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Abstract

The stochastic Eulerian-Lagrangian method (SELM) is used to simulate coarse-grained lipid

membrane models under steady-state conditions and in shear flow. SELM is an immersed bound-

ary method which combines the efficiency of particle-based simulations with the realistic solvent

dynamics provided by fluctuating hydrodynamics. Membrane simulations in SELM are shown

to give structural properties in accordance with equilibrium statistical mechanics and dynamic

properties in agreement with previous simulations of highly-detailed membrane models in explicit

solvent. Simulations of sheared membranes are used to calculate surface shear viscosities and inter-

monolayer friction coefficients. The membrane models are shown to be shear-thinning under a wide

range of applied shear rates.
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FIG. 1. (Color online) Schematic view of the hydrodynamic interaction (HI): Two particles (de-

picted as red spheres) immersed in a fluid are forced to adjust to the local velocity field (small solid

arrows) which is mediated by the fluid over long distances. The net forces (large dashed arrows)

tend to move the particles in the flow direction. Contributions from thermal fluctuations makes

the nanoscale velocity field irregular, as described by the equations of fluctuating hydrodynamics.

I. INTRODUCTION

Many components in soft matter can be described as elastic microstructures immersed in

ambient fluid (typically water). These structures include lipids, proteins, and nucleic acids,

and their interactions with the surrounding fluid are fundamental to molecular biology [1].

Their ability to form hydrogen bonds with water molecules is the microscopic origin of the

hydrophobic interaction that drives protein folding and aggregation of lipids and surfac-

tants [2]. Hydrodynamic interactions (HI) are mediated by the embedding fluid (Fig. 1)

as the counterforce exerted between these microstructures when they are forced to adopt

to the local fluid velocity [3]. Lipid molecules aggregate in water, and form a variety of

ordered membrane structures under physiological conditions [4]. Lipid membranes resemble

two-dimensional fluids, but are free to adjust global shape by deforming into the normal

direction, and local shape by molecular reorientation [5]. Hydrodynamic interactions play

a key role in membrane dynamics not only for undulations [6], but for membrane-bound

protein diffusion [7] and membrane domain formation [8].

HI are dictated by the fluid velocity, which is given by the Navier-Stokes (NS) equations

for the flow geometry at hand. On the nanometer length scales relevant to soft matter

hydrodynamics, the velocity field is highly irregular because of thermal fluctuations [9].

These are not described by the NS equations, but were first treated in the extended theory

of Landau and Lifshitz [10]. The modified Navier-Stokes equations of Landau and Lifshitz

have been referred to as the equations of fluctuating hydrodynamics (FH), and have been
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shown to be valid at the molecular scale [11]. In general, numerical simulations are required

to determine hydrodynamic interactions. Molecular dynamics (MD) simulations are used to

integrate the equations of motion of both immersed particles and solvent particles. MD has

been used to study fluctuations in lipid membranes [12, 13], although length- and time scales

are restricted to ∼10 nm and ∼100 ns. Coarse-graining (CG) by lumping molecular groups

into beads with effective interactions broadens this window. The solvent can be completely

ignored in equilibrium studies and its cohesive effect included implicitly. This has been used

with remarkable success in equilibrium studies of lipid membranes [14–16], but obviously fails

when HI are prevalent. The implicit solvent approach is attractive for membrane simulations

because the solvent particles outnumber the lipid molecules by more than 10:1. The friction

effect of the solvent is taken into consideration by integrating a set of coupled Langevin

equations for the positions of the immersed particles [17]. First-order hydrodynamic effects

can further be included with the use of the well-known solution to Stokes flow (often referred

to as Stokesian-Brownian dynamics [18, 19]). Direct numerical simulation (DNS) of the

Navier-Stokes equations is a more accurate treatment of the solvent, where the dynamics

of the immersed particles enter as boundary conditions on the fluid motion. It is costly

in terms of computer time to resolve the boundaries between the particles and the fluid.

Peskin [20, 21] therefore proposed the immersed boundary (IB) method: a reformulation of

the hydrodynamic equations in which the fluid and the structures overlap. The immersed

particles are conceptual fluid “blobs” where additional forces act. These forces are local and

therefore cheap to calculate.

The equations of fluctuating hydrodynamics can be cast in the form of an IB method [22,

23] to include thermal motions of soft matter. The aim of the present work is to apply such

a stochastic immersed boundary method to coarse-grained lipid membrane models. Mem-

brane models originally designed for implicit solvent can be utilized with this method to

obtain realistic dynamic properties of lipid membranes [24]. The simulation method covers

shear flow [25], and surface shear viscosities and inter-monolayer friction coefficients are

calculated for the membrane models. Overdamped equations of motion from a small-scale

approximation are used for the dynamics of the fluid-structure system. This is similar to

Stokesian-Brownian dynamics in that only the dynamics of the particles is tracked while hy-

drodynamic interactions are kept. The simulation method is based on a general formulation

of pairwise interacting elementary particles in an incompressible fluid.
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II. SELM: STOCHASTIC EULERIAN-LAGRANGIAN METHOD

The Stochastic Eulerian-Lagrangian Method (SELM) [22] describes how fluctuating hy-

drodynamics (FH) can be adapted to the Immersed Boundary (IB) method developed by

Peskin [21]. The acronym refers to that Lagrangian coordinates are used for the immersed

structures while the fluid is modeled on a Eulerian grid. Thermal fluctuations are incor-

porated as random forces whose strengths are determined by the fluctuation-dissipation

theorem of statistical mechanics. SELM has been shown to give an internally consistent

representation of the FH equations with the Immersed Boundary formulation for general

flow situations [22]. The full SELM equations are not needed to describe the quasi-steady-

state flows of the present work. Incompressible flow is considered with focus on the small-

scale spatial regime where advective transport is negligible, and the immersed structures are

modeled as point particles. In contrast to the usual creeping-flow limit (Stokes flow), the

explicit time-dependence of the fluid velocity is kept due to rapid thermal fluctuations of

the immersed structures.

A. The overdamped equations of motion

An additional simplification can be done on the smallest length scales. The hydrodynamic

relaxation of the fluid on a length scale L is associated with the timescale τfluid = ρL2/η,

where η is the fluid dynamic viscosity and ρ is the fluid density. The time it takes an

immersed particle of radius a to diffuse a distance comparable to its own size is τdiff =

(a2/D) = 6πηa3/kBT , where D is the diffusion coefficient, and the last equality follows from

the Stokes-Einstein relation. The dynamic viscosity and mass density for water at room

temperature is η = 10−3 Pa s and ρ = 103 kg/m3. When L = 5 nm, the time scales for a

particle of size a = 1 nm are τfluid = 2.5 × 10−11 s and τdiff = 4.5 × 10−9 s, respectively.

These separated time scales motivate an approximation in which the fluid velocity instantly

adopts to the immersed particles (corresponding to the limit η → ∞). This is referred to as

overdamped dynamics, since the fluid motion is slaved by the immersed particles.

Only the particle dynamics needs to be tracked, and the full stochastic equations of

motion are reduced to [22]
∂Xj

∂t
=

∑

i

MjiFi + gj , (1)
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for the positions of the immersed particles, Xj. The force on particle j from all the other

particles is Fj =
∑

iFji = −
∑

i ∇Xj
U(|Xj −Xi|) , with U(X) being a pair potential.

Periodic boundary conditions are employed in all directions. gj is a random force with zero

mean and variance
〈

gj(t) g
T
i (t

′)
〉

= 2kBTMji(t)δ(t− t′) , (2)

which is local in time and obeys the fluctuation-dissipation theorem. Mji is a symmetric

matrix operator that conveys the hydrodynamic interaction [26],

Mji(t) =

∫∫

Ω

dx dx′ δ∆ (x−Xj(t)) δ∆ (x′ −Xi(t))

×O (x− x′) , (3)

with O (r) being the Oseen tensor [3],

O(r) =
ρ

8πη |r|

(

I +
rrT

|r|2

)

, (4)

and where I is the unit tensor. δ∆(x) is a smoothed Dirac delta kernel with good numerical

properties [21] (details are given in Ref. [27]), which averages the local irregular velocity

over a neighborhood determined by the length a (Fig. 2). The integral in Eq. (3) spans the

entire domain occupied by the fluid (including the regions overlapping with the immersed

particles). Eq. (1) resembles the equations of motion used in Stokesian-Brownian (SB) dy-

namics [18, 19], but the hydrodynamic operator Mji is different from the tensors employed

in SB dynamics, even in the continuum limit. The difference lies in the hydrodynamic inter-

actions in SELM being averaged over a local neighborhood around the immersed structure

(determined by the kernel function length a). The Oseen tensor is the leading-order term

in an asymptotic expansion of the hydrodynamic field and becomes inaccurate for small

particle separations [28]. More sophisticated hydrodynamic interactions, such as the Rotne-

Pragner-Yamakawa (RPY) tensor [29] have been employed in SB simulations [30–32] and

can also be incorporated into SELM. However, Eq. (3) reproduces the correct hydrodynamic

tensors down to separations of two particle radii [22] which is sufficient for the present work.

B. SELM simulations of shear flow

Shear flow is commonly implemented in molecular simulations with Lees-Edwards bound-

ary conditions [33]. The periodic unit cell is modified by shifting the periodic boxes parallel
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FIG. 2. (Color online) Left: Snapshot from coarse-grained lipid membrane simulation employing

fluctuating hydrodynamics. The lipid bilayer is modeled by interacting elementary particles (green

and gray spheres) on a meshed fluid (green points) with periodic boundaries. Right: Hydrody-

namic interactions are handled by averaging the velocity of the immersed structure over the local

neighborhood of the fluid field (top). The elementary particle size can be tuned according to ap-

plication, but is fixed to a = 4∆ in the present work, with ∆ being the mesh size. The particle

shape is determined by a kernel function, δ∆(r) (bottom). All details of the lipid models and the

numerical algorithm are given in Ref. [27].

to the shear direction; the result is similar to a wall of sliding bricks [34]. Particles crossing

the sliding boundary are reintroduced at positions shifted by ±sLzt with respect to the

usual periodic positions, where s is the shear rate (units 1/t0) and Lz is the box height. The

jump in velocity of the shifted particle is ∆v = sLz, and the minimum image-convention is

modified accordingly [35] (since the sliding boundary is not periodic). The Lees-Edwards

approach works well to maintain a steady shear flow in particle-based molecular dynam-

ics simulations, but is problematic for mesh-based methods because mesh points do not

align at the sliding boundary. This can be circumvented by introducing deformed coor-

dinates in which the mesh is periodic [25]. This has been done for non-Hamiltonian MD

simulations [35], Navier-Stokes solvers [36], and recently for fluid-structure interactions in

dispersions [37].

The deformed space- and time coordinates x′ = (x′, y′, z′, t′) = (q′, t′) are related to

the Cartesian coordinates x = (x, y, z, t) by the mapping x = φ(x′) = (x′ − st′z′, y′, z′, t′).

The mesh enters the overdamped dynamics when calculating the hydrodynamic operator

and indirectly when generating the stochastic driving fields. Substituting in Eq. (3), the
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hydrodynamic operator on the periodic q-mesh is

Mji(t) =

∫∫

Ω

dq1 dq2 δ∆ (φ(q1, t)−Xj(t))

× δ∆ (φ(q2, t)−Xi(t))O(φ(q1, t)− φ(q2, t)) . (5)

The volume of the box vector matrix Lαβ , with α and β taking the values {x, y, z}, is

conserved since det (Lαβ(t)) = det (Lαβ(0)). The box is increasingly skewed as the simulation

proceeds, but is reset by invoking modular invariance associated with the minimum-image

convention [38]: Periodic images are equivalent when st′Lxx/Lzz = 1 and when st′Lxx/Lzz =

0. Thus, Lxz is reset to 0 when st′Lxx/Lzz = 1.

C. Numerical implementation

Eq. (1) is solved numerically with the Euler-Maruyama method [39] and updated itera-

tively. The discretization is

Xt+1
j = Xt

j +
∑

i

[

Mt
jiF

t
idt+

√

2kBTM
t
ji dtξ

t
i

]

, (6)

in the Ito formulation, where the t index refers to the iteration step and the j, i index to

a pair of immersed particles. dt is the time step, while ξj is a normal distributed random

number with zero mean and unity variance. The discretized hydrodynamic operator is

defined on a deformed mesh with periodic boundary conditions in all directions. Mji is a

double convolution which is efficiently evaluated in Fourier space, and then inverted back to

real space. The square root of Mji is found by Cholesky factorization. More details on the

simulation algorithm are given in Ref. [27].

III. MEMBRANE MODELS AND SIMULATION PARAMETERS

Coarse-grained membrane models, which implicitly account for hydrophobic interactions

to get rid of the solvent, are orders-of-magnitudes faster than atomistic models but can not

treat hydrodynamic effects. However, implicit-solvent membrane models are commonly con-

structed from interacting point particles and can be used off-the-shelf within SELM, to rein-

troduce the solvent degrees of freedom using fluctuating hydrodynamics. The present work
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have used two of the most widespread coarse-grained membrane models: The Brannigan-

Philips-Brown (BPB) model [15] and the Cooke-Kremer-Deserno (CKD) model [16]. Both

models are based on beads and springs, where the lipid molecule is a short polymeric chain

that consists of different bead types. Cohesive interactions are added to the tail groups

to enforce self-assembled bilayer structures. The fluid bilayer phase is not sensitive to the

exact shape of the cohesive potential, but it has to be more long-ranged than a standard

Lennard-Jones potential. The BPB model uses five beads while the CKD model uses three

beads. The interactions parameters used in the present work were essentially the same as

in the original works. More details on the membrane models and the parameters involved

are given in Ref. [27].

Coarse-grained molecular dynamics (CG-MD) simulations of the implicit-solvent lipid

models were run in LAMMPS (5 May 2012) [40]. SELM was implemented as a module in

LAMMPS, and was used to run simulations of the membrane models with (overdamped)

fluctuating hydrodynamics. Pre-equilibrated bilayer membrane patches of 8 × 8 molecules

(per monolayer, 128 lipids in total) were obtained from CG-MD simulations at constant

zero surface tension (1×105 steps). These simulations keep the bilayer in a tensionless state

by scaling the lateral box lengths while keeping the box height fixed, with the aim to have

equal pressures in the lateral and normal directions. The equilibrated patches were used

as starting structures for the production SELM and CG-MD simulations. The simulation

parameters are summarized in Table I (using reduced units [27]).

The Peskin δ-function [21, 27] was used for the kernel function δ∆(r). Its extent was

fixed with respect to the mesh width as a = 4∆, which represents the size of an immersed

particle. For the 8×8 patch, 40 mesh points were needed in the membrane’s lateral directions

to accurately resolve the lipid particles. The influence of the box height was investigated

using 60, 80, and 100 mesh points in the normal direction. The CG-MD simulations were

run with a Langevin thermostat [41] at constant volume and temperature (NVT ensemble),

which corresponds to Brownian dynamics (BD) [34] without hydrodynamic interactions.

The thermostat damping parameter ω was varied between (0.1–10) /t0.

Self-assembly simulations were performed with both SELM and CG-MD, in a fixed sim-

ulation box with lateral size corresponding to the equilibrium area per molecule, and with

box height that was 2.5 times larger. The simulations were started with 128 lipids in ran-

dom positions and orientations. Shear simulations were performed within the modified
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SELM formalism described in Section IIB. The applied shear rates were varied between

s = (0.001–1.0) /t0, and the simulations lasted for 1× 106 steps. Bootstrapping was used on

the time series to determine error bars as 95% confidence intervals.

IV. RESULTS AND DISCUSSION

The SELM simulations were compared to CG-MD simulations to assess the hydrodynamic

effects. It is first shown that SELM reproduces the equilibrium structures expected from sta-

tistical mechanics. The self-assembly simulations indicate that the pathway to equilibrium

is different when hydrodynamic interactions are included, but the equilibrium ensemble is

unchanged. This is emphasized by comparing diffusion rates between SELM and CG-MD.

Finally, SELM simulations were used to investigate lipid membranes in shear flow.

TABLE I. Simulation parameters for SELM and CG-MD. Common = Both SELM and CG-MD.

SELM = Only SELM.

Parameter Symbol Unit BPB CKD

Common

Time step dt t0 0.002 0.01

Number of steps n 1 1× 106 1× 106

Temperature T T 0 0.9 1.1

Area per molecule a0 σ2 1.0 1.1

SELM

Mesh size ∆ σ 0.2 0.2185

Mesh points in x Nx 1 40 40

Mesh points in y Ny 1 40 40

Mesh points in z Nz 1 60/80/100 60/80/100

Water viscosity η η0 18.15 20.90

Water mass density ρ ρ0 1.815 1.829
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FIG. 3. (Color online) Lipid number densities as functions of the distance from the bilayer center.

(a) BPB model. Five peaks are visible, one for each bead. There is a pronounced dip in the bilayer

center. (b) CKD model. The profile is smoother but different beads can still be distinguished. The

absence of a center dip suggests that more lipids flip between the monolayers.
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A. Equilibrium properties

The following equilibrium properties were calculated for the membrane models. ρ(z) is

the bead density as a function of distance from the bilayer center. g(r) is the in-plane radial

distribution function. S(q) is the corresponding in-plane structure factor. Fig. 3 shows ρ(z)

for both membrane models, calculated from SELM and CG-MD simulations. Beads show

up as distinct peaks in the distribution. There is a dip in the distribution at the bilayer

center for the BPB model, showing that the lipid exchange between monolayers is small.

This is explained by the strong cohesive interactions that are focused to the single interface

bead in the BPB model, and not distributed over the tail beads as in the CKD model. The

ρ(z)-profiles from the SELM simulations are almost identical to the CG-MD simulations.

The location of the peaks are particularly well-matched. Fig. 4 shows the two-dimensional

radial distribution function (rdf) of the lipid models, defined by

g(r) =
1

Nρ0

〈

N
∑

i 6=j

δ (r− rij)

〉

, (7)

where rij is the in-plane separation vector between bead i and j, and ρ0 = N/A is the bulk

number density, with N being the number of lipids per monolayer, and A being the total

area. g(r) measures the bilayer’s lateral structure without accounting for height correlations.

For infinite separations, g(r → ∞) = 1 as expected, the dimensionless equivalence to the
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FIG. 4. (Color online) The (in-plane) radial distribution function (rdf) of (a) the BPB model and

(b) the CKD model for the CG-MD simulations (blue) and the SELM (green) simulations. The

two lines completely overlap. The insets shows the static structure factors for the models, which

are isotropic Fourier transform of the rdfs.
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bulk number density (inverse area per lipid) ρ0 = a−1
0 . The insets in Fig. 4 show the

corresponding structure factors,

S(q) =
1

N
〈ρ(q)ρ∗(−q)〉 , (8)

which are the fluctuation spectra of the Fourier components of the in-plane bead density,

ρ(q) = 1

N

∑N
i=1

e−iq·ri, where ri is the position of bead i. S(q) and g(r) are related by a

Fourier transform. The large-q limit of S(q) corresponds to vanishing correlations at small

distances, while the small-q limit is given by the compressibility relation [42]

lim
q→0

S(q) =
2kBT

a0KA
, (9)

where KA is the bilayer area compressibility (twice the monolayer compressibility), and a0

is the area per molecule. Investigating the q → 0 limits yields KBPB
A ≈ KCKD

A ≈ 20 ǫ/σ2,

which translates to KBPB
A ∼300 mN/m and KCKD

A ∼200 mN/m in physical units, in good

agreement with known equilibrium values for the models [15, 16] and with experimental

data [43]. The equilibrium membrane structures of the SELM and CG-MD simulations

are almost identical, demonstrating that SELM samples the appropriate Gibbs-Boltzmann

distribution.
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FIG. 5. (Color online) Snapshots from self-assembly simulation of the CKD model. The pathway

to equilibrium is similar for the SELM (top row) and CG-MD (bottom row) simulations but the

time scales differ by a factor 20.

B. Self-assembly

The coarse-grained membrane models used in the present work are generic hydrophilic

head/hydrophobic tail-like lipids. The hydrophobic interactions in the BPB model are fo-

cused to the interface bead, while the tail attractions are relatively weak. In the CKD

model hydrophobicity is distributed by the long-range potential across both tail beads. The

simulation parameters and the temperature were chosen to represent fluid membranes at

physiological temperatures (Table I). The temperatures were identified to be slightly below

room temperature (270 K) for the BPB model (the same temperature was used in Ref. [5])

and room temperature (300 K) for the CKD model. Thermal fluctuations are inhibited

and equilibration is expedited at the lower temperature used for the BPB model. The self-

assembly simulations were found to result in very similar equilibrium structures (Fig. 5),

but the absolute time scale was 20 times slower with SELM than with CG-MD. The bilayer

formation followed the same pathway in the SELM and the CG-MD simulations. From the

random starting configuration (i), an elongated stalk-like structure formed rapidly (ii). The

free energy is then minimized by shielding the hydrophobic tail groups (iii), which com-

presses the stalk into a spherical cap-like structure. This configuration is metastable and

can persist for long times. Eventually, energetically favorable interactions are found with
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FIG. 6. (Color online) Lateral mean-square-displacement of the lipid center-of-mass (COM) for

the BPB [(a) and (c)] and CKD [(b) and (d)] models. The top panels are SELM simulations with

different box heights. The bottom panels are coarse-grained MD (CG-MD) simulations with a

Langevin thermostat, using different values for the damping parameter ω.
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periodic neighbor molecules, leading to the formation of a lamellar phase (iv). If the sim-

ulation is allowed to proceed, the lipid molecules align to form a perfect bilayer, although

this may take a very long time.

The slower dynamics of the BPB model compared to the CKD model can be attributed

to the strong interactions between the interface beads in the BPB model. The BPB lipids

form monolayers that diffuse randomly before finding bilayer configurations, which is a slow

process. The long-range forces used in both models to mimic the hydrophobic effect are

of molecular origin, and are not accounted for by the fluctuating hydrodynamics in SELM,

which only transfers momentum by viscous diffusion.

C. Lateral diffusion

The lateral mean-square-displacement (MSD) is

D(t) =
1

4

〈

(ri(t)− ri(0))
2
〉

. (10)

The factor 4 is specific to a two-dimensional system (in general this factor is 2d, where d is

the system dimensionality) and ri = (xi, yi) is the in-plane coordinate of lipid i. Eq. (10)

applies to atomic coordinates as well as to molecular center-of-mass (COM) coordinates. The

brackets denote an ensemble average over all positions and starting times. The self-diffusion
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coefficient is determined from the long-time limit of Eq. (10) according to

Dlat = lim
t→∞

dD(t)

dt
. (11)

Dlat is constant ifD(t) is linear in time in the limit t → ∞ (D(t)/t tends to a constant). Fig. 6

shows semi-logarithmic plots of D(t)/t for the COM of the membrane models, from SELM

and CG-MD simulations, where Dlat is obtained as the asymptotic value of D(t)/t. The

initial slope of D(t) is strongly non-linear, but gradually decreases. D(t)/t reach asymptotic

values after 200 t0. Varying the box height in the SELM simulations changed Dlat by ∼10%

but did not modify the general trend of the MSD (data not shown). Dlat from the SELM

simulations are similar for both membrane models, (5–10) × 10−4 σ2/t0. This corresponds

to roughly 50–100 µm2/s in physical units [27], which is similar to experimental values (see

Ref. [44] and the references therein), depending slightly on the measurement technique.

It is encouraging that the diffusion rates obtained for the two models from the SELM

simulations are in such good agreement. Given the similarity of the models in spirit and

nature, there is every reason to expect them to behave in the same way. However, CG-MD

simulations give very different results for the two models (Fig. 7); their diffusion rates differ

by two orders-of-magnitude. The momentum transfer in the Brownian dynamics of the CG-

MD simulations is controlled by the damping parameter ω which is related to a mass friction

coefficient, ζ = mω, where m is the immersed particle mass. The Stokes-Einstein relation

D =
kBT

ζ
, (12)

relates ζ to the diffusion coefficient in linear theory. D is the three-dimensional counterpart

of Dlat, so ζ does not directly compare to the lateral diffusion, but the proportionality

relation between the damping parameter and the diffusion rate in the CG-MD simulations

shows that ω can be tuned to produce desirable diffusion rates. The diffusion rates of the

BPB and CKD models can only be brought into agreement by using damping parameters

that differ with two orders-of-magnitude, without physical motivation, while the integration

of the equations of motion is only accurate as long as ω−1 is significantly larger than the time

step. The particle size, a, plays the role of ω in the SELM simulations, since a determines

the magnitude of the neighborhood over which local momentum is dissipated. a is a physical

parameter that can not be tuned by orders-of-magnitude like ω, but the diffusion rates from

the SELM simulations are still in good agreement with experimental data within the narrow

window provided by a.
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D. Surface shear viscosity

Shear flow was simulated in the direction of the bilayer normal (perpendicular shear), and

in the direction of the bilayer plane (parallel shear). The velocity in perpendicular shear only

has an x-component that depends on y, u(x) = u⊥(y)x̂ = syx̂, where s is the shear rate.

Perpendicular shear characterizes the bilayer’s ability to withstand normal shearing forces,

and is measured by the surface shear viscosity, ηs. This is the two-dimensional counterpart

to the bulk shear viscosity commonly defined by the Navier-Stokes equations. There is in

general no simple relation between the surface shear viscosity of a curved surface and its

embedding material, but neglecting surface undulations leads to the thin-film result

η = ηs/h , (13)

where h is the film thickness and η is the viscosity of the embedding fluid [45]. ηs is the

proportionality coefficient between the shear force (per length) on the bilayer, Fb/L‖, and

the shear rate s:

ηs ≡
Fb/L‖

s
=

σ̄xyL⊥

s
. (14)

The shear force is equal to the xy-component of the average stress tensor over the xz-plane:

Fb = σ̄xyL‖L⊥ (molecular simulations often refer to the pressure tensor p̄ = −σ̄), which is

determined in a particle simulation from the expression [34]

σ̄αβ = −

〈

1

V

∑

j 6=i

Xij,αFji,β

〉

, (15)

with Xji,α being the α-component of the difference vector Xji = Xj −Xi between particle

positions j and i, and Fji,β being the β-component of the corresponding force. The brackets

denote a time average over the simulation trajectory.

Fig. 8 shows Eq. (14) for applied shear rates in the interval 0.001–1.0 /t0. The trends are

similar for both membrane models. ηs depends strongly on s at high rates, but weakens as

the shear rate is decreased, and tends to a constant at the lowest rates. The asymptotic

value is ηs. A fluid is said to be shear-thinning when the shear viscosity decreases with the

shear rate (and shear-thickening when the viscosity increases with the shear rate). Shear-

thinning is a common feature of complex fluids, in particular polymeric fluids of elongated

molecules. The effect is intuitively understood in the following way: The fluid molecules are

aligned at random at low rates, as motions and rotations are prevented by collisions with
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FIG. 7. (Color online) Dlat for the BPB and CKD models, obtained from coarse-grained molecular

dynamics (CG-MD) simulations with a Langevin thermostat and no hydrodynamic interactions.

ω is the thermostat damping parameter.
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other randomly orientated neighbor molecules. The molecules gradually align with the flow

direction when the shear rate is increased, and the effective viscosity is lowered. The shear

rates in experiments are orders-of-magnitude larger than in simulations. Shearing exper-

iments on lipid systems have essentially reported Newtonian behavior, but shear-thinning

has been found at high shear strains [46].

Surface shear viscosities were extracted from the SELM simulations by extrapolation

to zero shear rate (Fig. 8). Similar values for ηs were obtained for the two membrane
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models, in the range 500–800 η0s . The higher value corresponds to the BPB model and

the lower value to the CKD model. These translate to ηBPB
s = 3.2 × 10−11 N s/m and

ηCKD
s = 2.2 × 10−11 N s/m, respectively, in physical units, numbers that are comparable

to previously reported simulation values of higher-detailed membrane models. Shkulipa

and co-workers found ηs = 8.5 × 10−13 N s/m [47] from shear simulations of a five-bead

model with explicit solvent [48]. den Otter and Shkulipa reported ηs = 1.0 × 10−11 N

s/m [49] from shear simulations of the MARTINI model, which is a 4-to-1-mapping of an

atomistic lipid model with explicit solvent [50]. Finally, Müller and Müller-Plathe calculated

ηs = 8 × 10−12 N s/m [51] (if Eq. (13) is used with h = 4 nm to transform their bilayer

shear viscosity to a surface shear viscosity) from atomistic simulations. Experimental values

are ∼10−10 N s/m [52–54], i.e., one-to-two orders-of-magnitude larger. Measurements that

probe macroscopic motions are found to give larger values than techniques that operate on

the mesoscopic scale, and the length-scales are in all experimental cases much larger than

for the simulations.

Compared to explicit solvent models, the surface shear viscosities calculated from the

SELM simulations are somewhat larger than those obtained from highly-detailed mem-

branes (quasi-atomistic MARTINI model and atomistic models). This agreement strongly

suggests that the SELM dynamics is as accurate as using the explicit solvent dynamics of a

Lennard-Jones fluid. Discrepancies between surface shear viscosities obtained from simula-

tions compared to experiments have been reported earlier [47, 49, 51], and were originally

attributed to the simplified coarse-grained membrane models employed in the simulations.

However, later simulations of atomistic models have yielded similar values to coarse-grained

models. Given the reported range of values for ηs for different models, a more likely explana-

tion is the different length- and time scales probed by simulations and experiments, and/or

the interpretations of the experiments. As pointed out by den Otter and Shkulipa [49],

liquid-ordered domains near the phase transition temperature could largely impact the bi-

layer flow properties. Further, membrane undulations have been ignored when analyzing

simulation and experimental data. Undulations are negligible in small-patch membrane

simulations [55], but can be substantial at the length scales probed by experiments.
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E. Inter-monolayer friction

In parallel (to the bilayer normal, with the stagnation plane in the bilayer center) shear,

the leaflets slide in opposite directions. The shear velocity is u(x) = u‖(z)x̂ = szx̂. The

friction dissipates energy, which is described by a friction coefficient that plays a similar

role to ηs in perpendicular shear. The friction force is such as to oppose lipid motion. The

inter-monolayer friction coefficient is hence defined as

ξ ≡
Ff/L

2
‖

∆v
, (16)

i.e., as the proportionality constant between the monolayer-monolayer shearing force, Ff ,

(per area) and the velocity difference between the monolayers, ∆v. The friction force acts

on the bilayer mid-surface and is equivalent to the xz-component of the average stress

tensor over the lateral plane, Ff = σ̄xzL
2
‖. The friction force results from the monolayers

moving as solid material slabs with equal but opposite velocities, ∆v. It is difficult to

extract the velocity difference with accuracy from the simulations, due to thermal noise.

Following Shkulipa et al. [47], ∆v was calculated from the distance traveled by the lipid

molecules in the flow direction:

2l̄±(t) = ±∆v t . (17)

Here, l̄±(t) = x̄±(t)− x̄±(0) is the average distance traveled by molecules in the top (+) or

bottom (−) monolayer in the flow direction (x), at time t. This average was calculated for

each time step by the following procedure: A discrete, normalized probability distribution,

w± (l±), was determined (independently for the positive and negative displacements) from

a histogram of the lipid displacements. The travel distance was calculated by weighted

averaging,

l̄± =
∑

i

l±i w
±(l±i ) , (18)

where l±i is the positive or negative displacement of histogram bin i (100 bins were used in

total). The velocity difference was obtained as

∆v =
l+ − l−

t
. (19)

Eq. (17) and Eq. (19) predict that l± is linear in time, or consequently, that ∆v is indepen-

dent of time, which is demonstrated in Fig. 9.
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FIG. 9. The velocity difference, ∆v, is calculated from the displacement of lipid molecules. The

displacement is linear in time and ∆v is determined from the asymptotic value.
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Fig. 10 shows ξ as function of ∆v for shear rates in the interval 0.001–1.0 /t0. The errors

in ∆v are largest for the lowest shear rates, because of the small absolute displacements.

Despite that Eq. (16) predicts a constant friction coefficient, both membrane models show

a weak dependence of ξ on ∆v. In the BPB model, the friction coefficient is constant below

∆v ∼ σ/t0, while in the CKD model there is a factor-of-two decrease in ξ at the lowest shear

rates/velocity differences. Whether the decrease is of physical origin is not clear, since the

shearing rates are so low that very long trajectories are required to avoid sampling issues.

Friction coefficients were extracted by extrapolation to zero velocity difference, yielding
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ξBPB = 5 ξ0 and ξCKD = 1.5 ξ0, which translates to ξBPB = 3.7 × 105 N s/m3 and ξCKD =

8 × 104 N s/m3 in physical units. These values are in line with (albeit slightly smaller

than) friction coefficients calculated from atomistic membrane models, using equilibrium

[44] and non-equilibrium [51] simulations. Coarse-grained membrane models with explicit

solvent [47, 49] have yielded values ∼106 N s/m3.

Experimental values for ξ are more scarce in the literature than those for ηs. Merkel

et al. [52] used micro-fluorescence techniques to determine monolayer friction coefficients

in the interval (1–10) × 107 N s/m3. Recent experiments on supported lipid bilayers in

shear flow [54] used a hydrodynamic model to extract ξ = 2 × 107 N s/m3. These values

are consistently about two orders of magnitude larger than the ξ determined from thermal

motions in membrane simulations. As for the surface shear viscosity, the explanation for

this difference is most likely the different length- and time scales probed by simulations

and experiments. The smaller ηs and ξ obtained from the CKD model as compared to the

BPB model can be attributed to the short lipid shape. The lipid exchange rate between the

leaflets is large in the CKD model [56] and acts to lower the monolayer friction.

A similar thin-film calculation to Eq. (13) yields the approximate relation

ξ = η/h , (20)

between the friction coefficient ξ, the bilayer’s bulk shear viscosity η, and the film thick-

ness, h. Eliminating the bulk viscosity between Eq. (13) and Eq. (20), gives the crude

proportionality relation

α ≡ ηs/ξ = h2 , (21)

between the surface shear viscosity and the monolayer friction coefficient. With experimental

values this ratio is somewhat uncertain but ∼20 nm2, which corresponds well to the square

of the membrane thickness. Defining the thickness in the BPB model as the average distance

between the interface beads, and the thickness in the CKD model as the average distance

between the head beads, yields
(

hBPB
)2

= 43.6 σ2 and
(

hCKD
)2

= 22.1 σ2. The calculated

values for ηs and ξ result in ratios that are about an order-of-magnitude larger than predicted

from Eq. (21), αBPB = 150 σ2 and αCKD = 340 σ2 for the BPB and CKD models, respectively.

Given that the surface viscosities are in rather good agreement with the experimental values,

the origin of the discrepancy is the low friction of the membrane models.
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V. CONCLUDING REMARKS

The present work has applied Stochastic Eulerian-Lagrangian Methods (SELM) to coarse-

grained lipid membrane models. Steady-state and sheared lipid membranes were simulated

as fluid-structure systems with overdamped dynamics. SELM simulations show that two

coarse-grained membrane models self-assemble, and in contrast to Brownian dynamics sim-

ulations, yield dynamic properties in agreement with atomistic simulations. Surface shear

viscosities and inter-monolayer friction coefficients were calculated from sheared membranes

in agreement to previous highly-detailed simulations with explicit solvent. The membrane

models were shown to be shear-thinning over a wide variety of shear rates.

SELM is an immersed boundary method designed to simulate soft matter, that combines

the simplicity of particle-based models for microstructures with the equations of fluctuat-

ing hydrodynamics. Therefore SELM is highly suitable for condensed-phase simulations of

biomolecules in solution, where the solvent particles account for more than 90% of the total

particle number. SELM has a computational complexity that is linear, O(N), in the number

of immersed particles N [23]; the corresponding scaling is O(N3) for conventional Stokesian-

Brownian dynamics [18], and O(N3/2) or slightly lower in more recent implementations [57].

The SELM framework can be used to find systematic and controllable approximations for

the hydrodynamic interactions, that give optimal trade-off between efficiency and accuracy.

Membrane dynamics in particular is a rich subject where several relaxation modes of

different origins need to be accounted for [58]. Such modes can be probed in spin-echo

experiments [59] but the relevant time- and length scales are too large for atomistic simula-

tions. Coarse-grained models are ideal to reach the relevant regimes, but simulation results

are not comparable to experimental data or to theoretical predictions [60] if hydrodynamic

interactions are neglected. SELM simulation data, however, could remedy this situation and

be directly compared to results from elastic theories and experiments.

The present framework can also be applied to lipid vesicles in shear flow, where thermal

fluctuations are expected to play a major role [61]. Such vesicles are of high importance

in biology, given their similarity in shape and size to red blood cells. Optimization of the

numerical algorithm will allow the use of lower shear rates similar to experimental settings,

and the overdamped SELM dynamics employed here can be generalized to include inertia

and other more subtle hydrodynamic effects.
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