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Molecular spiders are synthetic catalytic DNA-based nanoscale walkers. We study the mean first
passage time for abstract models of spiders moving on a finite two-dimensional lattice with various
boundary conditions, and compare it with the mean first passage time of spiders moving on a one-
dimensional track. We evaluate by how much the slowdown on newly visited sites, owing to catalysis,
can improve the mean first passage time of spiders and show that in one dimension, when both ends
of the track are an absorbing boundary, the performance gain is lower than in two dimensions, when
the absorbing boundary is a circle; this persists even when the absorbing boundary is a single site.

I. INTRODUCTION

Natural molecular motors play an important role in bi-
ological processes that are critical for the functioning of
living organisms; they are the source of most forms of mo-
tion in living beings [1–3]. In addition to naturally occur-
ring molecular motors, several synthetic molecular mo-
tors have been designed [4–12]. Our work is inspired by a
particular type of synthetic molecular motors—molecular
spiders.

Molecular spiders [13, 14] are synthetic nanoscale walk-
ers which consist of a rigid, inert chemical body to
which multiple flexible legs are attached. The legs are
deoxyribozymes—enzymatic sequences of single-stranded
DNA that can bind to and cleave complementary strands
of a DNA substrate. When many such substrates are at-
tached to a surface, a leg can move between substrates,
cleaving them and leaving behind product DNA strands.
Products can be revisited by a leg, but they cannot be
cleaved again (Fig. 1). The leg cleaves, and then de-
taches, more slowly from a substrate than it detaches
from a product. The number of legs, and their lengths,
can be varied, and this defines how a spider moves on the
surface, i.e., its gait.

Mathematical models of molecular spiders at various
levels of abstraction have been proposed and studied.
Antal and collaborators introduced the first abstract
model of molecular spiders, and studied the motion of
a single spider on a one-dimensional track. They investi-
gated the movement of spiders with various numbers of
legs and various gaits over products only [15] and showed
that such spiders are equivalent to a regular diffusion; the
diffusion constants were computed for some gaits. Subse-
quently they introduced substrates and took into account
that cleavage and detachment from substrates together
take more time than the detachment from products [16],
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FIG. 1: (Color online) Molecular spider moves over a surface
of single-stranded DNA substrates. It has several flexible de-
oxyribozyme legs. When a leg detaches, it cleaves a substrate
strand, turning it into a shorter product DNA strand. The
leg can re-attach, but the bond will be weaker.

showing that this difference in residence time and the
presence of multiple legs, together, bias a spider’s mo-
tion towards fresh substrates when it is on a boundary
between substrates and products. This important prop-
erty was also observed experimentally [14]. In Ref. [17]
we showed that spiders move superdiffusively for long
periods of time. Samii et al. investigated various gaits
and numbers of legs [18, 19], emphasizing the possibil-
ity of detachment from the track. In Refs. [20, 21] we
studied the behavior of multiple spiders continuously re-
leased onto a 1D track. In a model with more physical de-
tail [22], we showed that spiders can move against a force
applied to the body. Models of spiders in two dimen-
sions have also been studied. In Ref. [23] we investigated
how fast several spiders with various gaits can locate a
small number of targets placed on a small fixed-size two-
dimensional lattice. In Ref. [24] Antal and Krapivsky
evaluated the diffusion constant and the amplitude de-
scribing the asymptotic behavior of the number of visited
sites for a single spider with various gaits placed on an



infinite square lattice. Analytical results regarding the
asymptotic behaviors (limit theorems, transience, recur-
rence, and rate of escape) of spiders have been derived in
Refs. [25, 26]. In Refs. [27, 28] the behavior of spiders in
random environments was studied. Rank et al. showed
that several spiders, each placed on a separate 1D track
and connected to a single cargo particle move it faster
and remain superdiffusive longer than a single spider on
a single 1D track [29].
Here we study first passage properties of an abstract

theoretical model of molecular spiders. Our model is a
direct extension of the model introduced in Refs. [15, 16].
Although it is inspired by real molecular spiders, the
model can also be applied to a wider class of random
walkers that exhibit properties similar to spiders. Par-
ticularly, we investigate how the various boundary condi-
tions affect the spider’s mean first passage time (MFPT)
when it moves over finite one- and two-dimensional sur-
faces.
First passage properties of regular random walkers

moving over discrete surfaces with various reflecting
and absorbing boundaries have been extensively stud-
ied [30, 31]. Here we show that the difference between the
time the legs spend on visited and on unvisited sites re-
duces the MFPT of two-legged spiders in various surface
settings, and increases the MFPT of one-legged spiders
(which behave like regular random walkers).
We start with the model of a two-legged spider

that moves over a one-dimensional track with absorb-
ing boundaries at both ends of the track. We found that
for this surface the cleavage rate significantly affects the
MFPT, and for any track length there exists an optimal
cleavage rate. Next, we study an extension of the 1D
model to 2D, i.e., the MFPT of a two-legged spider to a
circle, where the spider starts in the center. For this sur-
face we determined that the cleavage rate gives the spider
an even greater advantage over a regular random walker.
The advantage persists even when the target is a single
site, and thus is much harder to find. In this second 2D
model the circle is a reflecting boundary, its center is an
absorbing boundary, and the spider starts from various
distances from the center. As in 1D, every setting of the
surface has a corresponding optimal cleavage rate that
minimizes the MFPT to the boundary.

II. MODEL DETAILS

Our model is a modification of the model we used in
Ref. [23]. It also can been seen as a direct extension of
the AK model of the spiders on a plane [24] that takes
various boundary conditions into account.

A. Motion and Surface

In our model a single spider moves over finite one- or
two-dimensional regular lattices. A spider has k legs. It

moves by detaching a leg from its site on the lattice and
reattaching it to a new site. Only one leg can detach at
any given time, so a spider cannot detach all of its legs
to leave the lattice. Each site can be occupied only by
one leg at a time. There is a restriction on the max-
imum distance between any two legs S (the gait), and
each leg can move to one of the nearest neighboring sites
(2 sites in 1D and 4 sites in 2D; a diagonal step is not
allowed) with equal probability as long as the move does
not violate one of the constraints above. Here we use
only two types of spiders. First, a spider with k = 1;
this spider is equivalent to a regular random walker. The
parameter S does not affect this spider since it has only
one leg. Second, a spider with k = 2 and S = 2; this
spider is exactly the bipedal Euclidean spider with max-
imal separation 2 [24]. When such a spider is placed on
a one-dimensional lattice, the model becomes equivalent
to that of Ref. [17].
Two types of sites can be present on the lattice, sub-

strate and product. A leg detaches at rate 1 from a
product, and at rate r from a substrate, where normally
r ≤ 1. Reattachment is instantaneous. When a leg leaves
a substrate, that substrate is transformed into a product.
Initially all sites are substrates; so any unvisited site is
always a substrate, and a visited site is always a product.
For r < 1 the legs act differently when they are on visited
versus unvisited sites, as described above. On the other
hand, when r = 1, legs act effectively the same whether
they are on the products or substrates, and it becomes
irrelevant if a site is visited (a product) or unvisited (a
substrate). In Refs. [16] and [24] spiders with r < 1 are
referred to as spiders with memory, since they react dif-
ferently to visited and unvisited sites, and spiders with
r = 1 are seen as having no memory, since they do not
make this distinction. Note, however, that no memory
is introduced into the model; the memory effects emerge
from the properties of the spiders and the surface.

B. Boundaries and Starting Positions

We study the first passage times of spiders moving
over one-and two-dimensional regular lattices with var-
ious boundary conditions and initial configurations. In
each case we are interested when the spider reaches the
absorbing boundary.
The boundaries effectively make all our surfaces finite.

In one dimension we use a 1D track of length 2x. The
spider starts its movement from the middle of the track
(the origin), and absorbing boundary sites are located at
each end of the track, i.e., each one is x sites away from
the origin.
In two dimensions the surface is bounded by a circle of

radius x. Here we study three types of boundaries and
initial spider positions. First, the circle is an absorbing
boundary, and the spider starts from the center of the
circle. Second, the circle is a reflective boundary, while
the center is an absorbing boundary, and the spider can



start from any site on the circle. Third, we study the
case when the radius x is fixed and the spider starts y
sites away from the target site at the center.

In all these settings x effectively defines the size of the
surface. And, in all those settings, except the last, we
study the dependence of MFPT on x, i.e., 〈τ(x)〉. In the
last case we study the dependence of MFPT on y, i.e.,
〈τ(y)〉.

C. Meaningfulness of MFPT in The Studied

Settings

A process to determine if MFPT is a valid character-
istic of the first passage behavior was given in Ref. [32].
Similarly to that, we assess the meaningfulness of the
mean first passage time in all studied settings. For every
setting we estimate the distribution P (ω) of the random
variable ω = τ1/(τ1+τ2), where τ1 and τ2 are first passage
times of two independent spiders. Values of ω close to 1/2
indicate that spiders act similarly in a particular setting.
When ω is close to 0 or 1, the process is not uniform,
and MFPT is not a good measure of actual behavior.
The distribution P (ω) can assume three distinct shapes:
unimodal bell-shaped, bimodal M-shaped, and plateau-
like, almost uniform behavior. A bell-shaped form with
a maximum at ω = 1/2 indicates that MFPT can be
considered as a valid measure of the first passage times
of individual spiders. An M-shaped form with two peaks
close to 0 and 1, and local minimum at 1/2 indicates that
MFPT is not a good measure of the first passage time of
individual spiders. A plateau-like shape with zero second
derivative at ω = 1/2 separates the two above cases. Just
as in Ref. [32], to quantify the shape of P (ω) we fit P (ω)
to the model χω2 + c1ω + c2 for 0.05 < ω < 0.95. The
sign of χ indicates the shape of P (ω). When χ < 0, the
distribution is bell-shaped; χ > 0 shows that the distri-
bution is bimodal, M-shaped; and χ = 0 indicates that
the distribution is almost uniform.

D. Simulation

Combining the states of the spider and the surface
gives us a continuous-time Markov process for our model.
We use the Kinetic Monte Carlo method [33] to simulate
many trajectories of the Markov process for every in-
stance of the parameter set. In each case we record the
first passage time to the absorbing boundary.

For Section III we simulated 210 different r rates for up
to a distance of 10000 using 21504 traces of the Markov
process. For Section IV we simulated 100 different r rates
for up to a distance of 1000 using 20000 traces. For
Section VA we simulated 18 different r rates for up to a
distance of 250 using 20000 traces. For Section VB we
simulated 15 different r rates for up to a distance of 100
using 20000 traces.

III. SPIDER ON A 1D TRACK

A. Background: Transient Superdiffusivity of

Spiders

Antal and Krapivsky analytically obtain the mean time
〈T (n)〉 to visit n sites in one dimension [15, 16]; for a two-
legged spider (k = 2) they found

〈T (n)〉 = 3

2

1 + r

2 + r
n2 +

1

r
n. (1)

Eq. 1 shows that the parameter r affects the leading
asymptotic behavior of 〈T (n)〉. For a one-legged spider
(k = 1) Antal and Krapivsky obtained

〈T (n)〉 = n(n− 1)

4
+

n

2r
. (2)

Eq. 2 demonstrates that for the one-legged spider
(k = 1), the leading term of 〈T (n)〉 does not depend
on the parameter r. The r only slows the one-legged spi-
der down by increasing the sub-leading term. Eq. 2 and
Eq. 1 also show that in the absence of memory (r = 1)
the one-legged spider is faster than the two-legged spi-
der. Thus these two properties, which separately make
the walkers slower, surprisingly improve the performance
of the spiders when combined together. This happens
because the difference in residence time between visited
and unvisited sites biases multi-legged spiders towards
unvisited sites when they find themselves on the bound-
ary between visited and unvisited sites.
Using Kinetic Monte Carlo [33] simulations of the

Markov process we showed the unanticipated result that
spiders of the AK model with k = 2, S = 2, and r < 1
move superdiffusively over a significant span of time and
distance before eventually slowing down to move diffu-
sively [17].
Superdiffusive motion can be described using mean

square displacement of a walker as a function of time.
The mean squared displacement is given by

〈X2〉 = 2dDtα
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α = 0 stationary

0 < α < 1 subdiffusive

α = 1 diffusive

1 < α < 2 superdiffusive

α = 2 ballistic or linear

, (3)

where d is the number of dimensions, and D is an ampli-
tude.
From Eq. 3 we derive the condition for the walker to

be superdiffusive at time t. The walker is moving instan-

taneously superdiffusively [34] at a given time t if

α(t) =
d(ln (〈X2〉(t)))

d(ln (t))
> 1.



In [17], we showed that each spider process goes
through three different phases of motion defined by its
value of α. Initially spiders are at the origin, and must
wait for both legs to cleave a substrate before they start
moving at all. So when t < 1/r the process is essen-
tially stationary (the initial phase). After the spiders
with r < 1 take several steps, they show a sustained pe-
riod of superdiffusive motion over many decades in time
(the superdiffusive phase). Finally, as time goes to in-
finity, all spiders will approach ordinary diffusion with
α ≈ 1 (the diffusive phase); the spiders mainly move
over regions of previously visited sites, which makes the
value of r less relevant.
This behavior can be explained by observing that the

spiders of the AK model with k = 2 and S = 2 leave a
contiguous region of products as they move away from
the origin. When a spider is located on the boundary
between this region of products and the unvisited sub-
strates, it is biased towards the substrates. We call such
configurations of the system boundary states. When the
spider steps back into the created products area it is no
longer biased and it now moves diffusively, just as a regu-
lar random walker. We call such configurations diffusive
states. The periods of time that the spider spends in
boundary states do not depend on the global time of the
system. In contrast, the periods of time that the spider
spends in diffusive states grow with the global time. The
durations of the diffusive periods grow because the size
of the products region grows with the global time. In the
beginning, when the products region is small, many steps
of the spider are biased away from the origin, which leads
to the superdiffusve motion. Then, as the region of vis-
ited sites grows, the spider starts to spend more time in
the diffusive states, which leads to the transition towards
diffusive motion.

B. Mean First Passage Time

We measure the mean first passage time, 〈τ(x)〉, where
x is the absolute distance of the walker from the origin
on a one-dimensional track. At that point the walker
is absorbed by the boundary. Fig. 2 shows the initial
configuration of the track where the walker is positioned
in the middle, and the absorbing boundaries are shown
as stars. The length of the track is 2x.

x

FIG. 2: Initial configuration of the track. All sites are initially
substrates. Absorbing boundary is represented by stars.

According to the results of our numerical simulations
the MFPT of both one- and two-legged spiders is pro-
portional to x2, and has the following leading and sub-
leading terms

〈τ(x)〉 ≈ A1(r)x
2 + a1(r)x. (4)

The amplitude A1 of the leading term describes the
asymptotic behavior of the MFPT. For the one-legged
spider we found that A1 does not depend on r. For the
two-legged spider A1 increases with r, and approaches 2
when r = 1. As r approaches zero A1 ≈ 1.4. Fig. 3 shows
the amplitude A1 for one- and two-legged spiders for 182
r values less than 1.
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FIG. 3: Amplitude A1 from Eq. 4 as a function of the cleavage
and detachment rate r. The data are for one-legged (k = 1)
and two-legged (k = 2) spiders on a one-dimensional track.

For both one and two-legged spiders the amplitude a1
of the sub-leading term decreases monotonically and ap-
proaches 0 in the absence of memory (r = 1). The ampli-
tudes A1 and a1 show that the parameter r only increases
the MFPT of one-legged spiders. For two-legged spiders
varying r can decrease their MFPT.
In Section III A we recalled that when r < 1, the

AK-model walkers go through three different regimes
of motion—the initial, superdiffusive, and the diffusive
stage. For lower r values the initial slow period is longer
than for higher r values, but subsequently the superdif-
fusive period is longer and faster. For travel over shorter
distances the initial period is more important and thus
larger r values result in lower first passage times. For
travel over longer distances the superdiffusive period is
important and smaller r values give better results. Thus
for every particular distance there is an optimal value of
r that minimizes the MFPT. For example, for distance
2000 the spider with r = 0.05 is faster than the other
(sampled) r values; but for distances 4000 and longer the
spider with r = 0.01 is faster.
We estimated ropt(x) for tracks of various lengths (up

to 10000) through simulations of 210 r values. The re-
sults are shown in Fig. 4. The figure also shows the 〈τ(x)〉
that corresponds to ropt(x) for each distance, i.e., the
minimum 〈τ(x)〉 achievable by varying the parameter r.



The optimum r monotonically decreases with distance.
Smaller r values create a stronger bias towards unvisited
sites, but they make individual steps slower when the
spider is on the boundary. Fig. 4 shows that for better
performance over shorter distances faster steps are more
important than the bias towards unvisited sites, whereas
for longer distances the bias dominates the MFPT.
We also estimate ropt(x) by fitting. First, we assume

that A1(r) and a1(r) have the functional form of

A1(r) = (c1r + c2)/(c3r + c4),

a1(r) = (c5r + c6)/(c7r + c8).
(5)

We find the constants c1 to c8 by fitting Eq. 5 to the es-
timates of A1 and a1. Then, we substitute the results into
Eq. 4 and find when 〈τ(x)〉 is minimized by extracting
the derivative of 〈τ(x)〉 with respect to r. The predicted
ropt(x) is also drawn in Fig. 4. The derivation also shows

that ropt(x) ∼ x−1/2 (see the Appendix for details).
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FIG. 4: Optimal r values (ropt(x)) for various distances, and
the corresponding 〈τ (x)〉. Optimal r values are obtained in
two ways; first, by fitting the data for 〈τ (x)〉 into the model of
Eq. 4 and amplitudes A1 and a1 into the model of Eq. 5, and
second, by simulating 210 values of r and choosing those that
correspond to the lowest 〈τ (x)〉. The estimation of ropt(x)

shows that ropt(x) ∼ x−1/2 .

Our estimates of the indicator χ show that in the set-
ting of the one-dimensional track and spider starting from
the middle, χ is always negative, independent of the val-
ues of the parameters x and r. Thus the MFPT is a
meaningful, reliable measure of the first passage time of
spiders in this setting. However, as the starting position
is moved closer to one of the boundaries (and thus farther
away from the other ) χ grows, and eventually becomes
positive. The positive values indicate that MFPT is not
a good measure of the first passage time of spiders when
they start close to the boundaries. Interestingly, when
spiders start very close to the boundary, about 50 sites
away or less, the parameter r starts to affect χ. Fig. 5
shows dependence of χ on the distance between the spider

and one of the targets z for a track of size x = 1000 and
two r values: 0.05 and 1.0. When z ' 50 the dependence
of χ on z is similar for both r values. However, when
z / 50, the χ value for the r = 0.05 spider decreases
while that of the r = 1.0 spider remains steady.
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FIG. 5: Indicator χ shows how well the MFPT describes the
first passage times of the individual spiders to any of the tar-
get sites. The surface is one-dimensional with a circular re-
flecting boundary of radius x, the spider starts z sites away
from the left absorbing boundary (site 0). For the r = 0.05
spider χ decreases when z / 50, while for the r = 1.0 spider χ
stays about the same. For z ' 50 the behavior of χ is similar
for both r values.

This behavior indicates that smaller r values make the
first passage time of spiders more consistent when the
starting position is located very close to one of the tar-
gets.

IV. SPIDER ON A 2D PLANE WITH A

CIRCULAR ABSORBING BOUNDARY

A direct extension of a one-dimensional track with
length 2x to two dimensions is a set of sites bounded
by a circle of radius x. Fig. 6 shows the initial config-
uration of the surface with the spider positioned in the
middle.
Using numerical simulations we found that, similarly

to the spiders in one dimension, the MFPT of both one-
and two-legged spiders is proportional to x2. However,
the sub-leading terms are much closer to the leading
terms, and therefore are more important for estimating
the MFPT. This implies that in two dimensions spiders
(especially those with very small cleavage and detach-
ment rate, r < 0.05) approach the asymptotic behavior
especially slowly. The leading and sub-leading terms of
〈τ(x)〉 are as follows:

〈τ(x)〉 ≈
{

A2(r)x
2 + a2(r)x

2/ ln t : k = 2
A2(r)x

2 + a2(r)x
2/(ln t)0.88 : k = 1.

(6)



FIG. 6: Initial configuration of the 2D surface. All sites are
initially substrates. The spider starts at the center of the
circle. The absorbing boundary is shown as a circle; as soon
as either leg crosses the circle the target is considered to be
found, and the experiment stops.

The correlation (ln t)−0.88 for the one-legged spider is
unusual and slower than for the two-legged spider. Some-
what similar effects were observed in Ref. [24] in the es-
timation of the mean squared displacement. As in one
dimension, the amplitude A2 of the leading term does
not depend on r for the one-legged spider and is propor-
tional to r for the two-legged spider. The sub-leading
term’s amplitude a2 monotonically decreases with r in
both cases. Fig. 7 shows the amplitude A2 for the one-
and two-legged spiders for 60 r values that are less than
1.
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FIG. 7: Amplitude A2 from Eq. 6 as a function of the cleavage
and detachment rate r. The data are shown for one-legged
(k = 1) and two-legged (k = 2) spiders moving over a two-
dimensional surface with a circular absorbing boundary.

For one-legged spiders, as in one dimension, lower r val-
ues only increase the MFPT. The comparison of Figs. 7
and 3 shows that for two-legged spiders A2 is affected
more strongly by r than A1. The A2 of the two-legged
spider in two dimensions even intersects the A2 of the
one-legged spider. The A2 starts at 2 when r = 1 and

decreases towards ≈ 0.5 as r approaches zero.
Similar to the one-dimensional case, spiders with r < 1

start more slowly than the no-memory spider with r = 1;
then they move faster, and finally they slow down and
approach regular diffusion. But in contrast to spiders on
a 1D track, the r values that correspond to fastest times
are higher, and the MFPT of spiders with very small r
values (less than 0.1) approaches the MFPT of spiders
with r = 1 very slowly. However, the transition towards
the diffusive stage happens more slowly compared with
1D.
We estimated ropt(x) for circles of various sizes (up to

1000) through simulations of 100 r values, choosing the
fastest ones for each distance. Comparison of the results
is shown in Fig. 8. The figure also shows the fastest 〈τ(x)〉
that corresponds to ropt(x) for each distance. Similarly
to the 1D case, we also estimate ropt(x) by fitting.
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FIG. 8: Optimal r values (ropt(x)) for various radii. Optimal
r values are obtained in two ways; first, by fitting the data
for 〈τ (x)〉 into the model of Eq. 6 and amplitudes A2 and a2

into the model of Eq. 5, and second, by simulating 100 values
of r and choosing those that correspond to the lowest 〈τ (x)〉.

Our estimates of the indicator χ for various r and x
values show that in the setting of the two-dimensional
circle with absorbing boundary at the perimeter χ is al-
ways negative, and this does not change with the values
of the parameters x and r. Just as in 1D, the MFPT
is a meaningful measure of the first passage time of the
individual spiders moving on a two-dimensional lattice.

V. SPIDER ON A 2D PLANE WITH A

CIRCULAR REFLECTING BOUNDARY AND AN

ABSORBING BOUNDARY IN THE CENTER

When we change the contour of the 2D surface to be
a circular reflecting boundary instead of an absorbing
one, and place a single target site in the center, spiders
with memory (r < 1) still have an advantage over spiders
without memory (r = 1). We consider two cases: (1)
when the radius x of the circle is variable, and the spider



starts from a point on the contour, and (2) when the
radius x is fixed, and the distance x between the starting
position and the target is variable. Since both cases are
circularly symmetric, all starting positions with the same
distance from the center are equivalent. In both cases we
study how 〈τ(x)〉 is affected by the parameter r, and how
it is affected by x in (1) and y in (2).

A. 2D Circle of Variable Radius With Target in

the Middle and Spider Starting from the Boundary

Fig. 9 shows the initial configuration of the surface
where the spider is positioned on the contour and the sin-
gle target site (absorbing boundary) is shown as a star.
Since the reflecting boundary is a circle and the absorb-
ing boundary is a single site in the center, all starting
positions of the same distance from the target site are
equivalent. In our simulations we pick a fixed position
on the contour as a starting position for the spider. This
position is shown as two small solid circles in Fig. 9.

FIG. 9: Initial configuration of the surface. All sites are ini-
tially substrates. The absorbing boundary is shown as a star.
The spider starts at the periphery. The circle is a reflecting
boundary and thus steps outside of the circle are not allowed.

We measure the first passage time of the walker from
the contour of the surface to its center for various radii
x.
Interestingly, the MFPT asymptotically grows slightly

faster than x2 . The sub-leading term also grows faster
than in the circular absorbing boundary case. The lead-
ing and sub-leading terms of 〈τ(x)〉 are

〈τ(x)〉 ∼ B2(r)x
2 + b2(r)x

1.5. (7)

Fig. 10 shows the amplitude B2 for the two-legged spi-
ders for 20 different r values between 0.1 and 1.0.
Values of r smaller than 1 give the spider an advan-

tage, similar to the 2D configuration discussed above,
but now even for shorter radii x. The typical time-line
of this process can be characterized as follows. First,
the spider starts moving, it eventually visits many sites
without finding the target site, and leaves behind many
smaller regions of substrates. Next, the spider starts to
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FIG. 10: Amplitude B2 from the Eq. 7 as a function of the
cleavage and detachment rate r. The data are shown for two-
legged (k = 2) spiders moving over a two-dimensional surface
with a circular reflecting boundary. The single site in the
middle of the circle is an absorbing boundary.

move only over visited sites more often, and eventually
encounters regions of substrates of various shapes and
sizes. At this stage, the spider with r = 1 will not be
affected by the substrate regions, and will move just as if
they were visited sites. On the other hand, spiders with
r < 1 will become biased to stay on the substrates and
explore those regions more thoroughly; this will increase
their chances of finding the target site, since it must be
in one of those unvisited areas. This scenario can explain
how spiders with r < 1 gain an advantage over spiders
with r = 1 on this surface.

The indicator χ, in this setting, grows with the param-
eter x, and for x ' 17 χ becomes close to 0. As in the
previously described settings, χ does not depend on the
parameter r. Fig. 11 shows the dependence of χ on x for
r = 0.5. For small surfaces (small values of x), χ is neg-
ative, and thus in those cases MFPT is a good measure
of the first passage time of individual spiders. However,
for larger x, values of χ close to 0 indicate that the shape
of the distribution P (ω) is close to uniform, and thus the
MFPT is not as good a measure of individual behavior
as it is in the settings when the spider searches for the
contour. This also shows that the possible paths that the
spider can take to locate a single target are more diverse
than paths that lead to the contour.

B. 2D Circle of Fixed Radius With Target in the

Middle and Spider Starting From Various Distances

Fig. 12 shows the initial configuration of the surface
where the walker is positioned at a distance y from the
target site, and the radius x is set to 100 and remains
constant.
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FIG. 11: Indicator χ shows how well the MFPT can describe
the first passage times of the individual spiders to a single
target. The surface is two-dimensional with a circular reflect-
ing boundary of radius x, the spider starts from the contour,
and r = 0.5.

FIG. 12: Initial configuration of the surface. All sites are
initially substrates. The absorbing boundary is shown as a
star. The spider starts y sites away from the center. A circle
of constant radius x = 100 is a reflecting boundary and thus
steps outside of the circle are not allowed.

We measure the first passage time of the walker from
the contour of the surface to its center for various dis-
tances y. Fig. 13 shows a plot of the MFPT.

The shape of the curves is asymptotically logarithmic;
this shows that the initial position of the spider does
not significantly affect 〈τ(y)〉 when x is fixed. Even if
the spider starts closer to the target, there are too many
possible paths to the target in 2D, of which one is ran-
domly chosen. Many of them are very long and initially
lead the spider far away from the target.

The indicator χ, in this setting, is positive for y / 80
and decreases with the parameter y. For y ' 70 as the
surface configuration approaches the configuration dis-
cussed in the Section VA, and χ becomes negative, but
as in the case of the Section VA, it still remains close to
0. Fig. 14 shows the dependence of χ on y for r = 0.5.
The positive values of χ for the smaller y values indicate
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FIG. 13: MFPT to a single point in the center of the circle
with a fixed radius. The boundary is reflecting, and the spider
starts at various distances from the target.
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FIG. 14: Indicator χ shows how well the MFPT can describe
the first passage times of the individual spiders to a single
target. The surface is two-dimensional with a circular reflect-
ing boundary of a fixed radius x = 100, the spider starts at a
distance y from the target site, and r = 0.5.

that MFPT is not a good measure of the first passage
times of the individual spiders, and paths that lead the
spider to a target are very diverse and vary significantly
in their lengths.

VI. COMPARISON OF SPIDER

PERFORMANCE IN THE STUDIED SETTINGS

It is interesting to compare the advantage which spi-
ders with r < 1 (i.e., with memory) enjoy over those with
r = 1 (i.e., without memory) in the described 1D and 2D
settings. We compute the ratio of 〈τ(x)〉 for spiders with
r = 1 and 〈τ(x)〉 for spiders with r = ropt(x). This ratio



is plotted in Fig. 15 against the surface size for 1D and
2D.
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FIG. 15: Ratio between 〈τ (x)〉 of the spiders with r = 1.0
and r = ropt.

The plot shows that the cleavage rate r gives spiders
more advantage on a 2D plane searching for a circle than
on a 1D strip searching for its ends. This advantage can
be attributed to the amount of substrates that spiders
leave behind as they move away from the origin. In 1D,
spiders do not leave any substrates behind, so there are
no substrates between the left and the right ends of the
sea of products, and when a spider moves back towards
the origin there are no substrates to bias it towards the
boundary. In 2D, the shape of the product sea can be
very complicated and there can be many substrates left
behind. When a spider moves backward it has a high
probability to still encounter substrates, which can bias
it towards the boundary. The higher ropt(x) values in
2D can be attributed to the direction of the emergent
bias when the spider is on the border between visited
and unvisited sites. In 1D, the border is simple, and its
shape remains the same over time. It is defined by the
two closest unvisited sites to the origin on the right and
on the left side. As a result, when the spider with rate
r < 1 is on the border, it is always biased in the desired
direction—away from the origin. In 2D, the shape of
the border can be much more complex and is even not
necessarily connected. This type of border leads to a
much weaker bias towards the edge of the surface. In
many cases the spider is not biased directly to the edge
in the direction of the shortest path, and sometimes the
spider is even biased back towards the circle’s center.
Despite that, the greater amount of substrates accessible
by the spider in 2D overcomes the weaker bias and makes
spiders more efficient at finding the absorbing boundary.
Fig. 16 shows the average density of products; the spider
has a high probability of encountering substrates when it
turns back towards the origin.

FIG. 16: Average density of products when a spider with
r = 0.25 and k = 2 is at distance 1000.

VII. DISCUSSION

Our simulations show that the MFPT of two-legged
spiders depends strongly on the kinetic parameter r in
all studied cases. The MFPT is lower for r < 1 (i.e.,
with memory) than for r = 1 (i.e., without memory) in
the one-dimensional case when the spider is searching for
the ends of a one-dimensional track. For one-legged spi-
ders the parameter r does not affect leading asymptotic
behavior; however, it slows the spiders down by increas-
ing the constant of the sub-leading term. In the exten-
sion of this problem to two dimensions, when the spider
is searching for the contour of a circle from its center,
the advantage of having r < 1 is even more significant,
despite the less effective bias provided by the shape of
the leftover substrates. Here the bias provided by the
substrates does not always direct the spider towards the
absorbing boundary. In contrast, on a 1D track, the sub-
strates always bias the spider towards the closest end
when one of the legs is attached to them. The disad-
vantage in 2D is overcome by the greater amount of sub-
strates that are accessible to spiders. In 1D, the spider (of
the simple gait considered here) does not leave any sub-
strates behind when it progresses towards the ends of the
track. In 2D, the shape of the sea of products is complex,
and many substrates are left behind. Those substrates
can bias the spider towards the absorbing boundary when
it starts to turn back towards the origin.

When we reverse the role of the boundaries in 2D, we
make the absorbing boundary the single site in the center
of the circle, and start the spider from the contour, the
parameter r can still improve the MFPT. It is difficult to
find the single target site in this scenario, and the MFPT
increases significantly for all types of walkers. However,
it is plausible that when most of the surface is explored,
spiders with r < 1 are more likely to stick to small re-



maining islands of substrates (i.e., unvisited sites). The
presence of these islands increases the probability that
spiders with r < 1 will find the target site, as opposed
to spiders with r = 1, which would not react to the pres-
ence of those islands. This is a likely explanation for the
greater importance of r for this boundary condition.
Despite the varying importance of the parameter r in

the studied scenarios, in all cases there exists an optimal
value of r that minimizes the MFPT to the absorbing
boundary. To the extent that catalysis is accessible as
a design parameter of molecular spider assemblies, the
results provide a way to optimize spider system perfor-
mance in various target search scenarios.
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Appendix A: Optimum value of r

First, we find the derivative of the assumed form 〈τ(x)〉
(Eqs. 4 and 5) with respect to r,

d〈τ(x)〉
dr

=
c1(c3r + c4)− c3(c1r + c2)

(c3r + c4)2
x2

+
c5(c7r + c8)− c7(c5r + c6)

(c7r + c8)2
x

=
c1c4 − c3c2
(c3r + c4)2

x2 +
c5c8 − c7c6
(c7r + c8)2

x. (A1)

The fitting of Eq. 5 to the estimates of A1 and a1 yields
estimates of constants c1 to c8. Next, we substitute the
constants into Eq. A1 and find when the derivative is
zero:

3.29r + 3.01

r + 2.15
x+

−4.35r+ 1.34

r
= 0

r =
5.75 +

√
4.05x− 1.34

8.09x− 2.68
.
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