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Asymmetric patchy particle models have recently been shown to describe the crystallization of
small globular proteins with near quantitative accuracy. Here, we investigate how asymmetry in
patch geometry and bond energy generally impact the phase diagram and nucleation dynamics of
this family of soft matter models. We find the role of the geometry asymmetry to be weak, but
the energy asymmetry to markedly interfere with the crystallization thermodynamics and kinetics.
These results provide a rationale for the success and occasional failure of George and Wilson’s
proposal for protein crystallization conditions as well as physical guidance for developing more
effective protein crystallization strategies.
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I. INTRODUCTION

Proteins are key biological molecules whose physiolog-
ical roles are, for the most part, tightly linked to their
three-dimensional structure. Because X-ray and neutron
crystallography are the most widely used techniques to
detail these structures [1, 2], the difficulty of obtaining
diffraction-quality protein crystals severely limits our un-
derstanding of living systems. Crystallizing a protein
typically involves placing a drop of protein solution near
a high-salt aqueous buffer that drives the vapor diffu-
sion away from the drop. The non-volatile solutes then
steadily concentrate and, if the initial conditions are
properly chosen, a protein crystal assembles [2]. From
a physical point of view, identifying successful crystal-
lization conditions is thus equivalent to determining the
protein’s solution phase diagram. The limited usefulness
of existing physical descriptions and of knowledge-based
approaches [3, 4], however, leaves a vast space of exper-
imental conditions to be screened. A material under-
standing of protein assembly is thus essential to develop-
ing more effective crystallization strategies.

Soft matter descriptions of protein assembly based on
particles with isotropic, short-range attractive interac-
tions [5–7] – as suggested by early structural studies [8–
10] – provide some conceptual guidance. They identify
the region between the solubility line, above which the so-
lution is stable, and the liquid-liquid critical point, well
below which the system precipitates into amorphous ma-
terials [11, 12], as the “crystallization gap” where crys-
tal assembly is possible. This schematic picture is, how-
ever, unable to reproduce many experimental trends [13–
17]. The introduction of bond directionality in symmet-
ric “patchy” models aimed to better represent the effec-
tive protein-protein interactions that drive their crystal-
lization [18, 19]. Yet the most commonly studied ver-
sions of these models have symmetric and interchange-
able patches, which are atypical of real proteins [4, 20–
22] and insufficient to describe the assembly of even the
simplest of globular proteins [22, 23]. In this article, we

investigate the role of patch geometry and bond energy
asymmetry on the phase diagram and assembly dynamics
of a coarse-grained protein model of rigid globular pro-
teins in aqueous solution. This additional anisotropy ‘di-
rection’ complements earlier experimental proposals [24].
It also maps onto the assembly of more complex struc-
tures in systems such as DNA-coated colloidal particles,
in which the strength of directional interaction can be
finely tuned [25–27]. Our work therefore identifies gen-
eral regions of parameter space that should be targeted
for specific colloidal assemblies, such as gel and crystal
formation.

The plan for the paper is as follows. In Section II,
we describe the model used. In Section III, we analyze
the phase diagrams of a collection of model parameters.
In Section IV, we study nucleation and the pathways to
crystallization. Finally in Section V, we determine how
percolation interferes with crystallization.

II. MODEL DESCRIPTION

We describe each protein as a hard sphere of diam-
eter σ, which sets the unit of length, with interacting
directional patches that mimic the effective interactions
between solvated proteins. This schematic description
assumes that proteins maintain their structure through-
out crystallization and that solvated electrolytes screen
long-range electrostatic interactions, which is typical of
protein solutions that produce diffraction quality crys-
tals [28, 29]. Crystallization cocktails that include salt
as only cosolute account for nearly 50% of successful ex-
perimental conditions in typical databases [30]. In these
conditions, attraction is triggered by the specific chem-
ical details at the protein surface and thus directional
interactions dominate. This treatment complements and
supports with previous studies that focused on the inter-
play between specific and non-specific (depletion) inter-
actions [31–33].

We consider a variant of the patchy model of Ref. [34]
in which patch-patch interactions are specific [35] and
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their range and strength are independently tunable [36].
The pair-wise interaction between particles 1 and 2,
whose centers are a distance r12 apart, is

φ(r12,Ω1,Ω2) = φHS(r12) +

n∑
i=1

[φ2i,2i−1(r12,Ω1,Ω2)

+φ2i−1,2i(r12,Ω1,Ω2)], (1)

where Ω1 and Ω2 are the Euler angles and n is the num-
ber of pairs of patches. A hard-sphere (HS) potential
captures volume exclusion

φHS(r) =

{
∞ r ≤ σ
0 r > σ.

(2)

The patch-patch interaction is the product of radial and
an angular components

φ2i,2i−1(r12,Ω1,Ω2) = ψi(r12)ω2i,2i−1(Ω1,Ω2), (3)

where

ψi(r) =

{
−εi r ≤ λiσ
0 r > λiσ

, (4)

and

ω2i,2i−1(Ω1,Ω2) =

{
1 θ1,2i ≤ δ2i and θ2,2i−1 ≤ δ2i−1

0 otherwise
.

(5)
The interaction range λi is in units of σ, δ2i is the semi-
width of patch 2i and θ1,2i is the angle between the
vector r12 and the vector defining patch 2i on parti-
cle 1. By symmetry an analogous definition holds for
θ2,2i−1. Here, the short radial extent of the square-well
attraction, λi = 1.1σ [37], and its surface coverage mea-
sured by the semi-opening angle of its conical segment,
δi = cos−1(0.89), are chosen to be typical of protein-
protein interactions [20, 23]. By contrast, the patch po-
sition on the surface and the bond energy εi are ran-
domly chosen, under the sole constraint that the lattice
formed by simply bonding the patches is that of the most
commonly observed in monomeric protein crystals, the
orthorhombic P212121 [38, 39]. This lattice’s three non-
intersecting two-fold screw axes guarantee a high number
of rigid-body degrees of freedom with minimal symmetry
constraints.

We summarize the patch properties with energy and
geometry asymmetry parameters

ζ =
(ε1 − ε2)2 + (ε1 − ε3)2 + (ε2 − ε3)2

2(ε21 + ε22 + ε23)

γ =
(I1 − I2)2 + (I1 − I3)2 + (I2 − I3)2

2(I2
1 + I2

2 + I2
3 )

,

where Ii represents the ith eigenvalue of the inertia ten-
sor of the object represented in Fig. 1. Each patch (in
red) carries a mass M at its center. The inertia tensor
is computed over the set of weighted patches. The ex-
pression for γ guarantees that its value does not depend

on the fictitious mass M nor on the radius of the parti-
cle, as long as they do not vary from one patch to the
other [40]. Note that patches located on a perfect oc-
tahedron have I1 = I2 = I3, and consequently γ = 0.
Both ζ and γ ∈ [0, 1], where 0 corresponds to an equal
energy distribution (ε1=ε2=ε3) and cubically distributed
patches, and 1 corresponds to a complete energy asym-
metry (ε1=ε2=0 and ε3=εtot) and a unit cell elongated
in a single direction. Because of the P212121 constraint
on the crystal, patches cannot be too close to one an-
other. Otherwise, bonded particles would overlap and
the unit cell would stretch beyond the range of attrac-
tion λ = 1.1σ, which limits the achievable asymmetry
and sets γ . 0.1. Because a cubic symmetry (γ = 0 and
limiting case of P22121) is not realizable within the three
screw axes symmetry of P212121, γ is limited from below
as well. The adopted range and width of the interaction
and the P212121 symmetry ensures that two particles
can only interact one bond at a time. This condition, to-
gether with the impossibility for a patch to interact with
its copy, also prevents dimerization. Note that because
the definition of γ and ζ is purely geometrical, there is
no reason to expect that different models with identical
asymmetry parameters should behave identically. Ta-
bles I and II summarize the parameter values used in
this work.

TABLE I. Geometry parameters: the triplets of numbers rep-
resent the unit vector coordinates of each patch. The center
of patch 0 interacts with patch 1, patch 2 with patch 3 and
patch 4 with patch 5. The first example γ = 0 is reported for
clarity.

γ patch0 patch1 patch2 patch3 patch4 patch5

0
1.0 -1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 -1.0

0.0172
-0.8036 0.8036 -0.5186 -0.5186 0.3081 0.3081

-0.5042 -0.5042 0.2731 0.2371 -0.8084 0.8084

-0.3163 -0.3163 0.8102 -0.8102 0.5016 0.5016

0.0217
-0.7904 0.7904 -0.4227 -0.4227 0.3571 0.3571

-0.5184 -0.5184 0.2807 0.2897 -0.776 0.776

-0.3263 -0.3263 0.8617 -0.8617 0.5199 0.5911

0.0381
-0.7191 0.7191 -0.3813 -0.3813 0.3475 0.3475

0.5659 0.5659 -0.1669 -0.1669 -0.7668 0.7668

-0.4032 -0.4032 -0.9093 0.9093 0.5397 0.5397

0.0631
-0.6167 0.6167 0.6103 0.6103 -0.006 -0.006

0.6521 0.6521 -0.3099 -0.3099 -0.9579 0.9579

-0.441 -0.441 0.729 -0.729 0.2871 0.2871

0.0787
-0.9042 0.9042 -0.6276 -0.6276 0.2859 0.2859

-0.3335 -0.3335 0.5386 0.5386 -0.9074 0.9074

-0.2669 -0.2669 0.5622 -0.5662 0.3081 0.3081
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TABLE II. Energy parameters with εtot = 6.

ζ ε1 ε2 ε3

0.00 2. 2. 2.

0.11 1.2462 2.5482 2.2056

0.21 2.1 2.9066 0.9934

0.33 0.4854 2.8266 2.688

0.49 3.5756 0.2037 2.2207

0.50 3. 3. 0.

0.55 3.96 1.8 0.24

0.64 4.32 1.5 0.18

0.79 4.8 0.6 0.6

FIG. 1. (Color online) Sketch of a patchy particle. To de-
termine the inertia tensor, we treat the patches as spherical
balls (red/light gray) whose center is at the particle surface.

III. PHASE DIAGRAM

For these 30 randomly selected sets of patch geometry
and bond energies we numerically determine the solubil-
ity line using free-energy integration and the metastable
vapor-liquid line using Gibbs ensemble Monte Carlo sim-
ulations and compared the results to Wertheim’s theory
predictions.

A. Phase diagrams from simulations

Gibbs ensemble MC simulations (GEMC) directly de-
termine the coexistence densities of the metastable gas
and liquid phases [41]. We simulate a total of N =1000
particles for 106 MC cycles, where each cycle consists on
average of N particle displacements, N particle rotations,
N/10 particle swaps, and 2 volume V changes. The criti-
cal temperature Tc and density are then estimated using
the law of rectilinear diameters [42].

Because the gas-liquid line is metastable, for low en-
ergy asymmetry crystallization happens so quickly that
determining the gas and liquid coexistence densities is
impossible. In such cases, we estimate the critical tem-
perature from Wertheim’s perturbation theory (see be-
low).

To determine the fluid-solid coexistence curve, we in-
tegrate the Clausius-Clapeyron equation starting from
one coexistence point, using a fourth-order predictor-
corrector algorithm [5]. The coexistence point itself is
determined using free energy calculations. The free en-
ergy of the fluid is computed using thermodynamic in-
tegration from the free energy of an ideal gas [43]. The
free energy of the crystal is determined using an Einstein
crystal with a fixed center of mass as reference [44]. Its
Hamiltonian is

HEin(Ξtrans,Ξor) = Ξtrans

N∑
i=1

(ri−ri,0)2+Ξor

N∑
i=1

f(θi, φi, χi),

where f(θi, φi, χi) = 1 − cos(ψi,1) + 1 − cos(ψi,2) ,
(θi, φi, χi) are the Euler angles describing the orienta-
tion of particle i, and ψi,j is the angle formed between
the vector defining patch j of particle i and the corre-
sponding vector in the Einstein crystal. As explained
in Ref. [43], the Helmhotz free energy of the reference
Einstein crystal can then be written as

aCOM
Ein = aCOM

trans + aCOM
or , (6)

where

βaCOM
trans = −3

2

N − 1

N
ln

(
π

βΞtrans

)
− 3

2N
lnN (7)

and

βaCOM
or = − ln

{
1

8π2

∫
dθ sin(θ)dφdχ exp[−βΞorf(θ, φ, χ)]

}
.

The calculation of aCOM
trans is straightforward, but that of

aCOM
or requires either a tedious numerical integration or

an analytical approximation. We opt for the latter using
a saddle point approximation, which is accurate and ef-
ficient for the high values of βΞor used here, because the
integrand is then sharply peaked. Defining (θ0, φ0, χ0)
as the reference orientation in the Einstein crystal and
changing variable α = (cos(θ), φ, χ) gives∫
dθ sin(θ)dφdχ exp[−βΞorf(α)] =

∫
dα exp[−βΞorf(α)]

≈ exp[−βΞorf(α0)](2π)3/2

(βΞor)3/2 det(H[f(α0)])1/2

=
(2π)3/2

(βΞor)3/2 det(H[f(α0)])1/2
,

such that

βaCOM
or ≈ 3

2
ln(βΞor) +

1

2
ln{8π det(H[f(α0)])}, (8)
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ζ
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0.21
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FIG. 2. (Color online) Temperature-density ρ phase diagrams of patchy models with (a) different γ at fixed ζ = 0.33, and
(b) with different ζ at fixed γ = 0.0172. (c) and (d) depict the same phase diagrams with T rescaled following WPT. The
crystal-fluid coexistence lines (symbols) are then close to, yet distinct from the WPT solubility line (solid black line). For visual
clarity, only the gas-liquid critical points (black symbols) are reported in (c) and (d). Spontaneous crystallization during the
simulations prevents the precise evaluation of the gas-liquid line for low ζ. The specific parameter values are given in Tables I
and II.

where det(H[f(α0)]) is the determinant of the Hessian
of function f computed at α0. Its analytical expression
is reported in Appendix A. Once the free energy of the
reference crystal is known, the free energy of the actual
crystal is obtained following a standard free energy inte-
gration protocol [45]. Several simulations along an isobar
starting from the fluid and from the crystal are then nec-
essary to determine the temperature at which the chem-
ical potential of the two phases coincides [43, 45].

Figure 2 illustrates the simulated phase diagrams.
The gas-liquid critical temperature Tc generally decreases
with increasing γ because patch proximity anti-correlates
bond formation and decreases the liquid entropy, al-
though the limited number of systems studied partially
hides this feature (Table III). The solubility line, by con-
trast, is clearly similar for different geometries at fixed
ζ and monotonically shifts to lower temperatures with
increasing energy asymmetry.

B. Phase diagrams from Wertheim’s perturbation
theory

According to Wetheim’s perturbation theory [46, 47],
the fluid free energy can be approximated by the hard
sphere free energy plus a bond free energy correction

af = aHS + abond, (9)

where

βabond =
∑
a∈Γ

(
lnXa −

Xa

2

)
+
m

2
. (10)

Here m is the total number of attractive sites, Xa is the
probability that the molecule is not bonded at site a, and
Γ is the set of interacting patches.

TABLE III. Critical temperatures Tc for the models stud-
ied. ∗ indicates that the system crystallized spontaneously
in GEMC simulations and the Wertheim’s estimate is instead
reported. - indicates models for which the phase diagram was
not determined. Temperatures are in units of εtot.

@
@@ζ
γ

0.0172 0.0217 0.0381 0.0631 0.0787

0.00∗ 0.052 0.052 0.052 0.052 0.052

0.11∗ 0.053 0.053 0.053 0.053 0.053

0.21 0.052 - - - -

0.33 0.057 0.058 0.058 0.055 0.054

0.49 0.059 0.057 0.053 0.050 0.055

0.50 0.061 - - - -

0.55 0.047 - - - -

0.64 0.040 - - - -

0.79 0.026 0.024 0.024 0.019 0.020

Similarly, the chemical potential is given by

βµf = βaf+
βp

ρ
= βaHS+βabond+

βpHS

ρ
+
βpbond

ρ
, (11)

where the pressure p contribution to bonding is

βpbond = ρ2
∑
a∈Γ

(
∂Xa

∂ρ

)(
1

Xa
− 1

2

)
. (12)

In the solid, βas ≈ βµs, because the ratio βps
ρs

is

small [35, 48]. The energetic contribution to the free
energy is the energy of the fully-bonded system −βεtot,
while the entropic term is approximated using the range
of interaction and the width of the patches [35],

βµs = βas = −3 ln(λ− 1)− ln

(
δ3

π2

)
− βεtot. (13)
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At phase coexistence, the temperature, pressure, and
chemical potential of the fluid and solid phases have to be
identical. The pressure of the solid is once again ignored,
so the only remaining constraint is βcoexµf = βcoexµs.
Using the equations above, it follows that

βcoexaHS + βabond +
βcoexpHS

ρ
+
βcoexpbond

ρ
=

= −3 ln(λ− 1)− ln

(
δ3

π2

)
− βcoexεtot. (14)

As the hard-sphere system itself is temperature indepen-
dent, it holds that

βcoex

(
abond +

pbond

ρ
+ εtot

)
= C(ρ), (15)

where

C(ρ) = −βaHS −
βpHS
ρ
− 3 ln(λ− 1)− ln

(
δ3

π2

)
(16)

is a function that only depends on ρ. It thus follows
that abond + pbond

ρ + εtot represents a good temperature

rescaling factor to obtain the master solubility line across
the different models.

When compared with the simulated results, WPT
overestimates the solubility temperature at all densities
ρ, but nonetheless remarkably collapses the simulation
results (Fig. 2 (c) and (d)). The numerical validation
of WPT’s Tc predictions – accurate to within 10-15%
– allows us to estimate the size of the “crystallization
gap” for a broader variety of models (Fig. 3) [49]. Inter-
estingly, we find that for patch energy sets {εi} giving
a same ζ, a lower second virial coefficient B2 results in
a larger crystallization gap (Fig. 3). Contrary to George
and Wilson’s (GW) crystallization slot proposal, i.e., that
log(−B2

∗) < 5 identifies facile crystallization [3], the
asymmetric models reveal that B2 does not by itself sets
the size of the crystallization gap. The proposal is thus
reasonable at low ζ, but breaks down at high ζ, where it
even includes systems for which the critical point is fully
stable (red star in Fig. 3 (a) and (c), Appendix B). In
such systems, access to the crystal from a slowly concen-
trating, low-density solution would have to side-step the
metastable gas-liquid coexistence regime. This regime
typically prevents the formation of all but the smallest
crystallites [50, 51]. High interaction asymmetry there-
fore provides a microscopic rationale for the failure of
the GW proposal [52, 53], which complements and sup-
ports previous suggestions that were based on a balance
of specific/non-specific interactions [31, 32].

IV. CRYSTALLIZATION

Even if crystallization is thermodynamically possible
the free energy drive may be insufficient to induce a
phase transition on experimentally-relevant timescales.

(a)

(b)

(c)

FIG. 3. (Color online) (a) WPT difference between rescaled
melting temperature T ∗

m and rescaled critical temperature T ∗
c

at the critical density ρc ≈ 0.2, i.e., the crystallization gap.
Each circle represents a distinct {εi} realization and is col-
ored by its ln[−B2(Tc)] value (higher values in the top right
corner). (b) WPT predictions (black crosses) compared with
simulation results for different patch geometries (symbols as
in Fig. 2(a)). The area within the dashed lines indicates
the values covered by WPT in (a). (c) Phase diagram for
{ε1 = 4.6655, ε2 = 1.2908, ε3 = 0.0437} for which WPT pre-
dicts a stable gas-liquid coexistence. Even for an interaction
range and patch coverage that would normally result into a
metastable gas-liquid line, the bond energy asymmetry can
lift Tc above the solubility line (Appendix B).

The role of asymmetry on homogeneous nucleation using
umbrella sampling simulations is thus examined.

We consider systems near their critical density ρc ≈ 0.2
at different degrees of supersaturation η = Tm−T

Tm−Tc
, where

Tm is the solubility temperature at that density. We de-
termine the size of the crystal clusters in the simulation
box following a standard procedure that defines crystal-
like bond and crystal-like particles [54]. Due to the highly
specific patch-patch interactions of our model, we gener-
ally define a crystal-like bond between particles 1 and
2 when they are actually bonded: r < λσ, θ1,2i < δ
and θ2,2i−1 < δ for some i. A particle is considered to
be crystal-like if it has six crystal-like bonds, and two
crystal-like particles belong to the same crystal cluster if
a crystal-like bond connects them. Visual inspection of
these “crystals” confirms that the criterion selects actual
crystal clusters. For the umbrella sampling simulations,
we use a biasing harmonic potential with spring constant
κ that varies between 0.07 and 0.12, depending on the
model and the temperature studied

Hbias = κ(s− s0)2, (17)

where s is the size of the largest crystal cluster and s0 is
the target cluster size in the sampling window. Sampling
windows are typically positioned every 3 particles, but
denser sampling is sometimes required. The results of
each simulation are then analyzed following a standard
umbrella sampling protocol [54].

Unsurprisingly, the lower supersaturations correspond
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B

A

(a)

(b)

(c)

(d)

FIG. 4. (Color online) (a) Rescaled size of the largest liquid
cluster N∗

ρ compared to that of the largest crystal cluster N∗
c

for a model with ζ = 0 and γ = 0.017 (blue/upper, red/dark
gray and green/light gray) and ζ = 0.2 and γ = 0.017 (black).
The liquid cluster size is rescaled by the number of particles in
the system (N=864) and the crystal cluster size by the size
of the largest crystal cluster that fits in the simulation box
(600). The different trends correspond to initial homogeneous
fluid configurations under different conditions, as illustrated
in (b). (c) Above the critical point, nucleation barriers can
be computed (blue circle η = 0.37, red squares η = 0.46,
green triangles η = 0.55 and magenta right-pointed triangles
η = 0.64). (d) Height of the nucleation barrier for different
models (blue circles ζ = 0 and γ = 0.017, red squares ζ =
0 and γ = 0.021, green right-pointed triangles ζ = 0 and
γ = 0.065, black triangles ζ = 0.1 and γ = 0.017, magenta
left-pointed triangles ζ = 0.2 and γ = 0.017.)

to higher free-energy barriers and larger critical nuclei
(Fig. 4 (c)). Across various patch geometries qualita-
tively similar results are obtained, but increasing the en-
ergy asymmetry significantly lowers the chemical poten-
tial difference, β∆µ, between the fluid and the crystal.
At high bond energy asymmetry fewer patches dominate
the energy of the two phases, which makes that contribu-
tion in the two phases more similar and reduces the drive
to crystallize. Higher densities are then needed to obtain
a comparable nucleation barrier. Although this effect is
not a fundamental limitation for particles to crystallize,
real proteins in high-density solutions may partially un-
fold and aggregate, which interferes with their crystalliza-
tion [50]. In addition, at high ζ the narrow crystallization
gap results in larger free-energy nucleation barriers. High
energy asymmetry thus hinders nucleation kinetics.

Classical nucleation theory (CNT) describes crystal
formation reasonably well far above the critical point,
but near and below Tc the assembly behavior is more
complex. Previous studies of isotropically attractive sys-

tems have shown that well below Tc spinodal decompo-
sition leads to dynamical arrest [11, 12], because sponta-
neous density fluctuations result in dense regions within
which binding is irreversible. In similar systems near the
critical point, “two-step” nucleation is favored [7]. Crys-
tal formation is then more facile in high-density than in
low-density fluid regions. The corresponding assembly
behavior of patchy systems, whose low-density crystals
may not be favored by spontaneous fluid density fluctua-
tions [31], is here studied in unbiased constant NpT MC
simulations. These simulations sketch out the minimum
free energy path for the assembly, which we track along
the largest drop and the largest crystal cluster reaction
coordinates (Fig. 4 (a)). The largest crystal cluster is
determined as described above. Similarly, liquid-like par-
ticles are defined as those that have at least four close
neighbors (particles whose centers are within λσ of each
other). Two liquid-like particles belong to the same liq-
uid cluster if they are close neighbors. These trajectories
follow a fictitious dynamics without accounting for collec-
tive moves and where time should be properly rescaled.
Yet, as previously showed [55], such trajectories are rep-
resentative of Brownian dynamics configurational space
sampling for sufficiently short steps. The robustness of
our observations is also confirmed by repeating the sim-
ulations using the virtual-move MC of Ref. [56], which
allows for collective rearrangements (details in Appendix
C) [31–33]. We obtain for the symmetric case, ζ = 0,
far above Tc, that the largest cluster formation is al-
ways crystalline and CNT applies. Near the critical point
(within ∼10% of Tc) a growing liquid drop first forms and
only subsequent structural reorganization of the many
micro crystals results in a large crystal cluster.

We can gain additional physical insights into the dy-
namical pathway by characterizing the distribution of
crystal clusters within the largest liquid drop. Figure 5
reports the distribution of crystal cluster sizes from sim-
ulation snapshots. Panel (a) shows a classical nucleation
scenario where, after a waiting time (2×106 MC sweeps),
a critical nucleus appears and grows rapidly. No sec-
ondary nucleation event is observed. Panel (b) illustrates
the status of the system with symmetric interactions at
the critical point. Almost instantaneously micro crystals
(with fewer than 50 particles per cluster) form, and many
of them survive the whole simulation. The formation of
the largest cluster is much less smooth than in the classi-
cal nucleation limit. It is possible to see how the largest
cluster breaks into two or more smaller aggregates and
then forms again. The largest crystal cluster stems from
the annealing of defects when multiple crystals assemble
rather than from a single nucleation event.

Figure 4 shows that the behavior at the critical point
between low and higher energy asymmetry models is sim-
ilar (black and red dots). Yet a closer analysis reveals
that the cluster distribution exhibits a significant differ-
ence (Fig. 5 (c)). In the asymmetric case, a single nucle-
ation event is followed by the growth of a single crystal
cluster rather than the re-organization of many micro
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1 2-5 >50number of clusters

ζ=0  T=0.06

ζ=0  T=0.052

ζ=0 .2 T=0.052

(a)

(b)

(c)

FIG. 5. (Color online) Distribution of crystal cluster sizes
along the unbiased NpT MC simulations respectively for (a)
ζ = 0 at T > Tc, (b) ζ = 0 at T = Tc, and (c) ζ = 0.2 at
T = Tc for a system of 864 particles. The distribution of crys-
tal cluster size from instantaneous snapshots is represented.
White indicates the lack of cluster of that size, orange (lighter
gray) one cluster being present, red (darker gray) between 2
and 5 clusters (few), and black indicates that more than 5
clusters are present (many). Five snapshots cover 105 MC
sweeps in the first two panels, and 5× 105 in the last panel.

crystals. Despite this resemblance with classical nucle-
ation, the time between the appearance of a first critical
nucleus and its full growth is long compared to a classical
nucleation scenario in which nucleation is rare yet rapid.
Crystallization occurs on a timescale similar to perco-
lation and it is possible that the interplay between the
two phenomena underlies the observed slow growth. It
is interesting to note that we do not observe any crystal
cluster of significant size above the critical temperature
within the simulation time even though the crystalliza-
tion barrier height is similar to that of the symmetric
case (Fig. 4(d)). This feature is left for future enquiries

Tc Tp Tm

Tc Tm Tp

104 MC sweeps

104 MC sweeps

FIG. 6. (Color online) Percolation behavior for ζ = 0.2 (top)
and ζ = 0.55 (bottom). Left panels show the probability P of
observing a spanning network as a function of temperature for
system of size N=2048 (blue circles), 4000 (red squares) and
6912 (green triangles). The superimposed vertical lines indi-
cate the critical temperature (dashed), the melting temper-
ature (solid) and the percolation temperature (dot-dashed)
estimated by finite-size scaling (inset). The right panels show
the distribution of bond lifetime in the network at T=0.055
and T=0.048 respectively (orange stars in the left panels).
Blue circles indicate the strongest bond, red squares the in-
termediate bond, and green triangles the weakest bond.

V. PERCOLATION

We finally consider whether direct percolation dynam-
ically competes with crystallization. Below the perco-
lation threshold Tp(ρ) the system forms infinitely large
spanning networks that can be long-lasting when bond-
ing is strong [57, 58].

To explore the interplay between percolation and bond
energy asymmetry (patch geometry asymmetry has but
a weak impact), we determine Tp(ρc) using finite-size
rescaling [59]. We run 20 NV T simulations with respec-
tively N = 2048, 4000 and 6912 for several temperatures
at ρ = 0.2. During the simulation, we determine the
size of the biggest network defined as the largest set of
particles connected by at least two bonds. If such a clus-
ter spans the whole simulation box along one dimension
within 105 MC sweeps, the system is deemed percolating.
The percolation probability is the fraction of simulations
showing such a percolating cluster. The data are in agree-
ment with the tabulated 3D critical exponent to within
1% [60, 61]. For finite-size rescaling we use the tabulated
critical exponents and the standard procedure [59].

Figure 6 shows the results for systems with relatively
low (ζ = 0.22) and high (ζ = 0.55) asymmetry. In the
first system the percolation threshold lies just above Tc,
while in the second, in which the strongest bond is much
longer-lasting, Tp is well above the solubility line. The
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dynamical relevance of percolation on crystallization is
estimated from the distribution of bond lifetimes within
the crystallization gap. At low bond energy asymmetry,
the rearrangement of all bonds is observed within a few
thousand MC steps. At high asymmetry, by contrast, the
lifetime of the strongest bond (blue circles) is compara-
ble to the length of the simulation (105 MC sweeps). The
network is frozen, the bonds are almost irreversible, and
no rearrangement takes place. This observation suggests
that identifying the crystallization gap may be insuffi-
cient for crystallizing particles with high energy asym-
metry, because a long-lasting gel caused by direct per-
colation then dynamically interferes with crystallization
within the gap. Weakening the strongest bonds may be
the only way to allow crystallization in these systems.

VI. CONCLUSION

In order to gain insights into protein crystallization and
soft matter assembly more generally, we have considered
the role of patch geometry and bond energy asymmetry
on the crystal assembly of a family of schematic models.
We find patch geometry asymmetry to have a weak effect,
but bond energy asymmetry to severely impede the crys-
tallization thermodynamics and kinetics. The crystalliza-
tion gap shrinks, gel formation is favored, and nucleation
shifts to higher supersaturations. The union of these
observations suggests that to facilitate locating proper
crystallization conditions, it is sometimes more effective
to symmetrize the directional pair interactions between

colloids or proteins, rather than specifically strengthen
one of them, as is sometimes implicitly suggested [4, 23].
It also offers a rationalization of the GW crystallization
slot proposal as well as of its occasional failure. At low
bond energy asymmetry, the B2 slot prescription falls
within the slot; at high asymmetry, a large crystalliza-
tion gap is only observed for B2 below the slot, which
corresponds to long-living gels, while for B2 within the
slot the crystallization gap is very small or even negative.
The GW crystallization slot is therefore a necessary but
insufficient condition for detecting optimal experimental
conditions.

Although we are now markedly closer to understanding
simple, monomeric protein crystallization, the assembly
features of more complex proteins remain a challenge.
Some proteins dimerize or change conformation on a
timescale comparable to their crystallization, while mem-
brane proteins typically require entirely different crys-
tallization approaches than the one considered in this
work. Further modifications to patchy particle models,
such as self-interacting or dynamically evolving patches,
may thus guide our understanding of these complex yet
crucial molecules.
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Appendix A: Saddle point approximation

The analytical expression for f(α) in Eq. 8 is

f(α) =
1

2

{
4− 3

√
1− y2 cos(φ) cos(φ0) sin(θ0)−

√
1− y2 cos(χ) cos(χ0) sin(θ0)− 2

√
1− y2 cos(φ) cos(ζ) sin(φ0) sin(χ0) sin(ζ)

− 2y cos(χ0) cos(ζ) sin(θ0) sin(ζ) + 2y cos(φ) cos(χ) sin(φ0) sin(χ0) sin2(ζ)− 2y cos(φ) cos(φ0) sin(χ) sin(χ0) sin2(ζ)

−
√

1− y2 cos(χ) cos(χ0) sin(θ0) sin2(ζ) + y cos(φ) cos(φ0) cos(χ) sin(θ0) sin(2ζ) + cos(φ) sin(φ0) sin(χ) sin(θ0) sin(2ζ)

+ cos(θ0)
[
−3y + cos(φ0) cos(χ0) sin(φ) sin(χ) + cos2(ζ) (−y + y cos(χ) cos(χ0) sin(φ) sin(φ0)− cos(φ0) cos(χ0) sin(φ) sin(χ))

− 2
√

1− y2 cos(χ) cos(ζ) sin(ζ) + y sin2(ζ) + cos(φ0) cos(χ0) sin(φ) sin(χ) sin2(ζ)− 2 cos(φ) cos(χ0) sin(φ0) sin(χ) sin2(ζ)

− y cos(χ) cos(χ0) (2 cos(φ) cos(φ0) sin(ζ) + sin(φ) sin(φ0)(1 + sin2(ζ))
)

+
√

1− y2 cos(φ) cos(φ0) cos(χ0) sin(2ζ)

+
√

1− y2 cos(χ0) sin(φ) sin(φ0) sin(2ζ)
]

+ sin(φ)
[
− sin(φ0)

(
2 sin(χ) sin(χ0) sin2(ζ)

+ cos(φ0)
(
−2 cos(ζ) sin(χ) sin(θ0) sin(ζ) + sin(χ0)

(
−2y cos(χ) sin2(ζ) +

√
1− y2 sin(2ζ)

))]}
.

Appendix B: Grand Canonical MC approximation
for critical point

To check the position of the critical point for the ex-
treme case of Fig. 3 (c) (ε1 = 4.6655, ε2 = 1.2908 and
ε3 = 0.0437), we perform grand canonical MC (GCMC)
simulations. Because one of the patches is markedly
stronger than the others, percolation takes place at a rel-

atively high temperature. Consequently, GCMC samples
slowly and poorly, and the critical temperature estimate
is affected by large errors. To obtain a better estimate
of the phase diagram, we perform GCMC for systems
with an increasing strength of the strongest patch (keep-
ing the other patches identical) and we fit a power-law
to the resulting critical temperatures (Fig. 7). The value
of the fit for ε1 = 4.6655 (T = 0.045 in units of εtot)
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FIG. 7. (Color online) Fit of the critical point determined
with GCMC simulations for systems with an increasingly
strong strongest patch.

confirms the stability of the critical point with respect to
the solubility line.

Appendix C: Virtual move MC
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FIG. 8. (Color online) Crystallization pathways as in Fig. 3(a)
using virtual move MC to simulate the dynamics. Comparison
with Fig. 3(a) indicates that the crystallization pathways do
not depend on the microscopic dynamics.

Standard MC simulations are based on sequential per-
turbation of the system and do not directly account for
the collective moves through which the system some-
times relaxes. Although it has been shown that for small
enough displacements, MC recovers the Brownian dy-
namics of patchy particle models [55], it is reasonable
to wonder if collective moves could nonetheless affect the
system’s dynamics. To check this possibility, we imple-
ment the virtual move MC algorithm [56], which accom-
modates cluster displacement and rotations and prevents
the system to be stuck in unphysical traps. This com-
monly used algorithm has been shown to reproduce real
dynamics of short-range attractive systems and it is com-
monly used for this purpose [31–33, 56].

A virtual move consists of identifying a cluster to ran-
domly displace or rotate. Each displacement draws from
a uniform distribution between 0 and 0.2σ and each ro-
tation uniformly selects an axis of rotation and an angle
of rotation. Following Ref. [56], to avoid generating large
clusters whose moves will often be rejected, we draw the
cutoff nc of the cluster size from P (nc) ∝ n−1

c . The re-
sults in Fig. 8 are in agreement with those generated by
the standard NpT MC (Fig. 4), and confirm the robust-
ness of the phenomenology with respect to changes in the
microscopic dynamics.
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