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Abstract

Long flexible polymers undergo a coil to stretch transition (CST) in an elongational flow. Near

the CST, a peak can be observed in the fluctuations of the size of a molecule (|R|). Solvent effects

on the fluctuations are studied using Brownian Dynamics simulations of a non-linear spring force

relation that can represent real molecules. Ignoring the influence of hydrodynamic interactions, a

linear region in the spring force relation is known to cause the peak in |R| fluctuations. In contrast,

we find that a peak in the fluctuations can be obtained even for the non-linear spring force relation.

We analyze the influence of hydrodynamic interactions on the fluctuations using a dumbbell model

with a conformation dependent drag coefficient.
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I. INTRODUCTION

Flow behavior of dilute polymer solutions are of fundamental interest for many appli-

cations. Recently, there has been considerable interest in stretching polymers for analysis

using microfludic devices[1–3]. Dilute polymer solutions in elongational flow have also been

analyzed to understand turbulent drag reduction[4, 5]. In elongational flows, polymers in

dilute solutions undergo a coil-stretch transition (CST) at a critical strain rate[6, 7]. The

existence of the CST and hysteresis in the transition have been confirmed by direct and

indirect measurements in dilute polymer solutions [8, 9]. Since it is difficult to determine a

critical strain rate ǫ̇c from a plot of extension vs. strain rate for some molecules, a peak in

extension fluctuations has been used to quantify ǫ̇c [10]. Recently, Tang et al. [1] have found

that changes in the force-extension behavior of a molecule due to confinement in a channel

lead to changes in the CST. Two different linear regions in the force-extension relation of

the polymer gave rise to two different critical strain rates, which were identified by the peaks

in the fluctuations.

The force extension (FE) behavior of a molecule is affected by solvent-polymer interac-

tions [11–14]. The role of repulsive solvent polymer interactions on the FE of a polymer

is determined by the excluded volume parameter v/l3 and the number of Kuhn steps NK .

Effective repulsive interactions between the polymer segments (mediated by the solvent)

can give rise to a non-linear scaling relation f ∼ R3/2 between force f and extension R for

long molecules with NK & O(104). The effect is most pronounced when v/l3 ∼ O(1). This

change in the FE of a molecule leads to changes in the CST [15, 16].

In this article, we analyze the effect of the non-linearity in FE on the fluctuations, to

better understand the ability of fluctuations to identify the changes in the CST. We show

that a peak in the fluctuations can be obtained even for a non-linear spring force relation,

which does not have a sharp CST, using bead-spring chain models ignoring hydrodynamic

interactions (HI). We find that the peak in the fluctuations is enhanced due to conformation

dependent drag by including HI using a dumbbell model.
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II. MODEL

In a bead-spring chain model, the bead positions are tracked and they are the points where

the hydrodynamic forces are applied. Springs between the beads represent the change of free

energy of the chain as regions of the polymer are stretched. In the Brownian dynamics (BD)

methodology the beads obey a stochastic differential equation which averages over the faster

motions of the solvent [17]. The solvent contributes through a viscous drag contribution,

Brownian forces, and effects on the elasticity of the polymer. The stochastic equation for

the change in the position of bead i is

dri =

(

u(ri) +
1

kBT

Nb
∑

j=1

Dij · Fj +

Nb
∑

j=1

∂

∂rj
·Dij

)

dt+
√
2

Nb
∑

j=1

Bij · dWj (1)

where Nb is the number of beads, ri is the position of bead i, u is the external fluid flow

evaluated at the position of the bead, Dij is the ij block of the hydrodynamic diffusion

tensor, Fj is the net of spring forces and excluded volume forces on bead j, kB is Boltzmann’s

constant, T is the absolute temeprature, and each dWj is a vector of independent random

variables with zero mean and variance dt where dt is the timestep. In order to satisfy the

fluctuation-dissipation theorem, the tensor Bij must obey

Dij =

Nb
∑

k=1

Bik ·BT
jk (2)

In this work, we will not be considering direct hydrodynamic interactions between the beads,

which makes the tensors Dij and Bij diagonal and are given by

Dij = δij
kBT

ζi
I (3)

Bij = δij

(

kBT

ζi

)1/2

I (4)

where δij is the Kroneker delta, ζi is the drag coefficient of bead i, and I is the 3×3 identity

tensor. In the first part of the article, we examine bead-spring chain models in which the

bead drag coefficients are constants. Because ζi for each bead is constant, the divergence

of the diffusion tensor is zero. In the second part we examine a dumbbell model in which

the drag coefficient of each bead depends on the extension of the spring. Since we use a

simple linear dependence of ζi on the spring extension Q, we can take the divergence of the

diffusion tensor analytically. We use this model to examine the response of a polymer in
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uniaxial extensional flow. This external flow u appears in the dynamical equation for each

bead. The strength of the flow is measured by an extensional rate ǫ̇ which determines the

velocity components as ux = −ǫ̇x/2, uy = −ǫ̇y/2, uz = ǫ̇z, where here x, y, and z denote

the components of the velocity and position vectors in space.

The goal in this article is to understand how the non-linear force relation for flexible

polymers in good solvents affects the polymer fluctuations. A coarse-grained model has been

developed previously [15, 16] that can capture the effects of solvent-polymer interactions on

the elongational flow behavior of polymers. We briefly review that model here when a single

spring is used. The detailed procedure for larger numbers of springs is described in ref. [15].

This model differs from a conventional model by incorporating all or most of the solvent

quality effects into the spring force relation instead of as direct excluded volume repulsions

between the beads. One key advantage of this model is that it can capture the elasticity

of a polymer chain with very few beads, which makes it easier to analyze theoretically

and compute the response in a computationally efficient way. The model incorporates the

intra-spring excluded volume (ISEV) interactions into a spring force relation which is given

by

FISEV(Q) =
AQ3/2

1 +BQ1/2

1

1− (Q/Q0)2
, (5)

where Q is the distance separating the beads of a spring, Q0 = NK l is the contour length

of the spring, and l is the Kuhn length. This functional form is an approximation that is

able to capture the response of a wide range of molecules depending on the parameters A

and B. We previously used a blob theory to determine A and B [15]. For extensions of the

spring B−1/2 ≪ Q ≪ Q0 the force is proportional to the spring length with spring constant

A/B. At these extensions the force is not affected by solvent quality or finite extensibility

but is determined by the θ condition parameters. With this ratio constrained, A and B are

determined once one of them is set. For molecules in very good solvents, blob theory can

determine A up to a order one prefactor. In order to determine that prefactor, we have used

the equilibrium size of the polymer coil at equilibrium. Using these conditions gives

A =
(2.409/

√
z + 2.122/z) kBT

R
5/2
θ

, (6)

B =
2.409/

√
z + 2.122/z

3R
1/2
θ

, (7)
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where Rθ = N
1/2
k l is the θ solvent equilibrium size and the z here is the solvent quality

parameter that is given by

z =

(

3

2π

)3/2
v

l3

√

Nk . (8)

This model represents the FE of many polymers ranging from good to theta solvents using a

dumbbell. Note that this model does not explicitly contain a linear region in FE at low force,

but has the dependence of FISEV ∼ Q3/2. However, its FE behavior compares favorably with

previous Monte-Carlo simulations of molecules in good solvents [15]. Therefore, we use this

simple model to analyze the role of solvent interactions on fluctuations. For a bead-spring

chain model of FISEV springs, the spring contains the intra-spring excluded volume (ISEV)

contribution and the excluded volume between the springs is given by a repulsive potential

modeled by a Gaussian. In comparison to FISEV springs, we use a model of a polymer

consisting of FENE springs [18] with Gaussian potentials to model the excluded volume

(EV). The FENE spring force is given by

FFENE =
3kBT

R2

θ

Q

1− (Q/Q0)2
. (9)

Since the force-extension behavior of molecules at large forces does not depend on solvent

interactions and could be molecule specific, we model the high force extension to match the

behavior of a freely jointed chain by use of a FENE part in the spring force.

The focus here is on the fluctuations of the molecule in elongational flow. The fluctuations

are defined as

σ =
√

〈(|R| − 〈|R|〉)2〉 , (10)

where |R| is the magnitude of the end to end distance of the bead-spring chain or the dumb-

bell. A peak in σ corresponds to a peak in the experimental measurements of maximum

projected length fluctuations [1].

III. RESULTS AND DISCUSSION

To understand the role of spring force relation or the force extension behavior of a

molecule in determining σ, we first examine the case in which the hydrodynamic inter-

actions between segments of the chain are not included. Consider a molecule such as ds-

DNA molecule with v/l3 = 0.01 and NK = 104. This molecule has a peak in σ as shown
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in Fig. 1 (a). The strain rate ǫ̇ is scaled by the theta solvent polymer relaxation time

λθ = ζ0NK l
2/(24kBT sin2[π/(2Nb)]), where ζ0 is the drag coefficient of a bead and Nb is the

number of beads in the chain, to give a Weissenberg number Wi = ǫ̇λθ. It is known that a

polymer in θ conditions undergoes a CST near a critical Wi=0.5 [19]. The peak in σ for the

ds-DNA molecule occurs near this critical Wi. Since the molecule is near θ conditions, the

fluctuations calculated from BD simulations of the two models FFENE and FISEV are almost

identical. A multi-bead spring chain model also shows the same peak in the fluctuations.

Increasing the discretization of the model from 1 to 20 springs slightly alters the high Wi

fluctuations. This slight change at high Wi is because the drag on the chain from the flow

only occurs at the beads, and is essentially the same phenomenon described previously [20].

The tension on the polymer is nonuniform due to the flow, but a dumbbell model only has

one value of the tension, since it only has one spring. This leads to a change in response of

the model if the number of beads is smaller than about 10 to 20.

The fluctuations are very different for a molecule like ss-DNA with v/l3 = 1 and NK =

104, for which FISEV does not have a significant linear region. Instead, the spring force has

a wide region in which the force scales as f ∼ Q3/2. BD simulations of FISEV springs shown

in Fig. 1 (b) have a peak in σ, but at a Wi < 0.5. Increasing the discretization of this model

from 1 to 20 springs does not change the value of the peak. The results of FFENE springs with

excluded volume potentials between the beads are very different. The fluctuations show a

peak at a Wi = 0.5. With increasing number of springs the value of this peak decreases and

σ at low Wi increases. This response is because the force-extension of a FFENE chain with

EV has a large linear region, with the width of the linear region decreasing with increasing

numbers of springs [15]. It is possible that a large number of FFENE springs with EV will

have the same response as that of the FISEV springs, but the number of springs needed or

accuracy of an extrapolation are unknown.

We can better understand the fluctuations by using analytical expressions valid for low

and high Wi, which were shown in Fig. 1. For a dumbbell model, not including conformation

dependent drag, the probability distribution of the dumbbell in flow follows a Boltzmann

distribution in which there is an extra contribution to the energy due to the flow [19].

Specifically, for a dumbbell model without conformation-dependent drag the probability
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FIG. 1. (Color online) Comparison of the peaks in fluctuations between different models of (a)

ds-DNA and (b)ss-DNA with no HI. σ from BD simulations of a dumbbell (©), and 20 spring (�)

chain using FISEV springs are shown in comparison against FFENE spring dumbbell model (+) and

20 spring (♦) chain. σ is calculated by Eq. (14) at low Wi (dashed line) and Eq. (15) at high Wi

(solid line) for the FISEV dumbbell.

density of having a spring vector Q is

P (Q) =
exp(−Uspr/(kBT )) exp(−ζǫ̇Q2(1− 3 cos2 θ)/(8kBT ))

∫

exp(−Uspr/(kBT )) exp(−ζǫ̇Q2(1− 3 cos2 θ)/(8kBT ))dQ
(11)

where θ is the angle between the Q vector and the z-axis (the extension axis of the flow)

and Uspr is the energy in the spring (integral of the spring force) which only depends on the

magnitude of the spring length Q. Applying the definition in equation 10 to a dumbbell

model we see that σ2 = 〈Q2〉fl − 〈Q〉2fl where we use the subscript as a reminder that the

average is done in flow, using the probability density in equation 11. For small strain rates,

we can expand the exponential in a Taylor series in small ǫ̇, and write the probability density

and averages in terms of the equilibrium values

Peq(Q) =
exp(−Uspr/(kBT ))

∫

exp(−Uspr/(kBT ))dQ
(12)
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P (Q) ≃ Peq(Q)
1− ζǫ̇Q2(1− 3 cos2 θ)/(8kBT ) + ζ2ǫ̇2Q4(1− 3 cos2 θ)2/(128k2

BT
2)− · · ·

1 + ζ2ǫ̇2〈Q4〉eq〈(1− 3 cos2 θ)2〉eq/(128k2

BT
2)− · · ·

(13)

where we do not show the higher order terms for simplicity and we use a subscript to denote

an average using the equilibrium distribution. Note that the term in the denominator linear

in strain rate vanished because the equilibrium average of (1 − 3 cos2 θ) is zero. Using this

series to compute the moments 〈Q2〉fl and 〈Q〉fl in flow, we can develop a series approxima-

tion for the fluctuations near equilibrium using only equilibrium averages. This low strain

rate response can be written as

σ2 = 〈Q2〉eq − 〈Q〉2eq

+
1

160

(

−〈Q2〉eq〈Q4〉eq + 〈Q6〉eq + 2〈Q4〉eq〈Q〉2eq − 2〈Q〉eq〈Q5〉eq
)

(

ζǫ̇

kBT

)2

+
1

6720

(

−〈Q2〉eq〈Q6〉eq + 〈Q8〉eq + 2〈Q6〉eq〈Q〉2eq − 2〈Q〉eq〈Q7〉eq
)

(

ζǫ̇

kBT

)3

+O(ǫ̇4)

(14)

For each of the dumbbell models using FISEV in Fig. 1 we evaluate the equilibrium averages

numerically and express this series in terms of the Wi using the theta condition relaxation

time. This low Wi series expansion of σ matches the simulations of ss-DNA as shown in

Fig. 1 (b); this is true almost all the way up to the peak in the fluctuations. For ds-DNA

the higher order terms in the expansion become important near the peak in σ.

At very high Wi, a dumbbell model will be aligned along the extensional axis of the flow

and will only have small fluctuations around the point of minimum “energy” (including both

the energy in the spring and the extra energy due to the flow). If we ignore the transverse

fluctuations, we can compute the response of a 1D model, which simplifies the analysis.

Very near the minimum total energy, the energy will be quadratic and the fluctuations are

directly related to the stiffness of that quadratic. In particular, the fluctuations are

σ2 ∼ kBT/

(

d2Utot

dQ2

)

Q=Qf

, (15)

Utot = Udrag + Uspr , (16)

where Q is the magnitude of extension of the dumbbell, Udrag = −kBTζ0ǫ̇Q
2/4, Uspr is

obtained from the integral of the spring force and Qf is where Utot is a minimum, at which

dUtot/dQ = 0. The fluctuations from this theory, valid at high Wi, are shown in Fig. 1.

The combination of low and high Wi expansions not only give a quantitative understand-
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ing of the fluctuations in those limits, but also give a qualitatively understanding of the

peak in fluctuations by joining together the two expansions. We can obtain an even better

physical understanding of the peaks by examining two cases: a dumbbell model with spring

force AQ3/2 over all extensions and a hypothetical molecule that is long enough to have

four distinct regions in its force-extension behavior. Let us first review the physical picture

from the literature for the peak in fluctuations in θ conditions, in which a Hookean spring

is appropriate near equilibrium and a nonlinear spring (such as FENE) is appropriate away

from equilibrium.

As mentioned earlier, a dumbbell model without conformation dependent drag in elonga-

tional flow samples a Boltzmann distribution with an effective energy due to the flow which

is quadratic in Q. For a Hookean model, the spring energy is also quadratic in Q. At low

strain rates, the flow weakens the effective energy well in which the dumbbell fluctuates,

thereby increasing the fluctuations. This continues until Wi = 1/2, beyond which the non-

linearities of the spring force become important, decreasing the fluctuations. This picture

can be contrasted with the response of a spring whose force is AQ3/2 for all extensions, which

is shown in Fig. 2. Because of the different scalings with Q of the flow energy and spring

energy, the energy landscape first dips at small Q before rising at large Q for all strain rates.

For small strain rates, the dip in total energy is smaller than kBT . For these strain rates,

the fluctuations grow with increasing strain rate. At larger strain rates, the energy well

moves to larger extensions and the fluctuations about this minimum become smaller. At

intermediate strain rates, there is a peak in the fluctuations. This is particularly interesting

because the peak is not associated with a linear region of the force relation or a steep change

in average extension.

Since long molecules of ss-DNA in a good solvent have a significant “Pincus region” in

which the spring force scales as f ∼ Q3/2, we expect a peak in the fluctuations when the

molecule first begins to stretch away from equilibrium. This is what was seen in Fig. 1 (b).

There was not a peak near Wi ∼ 1/2 when the chain nears full extension. For a spring with

finite length, the finite extensibility leads to a faster decay of the fluctuations at large strain

rate than the AQ3/2 spring.

It is also illustrative to consider a hypothetical molecule that has both a significant region

with f ∼ Q3/2 and a significant linear region before reaching the finite extensibility region.

For a molecule to have both these regions to be distinct, it should have a large NK with
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FIG. 2. Illustration of the energy landscape and fluctuations of AQ3/2 spring at (A) low and (B)

high strain rates in elongational flow. The spring is mostly restricted to regions within 1 − 2kBT

of the energy minimum, leading to fluctuations given by the double arrows.
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FIG. 3. (Color online) Comparison of the peaks in fluctuations between different models of a

hypothetical molecule with no HI. σ from BD simulations of a dumbbell (©), and 20 bead-spring

(�) chain using FISEV springs is shown in comparison against FENE springs with EV of 10 (∗)

and 20 springs (♦) chain. σ is calculated by Eq. (14) at low Wi (dashed line) and Eq. (15) at high

Wi (solid line) for the FISEV dumbbell.

small v/l3. Using the same parameters as our previous work [15], we take v/l3 = 0.03 and

NK = 1010 for the hypothetical molecule. Although there is only a single linear region in

the spring force relation for this molecule, it has two peaks in σ as shown in Fig. 3. The first

peak is due to the non-linear spring force and the second peak is due to the linear region

in the spring force. The model with FENE springs attempting to represent this molecule

shows only a single peak at Wi=0.5 due to a large linear region in the FE response. The

molecules in Fig. 1 can be thought of as limiting cases of the two peak response, in which

only one of the peaks is present.

A simple method to examine the influence of HI on the fluctuations is by means of a
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FIG. 4. (Color online) Fluctuations of FISEV dumbbell with conformation dependent drag having

NK = 104 steps and v/l3 = 1. σ from BD simulations of a molecule with βQ0 = 2.89 (x) is

shown. The high Wi response matches well with Eq.15 using Eq.19 (solid line) for βQ0 = 2.89.

For comparison, the low Wi (dashed) and high Wi (dot-dashed) response without conformation

dependent drag are shown, and are the same as Fig.1 (b).

dumbbell model with conformation dependent drag coefficient ζ(Q). Previous work has

shown that a dumbbell model with a FISEV spring is able to capture the force extension

behavior and flow response of a bead spring chain [15, 16]. We have shown here that it also

captures the fluctuations in flow, so it can be used with a function ζ(Q) to examine the

impact of HI on the fluctuations. The simple functional form ζ(Q) = ζ0(1 + βQ) has been

used previously to capture the important features of the conformation dependent drag [1, 16],

where β is a constant determined by

1 + βQ0 ≈

√

2

3

R2

θ

〈Q2〉Eq
NK

(log(l/d) + log(NK))
, (17)

where d is the polymer backbone hydrodynamic diameter and 〈Q2〉Eq is evaluated using an

approximate relation for good solvents [21, 22]

(〈Q2〉Eq

R2

θ

)5/2

−
(〈Q2〉Eq

R2

θ

)3/2

=

√

6NK

π3

v

l3
. (18)

A key parameter that determines the importance of conformation dependent drag is βQ0.

If βQ0 ≪ 3, then the drag coefficient is almost the same for all configurations and the peak

in the fluctuations will not be affected by conformation dependent drag. If βQ0 > 3, there

can be hysteresis in the CST, which has been examined in detail previously [16]. Measuring

the fluctuations within the hysteresis loop is not the goal of this work. Even before the onset
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of hysteresis, conformation dependent drag can impact the fluctuations. At large Wi, σ with

conformation dependent drag can be understood from the 1D energy landscape analysis. For

a 1D model with conformation dependent drag, Eq. 15 is applicable at high Wi by taking

Udrag = −kBTζ0ǫ̇(Q
2/4 + βQ3/6) (19)

in Eq.16. A molecule such as ss-DNA with aspect ratio l/d = 1, v/l3 = 1 and NK = 104

has an estimated βQ0 = 2.89. The fluctuations of such a molecule is shown in Fig. 4. For

comparison, we show the approximate low and high Wi behavior when β = 0. At low Wi,

we see that the nonzero β causes the fluctuations to increase with Wi more rapidly than

when β = 0. At high Wi, the conformation dependent drag decreases the fluctuations and

leads to a steeper peak in the fluctuations. Since ζ(Q) has a significant impact on σ, more

accurate models for ζ(Q) developed in comparison with experiments will be important to

predict the exact response.

IV. CONCLUSIONS

In conclusion, using BD simulations in elongational flow we have shown that a peak in the

fluctuations σ is not necessarily associated with a linear region in the spring force relation

or a sharp change in extension of the molecule. Even a non-linear force relation associated

with the “Pincus region” of the force extension behavior could give rise to a peak in the

fluctuations. We used the recently developed FISEV model which incorporates intraspring

excluded volume forces into the spring force. Because this spring force accurately captures

the elasticity of the chain, a very coarse model can be used, which speeds the computations

and allows for simpler analysis. We find that a peak in σ does not always indicate a sharp

transition from a coiled state to a stretched state. Conformation dependent drag leads to

enhancement in σ and the high strain rate response of σ can be understood by taking the

second derivative of the potential energy Utot with respect to extension of a 1D dumbbell

model. Our results suggest that single molecule experiments involving flexible molecules

in good solvents, such as ss-DNA, in elongational flow will show different fluctuations than
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previous work on ds-DNA.
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