to the con-
ventional replicator system [13].
So far, we discussed learning dynamics over a general

strategy space. We now make the assumption that the
agents’ strategies factorize as follows,

pixy = cxyp
i
x ,

∑

y
cxy = 1,

∑

i
pix = 1. (5)

Here cxy is the probability that the agent x will initiate
a game with the agent y, whereas pix is the probability
that he will choose action i. Thus, the assumption behind
this factorization is that the probability that the agent
will perform action i is independent of whom the game
is played against. Substituting 5 in 4 yields,

ċxyp
i
x + cxy ṗ

i
x = cxyp

i
x

[

∑

j

aijxycyxp
j
y −

∑

i,y,j

aijx,ycxycyxp
i
xp

j
y

−T

[

ln cxy + ln pix −
∑

y

cxy ln cxy −
∑

j

pjx ln p
j
x

]]

(6)

Next, we sum both sides in Equation 6, once over y and
then over i, and make use of the normalization conditions
in Eq. 5 to obtain the following co-evolutioanry dynamics
of actions and connections probabilities:

ṗix
pix

=
∑

ỹ,j

Aij
xỹcxỹcỹxp

j
ỹ −

∑

i,j,ỹ

Aij
xỹcxỹcỹxp

i
xp

j
ỹ

+ T
∑

j

pjx ln(p
j
x/p

i
x) (7)

ċxy
cxy

= cyx
∑

i,j

Aij
xyp

i
xp

j
y −

∑

i,j,ỹ

Aij
xỹcxỹcỹxp

i
xp

j
ỹ

+ T
∑

ỹ

cxỹ ln(cxỹ/cxy) (8)

Equations 7 and 8 are the replicator equations that de-
scribe the collective evolution of both the agents’ strate-
gies and the network structure.
The following remark is due: Generally, the replicator

dynamics in matrix games are invariant with respect to
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adding any column vector to the payoff matrix. However,
this invariance does not hold in the present networked
game. The reason for this is the following: if an agent
does not have any incoming links (i.e., no other agent
plays with him/her), then he always gets a zero reward.
Thus, the zero reward of an isolated agent serves as a
reference point. This poses a certain problem. For in-
stance, consider a trivial game with a constant reward
matrix aij = P . If P > 0, then the agents will tend to
play with each other, whereas for P < 0 they will try to
avoid the game by isolating themselves (i.e., linking to
agents that do not reciprocate).

To address this issue, we introduce an isolation payoff
CI that an isolated agent receives at each round of the
game. It can be shown that the introduction of this pay-
off merely subtracts CI from the reward matrix in the
replicator learning dynamics. Thus, we parameterize the
game matrix as follows:

aij = bij + CI (9)

where matrix B defines a specific game.

Although it is beyond the scope of the present paper,
an interesting question is what the reasonable values for
the parameter CI are. In fact, what is important is the
value of CI relative to the reward at the corresponding
Nash equilibria, i.e., whether not playing at all is better
than playing and receiving a potentially negative reward.
Different values of CI describe different situations. In
particular, one can argue that certain social interactions
are apparently characterized by large CI , where not par-
ticipating in a game is seen as a worse outcome than par-
ticipating and getting negative rewards. In the following,
we treat CI as an additional parameter that changes in
a certain range, and examine its impact on the learning
dynamics.

A. Two-action games

We focus on symmetric games where the reward matrix
is the same for all pairs (x, y), Axy = A:

A =

(

a11 a12
a21 a22

)

(10)

Let pα, α ∈ {x, y, . . . , }, denote the probability for agent
α to play action 1 and cxy is the probability that the
agent x will initiate a game with the agent y. For two
action games, the learning dynamics Eqs. (7) , and (8)
becomes:

ṗx
px(1− px)

=
∑

ỹ

(apỹ + b)cxỹcỹx + T log
1− px
px

(11)

ċxy
cxy

= rxy −Rx + T
∑

ỹ

cxỹ ln
cxỹ
cxy

(12)

b
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   action 
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FIG. 1: (Color online) Categorization of 2-action games based
on the reward matrix structure in the (a, b) plane.

where

rxy = cyx(apxpy + bpx + dpy + a22) (13)

Rx =
∑

ỹ

(apxpỹ + bpx + dpỹ + a22)cxỹcỹx (14)

Here we have defined the following parameters:

a = a11 − a21 − a12 + a22 (15)

b = a12 − a22 (16)

d = a21 − a22 (17)

The parameters a and b allow a categorization of two
action games as follows:

• Dominant action games: − b
a
> 1 or − b

a
< 0

• Coordination game: a > 0, b < 0 and 1 ≥ − b
a

• Anti-Coordination (Chicken) game: a < 0, b >
0 and 1 ≥ − b

a

Before proceeding further, we elaborate on the connec-
tion between the rest points of the replicator system for
T = 0, and the game-theoretic notion of Nash Equilib-
rium (NE) 1. For T = 0 (no exploration) in the conven-
tional replicator equations, all NE are necessarily the rest
points of the learning dynamic. The inverse is not true -
not all rest points correspond to NE - and only the stable
ones do. Note that in the present model the first state-
ment does not necessarily hold. This is because we have
assumed the strategy factorization Eq. 5, due to which

1 Recall that a joint strategy profile is called Nash equilibrium if no
agent can increase his expected reward by unilaterally deviating
from the equilibrium.
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FIG. 2: Examples of reward matrices for typical two-action
games.

equilibria where the agents adopt different strategy with
different players is not allowed. Thus, any NE that do
not have the factorized form simply cannot be described
in this framework. The second statement, however, re-
mains true, and stable rest points do correspond to NE.

III. LEARNING WITHOUT EXPLORATION

Fo T = 0, the learning dynamics Eqs. 11, 12 attain the
following form,

ṗx
px(1− px)

=
∑

ỹ

(apỹ + b)cxỹcỹx (18)

ċxy
cxy

= rxy −Rx (19)

Consider the dynamics of strategies given by Equa-
tion 18. Clearly, the vertices of the simplex, px = {0, 1}
are the rest points of the dynamics. Furthermore, in
case the game allows a mixed NE, then the configuration
where all the agents play the mixed NE px = −b/a is also
a rest point of the dynamics. As it will be shown below,
however, this configuration is not stable, and for T = 0,
the only stable configurations correspond to the agents
playing pure strategies.

A. 3-player games

We now consider the case of three players in two-action
game. This scenario is simple enough for studying it com-
prehensively, yet it still has non-trivial structural dynam-
ics, as we will demonstrate below.

1. Nash Equilibria

We start by examining the Nash equilibria for two
classes of two-action games, Prisoner Dilemma (PD) and
a coordination game 2. In PD, the players have to choose

2 The behavior of the coordination and anti-coordination games
are qualitatively similar in the context of the present work, so
here we do not consider the latter.
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FIG. 3: (Color online) 3-player network Nash equilibria for
Prisoner’s Dilemma and Coordination game; see the text for
more details.

between Cooperation and Defection, and the payoff ma-
trix elements satisfy b21 > b11 > b22 > b12; see Fig. 2. In
two-player PD game, defection is a dominant strategy –
it always yields a better reward regardless of the other
player choice – thus, the only Nash Equilibrium is a mu-
tual defection. And in coordination game, the players
have an incentive to select the same action. This game
has two pure Nash equilibria, where the agents choose
the same action, as well as a mixed Nash equilibrium.
A general coordination game reward elements have the
relationship b11 > b21, b22 > b12 (see Fig. 2).

In the 3-agent scenario, a simple analysis yields four
possible network topologies corresponding to NE de-
picted in Fig. 3. In all of those configurations, the agents
that are not isolated select strategies that correspond
to two-agent NE. Thus, in the case of PD, non-isolated
agents always defect, whereas for the coordination game,
they can select one of three possible NE. We now examine
those configurations in more details.

Configuration I In this configuration, the agents x
and y play only with each other, whereas the agent z s
isolated: cxy = cyx = 1. Note that for this to be a NE,
the agents x and y should not be “tempted” to switch
and play with the agent z. For instance, in the case
of PD, this yields pzb21 < b22, otherwise players x, y
will be better of linking with the isolated agent z and
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exploiting his cooperative behavior 3.

Configuration II In the second configuration, there
is a central agent (z) who plays with the other two:
cxz = cyz = 1, czx+czy = 1. Note that this configuration
is continuously degenerate as the central agent can
distribute his link weight arbitrarily among the two
players. Additionally, the isolation payoff should be
smaller then than the reward at the equilibrium (e.g.,
b22 > CI for PD). Indeed, if the latter condition is
reversed, then one of the agents, say x, is better off
linking with y instead of z, thus “avoiding” the game
altogether.

Configuration III: The third configuration corre-
sponds to a uniformly connected networks where all
the links have the same weight cxy = cyz = ccx = 1

2
.

It is easy to see that when all three agents play NE
strategies, there is no incentive to deviate from the
uniform network structure.

Configuration IV: Finally, in the last configuration
none of the links are reciprocated so that the players do
not play with each other: cxycyx = cxzczx = cyzczy = 0.
This cyclic network is a Nash equilibrium when the iso-
lation payoff CI is greater than the expected reward of
playing NE in the respective game.

2. Stable rest points of learning dynamics

The factorized Nash equilibria discussed in the previ-
ous section are the rest points of the replicator dynamics.
However, not all of those rest points are stable, so that
not all the equilibria can be achieved via learning. We
now discuss the stability property of the rest points.

One of the main outcomes of our stability analysis is
that at T = 0 the symmetric network configuration is not
stable. This is in fact a more general results that applies
to N -agent networks, as is shown in the next section. As
we will demonstrate later, the symmetric network can be
stabilized when one allows exploration.

The second important observation is that even when
the game allows mixed NE, such as in coordination game,
any network configuration where the agents play mixed
strategy is unstable for T = 0 (see Appendix A). Thus,
the only outcome of the learning is a configuration where
the agents play pure strategies.

The surviving (stable) configurations are listed in
Fig. 4. Their stability can be establishes by analyzing
the eigenvalues of the corresponding Jacobian. Consider,
for instance, the configuration with one isolated player.

3 Note that the dynamics will eventually lead to a different rest
point where z is now plays defect with both x and y

!"#$%&'()*+,-.#/)*0'1*'!"#$%&'"($)*#+',,-).-,'))

b
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b
22
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I

  Mixed strategy   Action 1   Action 2 

!"#$%&'()*+,-.#/)*0'1*'!""#$%&'("&)*'+,)

−C
I
> b

11

b
11
≥ −C

I
> b

22

−C
I
≤ b

22

FIG. 4: (Color online) Stable rest points of the learning dy-
namics for Prisoner’s Dilemma (upper panel) Coordination
game (lower panel).

The corresponding eigenvalues are

λ1 = rxz − rxy , λ2 = ryz − ryx , λ3 = 0

λ4 = (1− 2px)(r
1

x − r2x) < 0 ,

λ5 = (1− 2py)(r
1

y − r2y) < 0 , λ6 = 0

For Prisoner’s Dilemma this configuration is marginally
stable when agents x, y play defect and rxy > 0, ryx > 0.
It happens only when b22 ≥ −CI which means that
the isolation payoff should be less than the expected re-
ward for defection. Furthermore, one should also have
rxz < rxy , ryz < ryx, which indicate that the neither
x nor y would get better expected reward by switching
and playing with z (e.g., condition for NE). And for the
coordination game , assuming that b11 > b22 this config-
uration is stable when b11 ≥ −CI > b22 , b22 ≥ −CI .
Similar reasoning can be used for the other configu-

rations shown in Fig. 4. Note, finally, that there is a
coexistence of multiple equlibria for range of parameter,
except when the isolation payoff is sufficiently large, for
which the cyclic (non-reciprocated) network is the only
stable configuration.

B. N-player games

In addition to the three agent scenario, we also ex-
amined the co-evolutionary dynamics of general N -agent
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systems, using both simulations and analytical methods.
We observed in our simulations that the stable outcomes
of the learning dynamic consist of star motifs Sn, where
a central node of degree n− 1 connects to n− 1 nodes of
degree 1 4. Furthermore, we observed that the basin of
attraction of motifs shrinks as motif size grows, so that
smaller motifs are more frequent.

We now demonstrate the stability of the star motif
Sn in n player two action games. Let player x be the
central player, so that all other players are only con-
nected to x, cαx = 1. Recall that the Jacobian of the
system is a block diagonal matrix with blocks J11 with

elements
∂ċij
∂cmn

and J22 with has elements as ∂ṗm

∂pn
( see

Appendix A). When all players play a pure strategy
pi = 0, 1 in a star shape motif, it can be shown that
J22 is diagonal matrix with diagonal elements of form
(1− 2px)

∑

ỹ(apỹ + b)cxỹcỹx, whereas J11 is an upper tri-
angular matrix, and its diagonal elements are either zero
or have the form −(apxpy + bpx + dpy + a22)cxy where x
is the central player.

For the Prisoner’s Dilemma, the Nash Equilibrium cor-
responds to choosing the second action (defection) , i.e.
pα = 0. Then the diagonal elements of J22, and thus
its eigenvalues, equal bcxỹ. J11, on the other hand, has
n2−2n eigenvalues , (n−1) of them are zero and the rest
have the form of λ = −a22cxỹ. Since for the Prisoner’s
Dilemma one has b < 0 then the start structure is stable
as long as b22 > CI .

A similar reasoning can be used for the Coordination
game, for which one has b < 0 and a + b > 0. In this
case, the star structure is stable when either b11 > −CI or
b22 > −CI , depending on whether the agents coordinate
on the first or second actions, respectively.

We conclude this section by elaborating on the
(in)stability of the N -agent symmetric network config-
uration, where each agent is connected to all the other
agents with the same connectivity 1

N−1
. As shown in

4 This is true when the isolation payoff is smaller compared to
the NE payoff. In the opposite case the dynamics settles into a
configuration without reciprocated links.

Appendix B, this configuration can be a rest point of
the learning dynamics Eq. (18) only when all agents play
the same strategy, which is either 0, 1 or −b/a. Consider
now the first block of the Jacobian in Eq. A1, i.e. J11.
It can be shown that the diagonal elements of J11 are
identically zero, so that Tr(J11) = 0. Thus, either all
the eigenvalues of J11 are zero (in which case the con-
figuration is marginally stable), or there is at least one
eigenvalue that is positive, thus making the symmetric
network configuration unstable at T = 0.

IV. LEARNING WITH EXPLORATION

In this section we consider the replicator dynamics for
non-vanishing exploration rate T > 0. For two agent
games, the effect of the exploration has been previously
examined in Ref. [18], where it was established that for a
class of games with multiple Nash equilibria the asymp-
totic behavior of learning dynamics undergoes a drastic
changes at critical exploration rates and only one of those
equilibria survives. Below, we study the impact of the ex-
ploration in the current networked version of the learning
dynamics.
For 3-player, 2- action games we have six independent

variables px, py, pz, cxy, cyz, czx. The strategy variables
evolve according to the following equations:

ṗx
(1− px)px

= (apy + b)wxy + (apz + b)wxz + T log
1− px
px

ṗy
(1 − py)py

= (apz + b)wyz + (apx + b)wxy + T log
1− py
py

ṗz
(1− pz)pz

= (apx + b)wxz + (apy + b)wyz + T log
1− pz
pz

ċxy
cxy(1− cxy)

= rxy − rxz + T log
1− cxy
cxy

ċyz
cyz(1− cyz)

= ryz − ryx + T log
1− cyz
cyz

ċzx
czx(1− czx)

= rzx − rzy + T log
1− czx
czx

Here we have defined wxy = cxy(1 − cyz), wxz = (1 −
cxy)czx, and wyz = cyz(1− czx), and a, b, d are defined in
Eqs. 15, 16 and 17.
Fig. 6(a) shows three possible network configurations

that correspond to the fixed points of the above dynam-
ics. The first two configurations are perturbed version of
a star motif ( stable solution for T = 0), whereas the third
one corresponds to symmetric network where all players
connect to the other players with equal link weights.
Furthermore, in Fig. 6(b) we show the behavior of the

learning outcomes for a PD game, as one varies the tem-
perature. For sufficiently small T , the only stable config-
urations are the perturbed star motifs, and the symmet-
ric network is unstable. However, there is a critical value
Tc above which the symmetric network becomes globally
stable.
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FIG. 6: a) (Color online) Possible network configurations for
three-player PD (Fig. 2); (b) Bifurcation diagram for varying
temperature. Two blue solid lines correspond to the config-
urations with one isolated agent and one central agent. The
symmetric network configuration is unstable at low temper-
ature (red line), and becomes globally stable above a critical
temperature.
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FIG. 7: (Color online) Impact of the exploration on the sta-
ble outcomes of a coordination game in Fig. (2). The top
panel shows the bifurcation of strategy p versus T , whereas
the bottom panel shows stability region of the symmetric net-
work configuration in the CI − T plane. Here the critical
temperature is Tc = 0.36.

Next, we consider the stability of the symmetric net-
works. As shown in Appendix B, the only possible solu-
tion in this configuration is when all the agents play the
same strategy, which can be found from the following

equation:

(ap+ b) = 2T log
p

1− p
(20)

The behavior of this equation (without the factor 2 in
the rhs) was analyzed in details in [18]. In particular,
for games with a single NE, this equation allows a sin-
gle solution that corresponds to the perturbed NE. For
games with multiple equlibria, on the other hand, there
is a critical exploration rate there is a temperature Tc:
For T < Tc there are two stable and one unstable solu-
tion, whereas for T ≥ Tc there is a single globally stable
solution.
We use these insights to examine the stability of the

symmetric network configuration for the coordination
game, depending on the parameters T and CI ; see Ap-
pendix C. In this example a = 5 , b = −2 , d = 1 for all
three agents. Figure 7 shows the bifurcation diagram of
p (probability of choosing the first action) plotted versus
T . Below the critical temperature, there are three three
solutions, two of which (that correspond to the perturbed
pure Nash equilibria) are stable. And Fig. (7) shows the
domain of T and CI for stable homogenous equilibrium.
When T → 0, the domain of CI shrinks until it becomes
a point at T = 0 where −CI is equal to the NE reward
(Fig. (7)).

V. DISCUSSION

We have studied the co-evolutionary dynamics of
strategies and link structure in a network of reinforce-
ment learning agents. By assuming that the agents’
strategies allow appropriate factorization, we derived a
system of a coupled replicator equations that describe the
mutual evolution of agent behavior and network topol-
ogy. We used these equations to fully characterize the
stable learning outcomes in the case of three agents and
two action games. We also established some analytical
results for the more general case of N -player two-action
games.
We demonstrated that in the absence of any strat-

egy exploration (zero temperature limit) learning leads
to network composed of star-like motifs. Furthermore,
the agents on those networks play only pure NE, even
when the game allows a mixed NE. Also, even though
the learning dynamics allows rest points with a uniform
network (e.g., an agent plays with all the other agents
with the same probability) , those equilibria are not sta-
ble at T = 0. The situation changes when the agents
explore their strategy space. In this case, the stable net-
work structures undergo bifurcation as one changes the
exploration rate. In particular, there is a critical explo-
ration rate above which the uniform network becomes a
globally stable outcome of the learning dynamics.
We note that the main premise behind the strategy fac-

torization use here is that the agents use the same strat-
egy profile irrespective of whom they play against. While
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this assumption is perhaps valid under certain circum-
stances, it certainly has its limitations that need to be
studied further through analytical results and empirical
data. Furthermore, the other extreme where the agent
employs unique strategy profiles for each of his partners
does not seem very realistic either, as it would impose
considerable cognitive load on the agent. A more real-
istic assumption is that the agents have a few strategy
profile that roughly correspond to the type of the agent
he is interacting with. The approach presented here can
be in principle generalized to the latter scenario.
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Appendix A: Local Stability Analysis of the Rest

Points

To study the local stability properties of the rest points
in the system given by Eqs.18 and 19 , we need to analyze
the eigenvalues of the corresponding Jacobian matrix.
For n-player two-action game, we have n action variables
and l = n(n− 2) link variables, so that the total number
of independent dynamical variables is n + l = n(n − 1).
We can represent the Jacobian as follows,

J =







∂ċij
∂cmn

∂ċij
∂pm

∂ṗm

∂cij

∂ṗm

∂pn






=

(

J11 J12
J21 J22

)

(A1)

Here the diagonal blocks J11 and J22 are l× l and n× n
square matrices, respectively. Similarly, J12 and J21 are
l × n and n× l matrices, respectively.
In the most general case, the full analysis of the Jaco-

bian is intractable. However, the problem can be simpli-
fied for T = 0. Indeed, consider the lower off-diagonal
block of the Jacobian, J21, the elements of which have
the form

∂ṗi
∂cij

= pi(1− pi)cji(api + b) (A2)

Consulting the rest point condition given by Eqs. 18, one
can see that J21 is identically zero. By using the block
matrix determinant identity, the characteristic polyno-
mial of the Jacobian assumes the following factorized
form

p(λ) = det(J11 − λI)det(J22 − λI) = 0 (A3)

The above factorization facilitates the stability analysis
for certain cases that we focus now:

a. (In)Stability of mixed strategies for T = 0 Let us
show that the configurations where the agents mix either
on their actions or links cannot be stable at T = 0. Here
we just need to consider the submatrix J22. We now show
that this matrix always has at least one positive eigen-
values when players adopt the mixed Nash equilibrium
p = −b/a. Indeed, it can be shown that J22 is a non-zero
matrix with zero diagonal elements. Recall that for any
square matrix A the Tr(A) =

∑

λi then Tr(J11) = 0
means at least one of its eigenvalues is always positive,
so that the mixed Nash configuration is unstable. The
same line of reasoning can be applied to the configuration
where the agents mix over the links.

Appendix B: Agent Strategies in Symmetric

Networks

Let us consider a 2-action n players game. Each player
i chooses action one with probability pi. Here we prove
that player n and player n − 1 in homogenous network
have the same strategy, i.e., pn = pn−1. Consider the
Eq. 11 for players n, n− 1 and n− 2,

p1 + p2 + · · ·+ pn−2 + pn−1 = k log
pn

1− pn
− c (B1)

p1 + p2 + · · ·+ pn−2 + pn = k log
pn−1

1− pn−1

− c (B2)

where

K = −
T (n− 1)2

a
, c =

b(n− 1)

a
(B3)

Also, let us define a function g as

g(pn) = xn + k log
pn

(1− pn)
(B4)

Now , by subtracting the two Eq. B1 and B2, we have
g(pn) = g(pn−1). Since 0 < pi < 1 , then function g is
a monotonic function, so g(pn) = g(pn−1) ↔ pn = pn−1.
By repeating the same reasoning for the remaining pi one
can prove that p1 = p2 = · · · = pn.

Appendix C: Stability of Symmetric 3-player

network

For 3-player 2-action games, the Jacobian correspond-
ing to the symmetric network configuration consists of
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the following blocks:

J11 =





−T −v −v
−v −T −v
−v −v −T



 (C1)

J12 =





0 m −m
−m 0 m
m −m 0



 (C2)

J21 =





0 −g g
g 0 −g
−g g 0



 (C3)

J22 =





−T k k
k −T k
k k −T



 . (C4)

where we have defined

v =
ap2 + bp+ dp+ b22 + CI

4
(C5)

m =
ap+ d

8
(C6)

g =
p(1− p)(ap+ b)

2
(C7)

k =
ap(1− p)

4
. (C8)

and p is the probability of selecting the first action, which
is the same for all the agents in the symmetric network
configuration. The six eigenvalues that determine the
stability of the configuration can be calculated analyti-
cally and are as follows:

λ1 = 2k − T

λ2 = −T − 2v

λ3,4 =
1

2
(−k − 2T + v −

√

12gm+ (k + v)2)

λ5,6 =
1

2
(−k − 2T + v +

√

12gm+ (k + v)2).

These expressions can be used to (numerically) identify
the stability region of the configuration in the parameter
space (T,CI), as shown in Fig. 7.
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