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Abstract

The zeros of the canonical partition functions for flexible square-well polymer chains have been

approximately computed for chains up to length 256 for a range of square-well diameters. We have

previously shown that such chain molecules can undergo a coil-globule and globule-crystal transition

as well as a direct coil-crystal transition. Here we show that each of these transitions has a well-

defined signature in the complex-plane map of the partition function zeros. The freezing transitions

are characterized by nearly circular rings of uniformly spaced roots, indicative of a discontinuous

transition. The collapse transition is signaled by the appearance of an elliptical horse-shoe segment

of roots that pinches down towards the positive real axis and defines a boundary to a root-free

region of the complex plane. With increasing chain length, the root density on the circular ring

and in the space adjacent to the elliptical boundary increases and the leading roots move towards

the positive real axis. For finite length chains, transition temperatures can be obtained by locating

the intersection of the ellipse and/or circle of roots with the positive real axis. A finite size scaling

analysis is used to obtain transition temperatures in the long chain (thermodynamic) limit. The

collapse transition is characterized by crossover and specific heat exponents of φ ≈ 0.76(2) and

α ≈ 0.66(2), respectively, consistent with a second order phase transition.
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I. INTRODUCTION

The study of partition function zeros has been an important topic in statistical physics

since Yang and Lee proposed a general theory of phase transitions based on the behavior

of the zeros of the grand canonical partition function in the complex fugacity plane [1, 2].

In the Yang-Lee theory, the non-analytic behavior of thermodynamic functions at phase

transitions arises from the movement of some partition function zeros onto the positive real

axis in the thermodynamic limit. Yang and Lee demonstrated this behavior for the Ising

model in an external field. This approach was extended by Fisher who first studied the

zeros of the canonical partition function (for the zero-field 2D Ising model) in the complex

temperature plane [3]. The distribution and behavior of these Yang-Lee and Fisher zeros

have been studied in a large number of systems and provide a means of computing phase

transition properties including location, order, strength, and critical exponents [4–11]. In

the thermodynamic limit the Yang-Lee zeros typically accumulate onto smooth curves in

the complex fugacity plane while, in many cases (with the isotropic Ising model being an

exception), the Fisher zeros densely cover well-defined areas in the complex temperature

plane [12]. For a recent review of the partition function zero formalism and applications

see Ref. [13]. Finally, although usually studied in the context of the thermodynamic limit,

partition function zeros also provide a means of describing phase changes in finite size

systems [14].

One application of the partition function zero method has been to study conformational

phase transitions of model polymer chains. In particular, the approach has been used to

study the collapse transition for lattice homopolymers [15–21], the protein-like folding tran-

sition of lattice heteropolymers [22, 23], and the helix-coil transition of a continuum polymer

model [24, 25]. With the exception of Refs. [22] and [23], these polymer applications have

focused on the scaling properties of the partition function zeros and attempted to obtain

results for the long chain limit. These previous polymer studies have been restricted to

rather modest chain lengths (typically N ≤ 36) and thus the partition function zero ”maps”

are relatively sparse.

In this work we study the partition function zeros for a continuum square-well-sphere

polymer chain model. We have computed the density of states for this model system using

the Wang-Landau simulation algorithm [26, 27] and, thus, can directly construct the canoni-
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cal partition function. Using both canonical and microcanonical analyses we have previously

demonstrated that this chain model exhibits interesting phase behavior for both finite chains

and in the long chain limit [28, 29]. This model is also amenable to direct computation of

the zeros of the canonical partition function since the latter is simply a polynomial whose

coefficients are given by the density of states. Additionally, we are able to determine the

partition functions for significantly longer chains than used in previous partition function

zero studies of polymers. This allows us to more clearly establish relations between general

features of the zero maps and single-chain phase transitions.

II. MODEL AND METHODS

A. Square-well chain model

In this work we study a single polymer chain comprised of N spherical monomers con-

nected by “universal joints” of fixed bond length L. Monomer i is located by the position

vector ~ri and all pairs of non-bonded sites i and j (|i− j| > 1) interact via the square-well

(SW) potential

u(r) =























∞ r < σ

−ǫ σ < r < λσ

0 r > λσ

(1)

where r = rij = |~ri − ~rj|, σ is the hard-core diameter, and ǫ and λσ are the SW depth and

width, respectively. In this work we set L = σ and use ǫ to define the reduced temperature

T ∗ = kBT/ǫ, where kB is the Boltzmann constant. For a polymer at fixed temperature

T , the single-chain canonical partition function is the Boltzmann weighted integral over all

chain conformations and can be written as [30–32]

ZN(T ) =

∫

· · ·

∫

SN

N
∏

i<j+1

e−u(rij)/kBTd~r12 · · · d~rN−1,N (2)

where SN =
∏N−1

i=1 δ(ri,i+1−L)/4πL2 is the product of intramolecular distribution functions

imposing the fixed bond length constraint and we have taken site 1 as the coordinate origin.

The SW-chain model has a discrete potential energy spectrum with allowed energy states

En = −nǫ where n is the number of SW “overlaps” in a given chain conformation with
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0 ≤ n ≤ nmax and the N -dependent ground state energy is Egs = −nmaxǫ. The canonical

partition function can be written as a sum over energy states as follows [31, 32]

ZN(T ) =
nmax
∑

n=0

g(En)e
−En/kBT =

nmax
∑

n=0

gny
n (3)

where gn = g(En) is the density of states for energy level En and y = e1/T
∗

.

B. Partition function zeros and thermodynamics

As seen in Eq. (3), the SW chain canonical partition function can be expressed as a

polynomial of order nmax in the temperature dependent variable y. This partition function

can be rewritten in product form in terms of the nmax zeros or roots {yk} of the polynomial

as

ZN(T ) =
nmax
∏

k=1

(y − yk). (4)

These polynomial zeros are generally complex, coming in symmetric pairs yk = ak ± ibk

and, since the gn are all positive, any real roots yk = ak are necessarily negative. All of

the information contained in the polynomial coefficients {gn} is contained in the polynomial

roots {yk}. Thus, all thermodynamic functions derivable from ZN(T ) can be expressed in

terms of the partition function roots. For example, the single-chain specific heat can be

written as

C(T )

NkB
=

β2

N

∂2lnZN

∂β2
=

y(lny)2

N

nmax
∑

k=1

−yk
(y − yk)2

=
y(lny)2

N

nmax
∑

k=1

(−ak(y − ak)
2 + b2k(2y − ak)

((y − ak)2 + b2k)
2

(5)

where β = 1/kBT and here y is taken as a real number such that 1 < y < ∞ corresponds

to the physical temperature range ∞ > T ∗ > 0. The large y limit of Eq. (5) allows us

to establish the additional property
∑

k ak ≤ 0 for the Z(T ) zeros since C(T ) is a positive

quantity. Notice that roots with small imaginary part bk and positive real part ak make

a large contribution to C(T ) near y = ak. In general, roots closest the positive real axis,

known as the leading roots, give the maximum contribution to thermodynamic quantities.

As noted in the Introduction, the Yang-Lee theory of phase transitions is based on the

convergence of these leading roots onto the positive real axis in the thermodynamic limit
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(i.e., N → ∞). For finite size systems, phase changes are typically identified from peaks in

the specific heat [Eq. (5)] and thus, in principle, can also be located from the leading roots

of the partition function.

C. Simulation and numerical methods

We have previously carried out extensive simulation studies of the SW chain model [28, 29]

using the Wang-Landau (WL) algorithm [26, 27] to construct the density of states function

g(E). In this approach, one generates a sequence of chain conformations using a set of

Monte Carlo (MC) moves, however, rather than accepting moves according to a temperature

dependent Boltzmann weight (i.e., via the Metropolis criterion), one uses the following

temperature independent multicanonical probability

Pacc(a → b) = min

(

1,
wa→b g(Ea)

wb→a g(Eb)

)

(6)

where wa→b and wb→a are weight factors which ensure microscopic reversibility for a given

MC move type [33, 34]. In the WL approach g(E) is constructed in an iterative and dynamic

fashion where smaller scale refinements are made at each level of the iteration. Successful

implementation of this method requires an MC move set that is capable of efficiently explor-

ing all configuration space. We use a combination of single bead crankshaft, reptation, and

end-bridging moves and a multi-bead pivot move [34, 35]. The end-bridging move is found

to be critical to exploring compact chain structures. We have tested the WL algorithm with

our MC move set through comparison with exact g(E) data for short chains [32] and with

MC results of Zhou et al. for longer chains [36]. As described in Ref. [29], in our implemen-

tation of the WL algorithm we carry out preliminary simulations to estimate the ground

state energy of the chain and then set the minimum energy actually sampled in the WL

simulation to be a few energy units above this ground state estimate. In the following, nmax

refers to this minimum energy used in the WL simulation rather than to the true ground

state energy level.

For long chains, nmax can be quite large (e.g., for N = 256, nmax & 1000) and thus

accurate numerical methods are required to compute the roots of the ZN(T ) polynomial

[Eq. (3)]. For these calculations we have used MATHEMATICA [37]. To verify the sets of

roots, we compute the specific heat function C(T ) across the full temperature range using
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Eq. (5) and compare with C(T ) results computed directly from the original g(E) [28, 29]. In

all cases we carry out three or more independent WL simulations and estimate uncertainties

from the variations in resulting properties.

III. RESULTS

A. Partition function zero maps

In Fig. 1 we show density of states functions, in the form ln[g(E)/g(0)], for SW chains

with SW diameter λ = 1.10 and chain lengths N = 32, 64, 128, and 256. For these four

chains lengths the canonical partition functions are given by polynomials of order 86, 200,

447, and 956, respectively, with the g(E) as the polynomial coefficients. In the case of

N = 256 these coefficients span approximately 680 orders of magnitude. One can reduce

the large range covered by the polynomial coefficients through the rescaling

ZN(T ) =

nmax
∑

n=0

cn(y/A)
n (7)

with cn = Angn. For example, in the case of N = 256, λ = 1.10, a choice of A = 10 will give

scaled coefficients that span approximately 275 (rather than 680) orders of magnitude. We

find, however, that MATHEMATICA yields exactly equivalent results with or without such

a rescaling of the ZN(T ) polynomials.

The zeros of the ZN(T ) polynomials, obtained from the Fig. 1 density of state functions,

are shown in the complex y-plane in Fig. 2. The number of zeros in each case corresponds to

the above noted polynomial order. These “root maps” are exactly symmetric with respect

to the Re(y)-axis and the mean of the real parts ak = Re(yk) of the roots is negative as

expected. Specific heat functions computed via Eq. (5) with these sets of roots are shown

in Fig. 3 and are found to be identical to the specific heat functions computed directly from

the density of states as done in Refs. [28, 29]. (As an aside, the low temperature C(T )

shoulder seen in Fig. 3 for N = 32 is primarily due to the large negative real root omitted

from the Fig. 2a root map).

The root maps shown in Fig. 2 exhibit remarkable structure that becomes more defined

with increasing chain length. In particular, there is an outer circle of roots that becomes

denser and smaller in diameter for the long chains. The distribution of roots on this circle
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is approximately uniform, including in the vicinity of the Re(y)-axis where the leading roots

close in on the axis with increasing N . Such a uniform root density is characteristic of a

first order transition [9]. Inside this circle is an elliptical horseshoe boundary with a fan-like

tail that demarcates a root free region of the complex plane. The junction of the horseshoe

and fan corresponds to a second set of leading roots that pinch down closer to the Re(y)-

axis with increasing N . This behavior appears to follow the Yang-Lee model for phase

transitions with roots approaching the positive real axis with increasing system size and,

in the thermodynamic limit, dividing the real axis into single phase regions separated by

phase transitions. In Fig. 2 physical temperatures lie on the positive real axis and are given

by T ∗ = 1/ ln(y). Thus, we expect the leading roots on the circular ring to correspond to

a low temperature transition while the leading roots on the elliptical horseshoe correspond

to a higher temperature transition. More specifically, we associate the circle of roots with

chain freezing and the elliptical boundary with chain collapse. Although the root maps

obtained from our multiple independent WL simulations can show significant variation in the

location of some individual roots, these circular and elliptical boundaries, and in particular

the leading roots, are highly reproducible. This is shown in Fig. 4 where we plot three sets

of roots obtained from three independent WL simulations for N = 128, λ = 1.10. Note that

the single set of roots shown in each part of Fig. 2 is computed using the average of the

density of states from multiple simulations.

B. Finite chain transition temperatures

One typically uses the partition function zeros to obtain information about phase tran-

sitions in the thermodynamic limit [7]. Thus, as will be described in Sec. III-D, transition

temperatures and critical exponents are obtained by studying the approach of the leading

zeros towards the positive real axis [8, 9]. In a finite size system the location of the leading

zeros can also provide some information on the location and nature of changes in state of the

system [14]. Describing such state changes in finite size systems is of relevance to polymers,

and in particular biopolymers, where a thermodynamic (i.e., infinite chain length) limit is

never really achieved. As noted in the Introduction, although there has also been some

use of partition function zeros to study conformational transitions of finite length chains

[22, 23], most previous studies involving polymers have focussed on scaling behavior and the
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TABLE I. Transition temperatures obtained from the canonical specific heat (SH) [Fig. 3] and

from the partition function zero maps (ZM) [Fig. 5] for SW chains with length N and SW diameter

λ = 1.10. The numbers in parentheses are uncertainty estimates in the last digits shown.

N T ∗

f (SH) T ∗

f (ZM) T ∗

c (SH) T ∗

c (ZM)

32 0.370(1) 0.370(1) 0.492(1) 0.500(6)

64 0.450(1) 0.450(1) 0.537(1) 0.535(9)

128 0.515(1) 0.515(1) 0.576(1) 0.578(4)

256 0.563(2) 0.564(1) 0.603(3) 0.601(3)

long chain limit [15–17, 19–21, 24, 25]. In this section we focus on the conformational phase

transitions of finite length SW chain.

As noted above, the freezing transition of the SW chain is clearly associated with the

circular ring of roots observed in the Fig. 2 root maps and extrapolation to the positive real

axis is straightforward. By fitting the leading pair of roots to a circle of radius R2 = a2k + b2k

we find that the intersection point with the positive real axis yf = R gives freezing transition

temperatures T ∗

f = 1/lnyf in agreement with those previously obtained from the canonical

specific heat functions. We show examples of these fits to the leading roots on the freezing

circle for λ = 1.10 in Fig. 5a and give numerical results in Table 1. The uncertainty

estimates included in Table 1 reflect the variation in results obtained from our multiple WL

simulations for each case. With increasing N , the root density on the circle increases and

the intersection point becomes very close to the real part of the leading root. This circle

fitting procedure must be done locally as the large circle of roots is often slightly perturbed

near the positive real axis protruding out in the positive direction. Thus R given above is

not always identical to the average radius of the full circle seen in the root maps. We note

that in the canonical ensemble calculations, the freezing transition temperatures were taken

from the rather sharp specific heat maxima shown in Fig. 3. Of course, these peaks do have

a nonzero width, reflective of the fact that for finite N the transition must be gradual.

The collapse transition of the SW chain is associated with the pinching down of the el-

liptical horse-shoe boundary and fan-shaped tail towards the real positive axis. The two

lines of roots, defining the left and right sides of this pinch-down region, are non-orthogonal

to the Re(y)-axis which is consistent with a continuous phase transition [4–6]. Similarly,
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the asymmetry of the left and right sides of the pinch-down region is consistent with an

asymmetric specific heat peak at the collapse transition (as observed in Fig. 3). This asym-

metry in the root boundary also suggests that the location of the leading root, y1, alone will

not be sufficient to estimate the transition point for a finite length chain. Here we propose

a geometric construction that uses the entire set of roots defining the elliptical boundary,

including the cluster of roots in the immediate neighborhood of the leading root at the

pinch-down point, to locate the finite-chain transition point. We fit this set of boundary

points {ak, bk} to an ellipse ((a−c)/ra)
2+(b/rb)

2 = 1 [38], as shown in Fig. 5b, and take the

intersection of the fit ellipse with the real positive axis at yc = ra + c to locate the collapse

transition temperature T ∗

c = 1/ln yc. This approach appears to be quite reliable for longer

chains where we find quantitative agreement with previous results for the N = 128 and 256

chains (see Table I). For the shorter N = 32 and 64 chains this construction is somewhat

less robust since the points defining the boundary are fewer in number and less well defined

than for the long chains.

The fact that the effective transition temperatures obtained for finite N from the specific

heat and the circle and ellipse fits of the partition function zeros close to the Re(y)-axis are

in such good agreement is founded on the fact that the major contribution to the specific

heat peaks comes from these sets of zeros as previously noted and evident in Eq. (5). If

one would analyze other physical properties of the finite polymer chains, slightly different

effective transition temperatures might be expected. Such behavior is general for finite

size scaling of phase transitions, where peaks of specific heat, susceptibility, temperature

derivative of the average absolute value of the magnetization, etc., all are known to differ

for finite N , although they converge to the same critical temperature in the limit of N → ∞

[39].

One notable feature of the phase behavior of the SW chain model is the disappearance of

the collapse transition for a sufficiently short range SW-interaction [28]. For the case of chain

length N = 128 we have previously demonstrated, using a microcanonical thermodynamic

analysis, that a collapsed globule phase is not stable for λ ≤ 1.05 [29]. This same conclusion

can be reached, in a somewhat more direct fashion, using the above described partition

function zero approach for locating phase changes in finite size systems. In Fig. 6 we show

the evolution of the partition function root maps for the N = 128 SW chain with increasing

SW diameter λ. These roots maps include an ellipse fit to the set of roots defining the
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TABLE II. Transition temperatures obtained from canonical and microcanonical specific heat func-

tions (SH) (Ref. [29]) and from the partition function zero maps (ZM) [Figs. 6 and 8] for SW chains

with length N = 128 and SW diameter λ. The numbers in parentheses are uncertainty estimates

in the last digits shown.

λ T ∗

f (SH) T ∗

f (ZM) T ∗

c (SH) T ∗

c (ZM)

1.02 0.363(2) 0.363(2) - - - - 0.321(22)

1.05 0.446(1) 0.446(1) 0.426(2) 0.422(5)

1.06 0.465(1) 0.465(1) 0.463(4) 0.458(4)

1.07 0.481(2) 0.481(1) 0.495(3) 0.488(4)

1.08 0.495(2) 0.495(1) 0.516(2) 0.514(6)

1.15 0.526(2) 0.526(1) 0.714(2) 0.705(5)

1.25 0.342(6) 0.345(3) 1.010(5) 0.996(6)

1.30 - - - - - - - - 1.165(5) 1.151(5)

elliptical horseshoe boundary. For λ > 1.06 this ellipse intersects the positive real axis to

the left of the freezing circle in which case Tcollapse > Tfreezing, and thus, a stable collapsed

globule phase exists in the intervening temperature region. However, for cases with λ < 1.06

we observe that the ellipse crosses the freezing circle, intersecting the positive real axis to the

right of this circle. This corresponds to Tcollapse < Tfreezing which implies that chain collapse

is preempted by the freezing transition and no stable globule phase exists. The globule may

still occur as a metastable state and, since its free energy difference from the stable state is

finite, it may still contribute to some extent to thermal averages. This idea is supported by

the close proximity of the intersection of the circle and ellipse fits with the Re(y)-axis in the

case of λ = 1.05. For the case of λ = 1.06 we see the intersection points of the ellipse and

the freezing circle with the positive real axis nearly coincide, locating the triple point (or

tricritical endpoint expected for N → ∞) in the SW chain T ∗ vs λ phase diagram (Fig. 6

in Ref. [29]). In Table II we compare transition temperatures obtained from the ellipse and

circle fits to the root map boundary points with results previously obtained from analysis of

both microcanonical and canonical specific heat functions [29]. These numerical results are

in exact agreement for the freezing transition and in very close agreement for the collapse

transition.
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C. On the origin of the circle

A particularly intriguing feature of the partition function zero maps for the SW chain

model is the nearly perfect circle of roots associated with the freezing transition. This

circular pattern calls to mind the original work of Lee and Yang on the Ising model [2]

and their famous circle theorem proving that the complex roots of the Ising grand partition

function all lie on the unit circle. In particular, Lee and Yang demonstrated that real

polynomials of the form P (y) = c0 + c1y + c2y
2 + · · · + cn−1y

n−1 + yn with coefficients ck

given by sums of products of all i, j-bipartite partitionings of the real numbers aij = aji

(i 6= j, 1 ≤ i, j ≤ n) with magnitudes |aij| ≤ 1, have roots confined to the unit circle.

The coefficients of the Lee-Yang polynomial possess the mirror symmetry ck = cn−k and

thus these polynomials are a special case of the general class of self-reciprocal polynomials

defined by the relation P (y) = ynP (1/y). Although the SW chain partition function is not

of this Lee-Yang form, the region of the partition function associated with chain freezing

can be approximately written as a self-reciprocal polynomial P (y), with positive coefficients

ck ≤ 1 where ck > ck+1 for k ≤ n/2. Such self-reciprocal polynomials with decreasing

positive coefficients also have their zeros confined to the unit circle [40, 41] and, thus, we

have an approximate local “circle theorem” for the SW chain freezing transition. The local

self-reciprocal behavior of the SW chain partition function is revealed by making a rescaling

transformation of the type shown in Eq. (7).

To both demonstrate and understand the origin of a local Lee-Yang type symmetry in the

coefficients of the SW chain ZN(T ) polynomial it is useful to consider the microcanonical

analysis of a discontinuous phase transition [42]. In the microcanonical approach, curvature

properties of the entropy function S(E) = kBlng(E) are used to define types of phase

transitions in finite size systems. A discontinuous or first-order transition is identified by

the presence of a convex intruder in S(E). Both the energy range spanned by the transition

and the transition temperature can be determined from a double tangent line construction

across the convex intruder (where the tangent points define the energy range and the slope

gives the inverse of the transition temperature). The double tangent construction is shown

in Fig. 7a for a SW chain with N = 128 and λ = 1.10. In general, this double tangent line is
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given by −n/T ∗

f +b and can be used to transform the partition function to a new polynomial

ZN(T ) = eb
nmax
∑

n=0

cn(y/yf)
n (8)

with coefficients cn = en/T
∗

f
−bgn and where yf = e1/T

∗

f . The transformed coefficients for the

N = 128, λ = 1.10 SW chain (for which T ∗

f= 0.5151 and b = 98.95) are shown in Fig.

7b. In the region of the first order transition (214 ≤ n ≤ 375) the cn coefficients are seen

to posses at least an approximate version of the Lee-Yang mirror symmetry. The zeros of

this part of the polynomial, corresponding to the freezing transition, are found to lie almost

exactly on the unit circle as shown in the inset in Fig. 7a. Furthermore, the circle of roots

obtained from only this limited part of the ZN(T ) polynomial almost exactly coincides with

the corresponding roots from the full polynomial shown in Fig. 2c (noting the scale factor

of yf relating the two root maps). We note that an exact mirror symmetry between the

coefficients across the freezing transition would not be expected for the present problem due

to the lack of symmetry between the two states that coexist at the transition (unlike the

Ising model with its exact symmetry with respect to inversion of all spins together with

inversion of the magnetic field).

In our previous study of the phase behavior of the N = 128 SW chain [29] we noted

the weakening of the freezing transition with increasing square well diameter λ and the

disappearance of a convex intruder in S(E) for 1.22 ≤ λ ≤ 1.45. Given the direct connection

we have established between the convex intruder and the circular ring of zeros, we expect

the absence of a convex intruder to imply the absence of a circle in the associated root map.

In Fig. 8 we show this is the case, as the root maps for λ = 1.25 and 1.30 lack the well-

defined circle feature. However, for the case of λ = 1.25 [Fig. 8a] there is a pair of leading

roots approaching the Re(y)-axis which can be associated with a sparse circle of roots. This

sparse circle arises from a small energy range (460 . n . 470) where S(E) is nearly linear

(but never convex), as evidenced by a strong local flattening of dS(E)/dE in this region.

Our geometric construction for the freezing transition temperature yields T ∗

f = 0.345(3), in

agreement with our previous analysis based on the location of specific heat peaks. In the

case of λ = 1.30 [Fig. 8c] there is no evidence in the root map for a freezing transition.

Numerical results for collapse transition temperatures, obtained by fitting ellipses to the

root boundaries seen in Figs. 8b and 8d, are given in Table II.
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D. Scaling Analysis

In the original theory of Yang and Lee [1] the non-analytic behavior of thermodynamic

functions at phase transitions arises from the movement of a set of partition function zeros

(the leading zeros) onto the positive real axis as the thermodynamic limit is taken. By

studying the approach of these leading roots towards the positive real axis as a function

system size one can estimate both transition temperatures and scaling exponents character-

izing the infinite size system [43]. For the polymer collapse transition this finite size scaling

is governed by the crossover exponent φ [44–46] which measures the distance of closest ap-

proach for the finite size system to the N → ∞ transition point. Thus, the distance between

the leading partition function zero and the true transition point yc is expected to scale as

[19, 21, 24, 43]

y1(N)− yc ∼ DN−φ (9)

where D = d1 + id2 is a complex constant. (For a magnetic or fluid system the polymer

exponent φ would be replaced by 1/dν, where d is dimensionality and ν is the correlation

length exponent). Given that yc is unknown, and that the imaginary part of the leading root

vanishes in the thermodynamic limit, the standard scaling analysis extracts the exponent φ

from the scaling of the imaginary part alone through the relation [19, 21, 24]

Im[y1(N)] ∼ d2N
−φ. (10)

In Fig. 9a we show scaling plots of the imaginary part of leading roots at the elliptical

pinch-down point (associated with the collapse transition) versus chain length N for chains

with square-well diameters in the range 1.05 ≤ λ ≤ 1.30. The lines are power law fits for each

λ and the resulting crossover exponents φ are given in Table III. Although these crossover

exponents vary somewhat with λ, they are all consistent with a value of φ ≈ 0.76(2).

We use these φ results to determine the collapse transition temperature in the N → ∞

limit by studying the leading roots in the complex inverse temperature plane defined by:

ln(yk) = βk + iτk where βk = ln(a2k + b2k)
1/2 and τk = tan−1|bk/ak|. The real part of this

leading root is expected to scale as [24, 47]

β1(N) ∼ βc + (d1/yc)N
−φ (11)

where βc = 1/T ∗

c gives the transition point. In Fig. 9b we show plots of β1(N) vs N−φ using

the φ values given in Table III. The lines are linear fits for each λ data set and the resulting
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TABLE III. Finite size scaling results from the leading partition function zeros for SW chains

with SW diameter λ. For the collapse transition we include the crossover exponent φ, the inverse

transition temperature βc, the specific heat exponents αφ and α, the exponent relation 2−α−1/φ,

and the transition temperature T ∗

c . For the freezing transition we give the N → ∞ transition

temperature T ∗

f . The numbers in parentheses are uncertainty estimates in the last digits shown.

λ φ βc αφ α 2− α− 1/φ T ∗

c T ∗

f

1.05 0.762(8) 2.194(10) 0.496(2) 0.651(7) 0.037(21) 0.456(2) 0.616(2)

1.10 0.727(8) 1.548(5) 0.457(2) 0.629(7) -0.005(22) 0.646(2) 0.758(1)

1.15 0.759(11) 1.222(6) 0.502(7) 0.661(13) 0.021(32) 0.818(4) 0.853(3)

1.18 0.745(16) 1.071(10) 0.482(2) 0.647(14) 0.011(43) 0.934(9) 0.936(16)

1.20 0.764(6) 0.992(6) 0.505(5) 0.660(8) 0.031(18) 1.008(6) 0.897(15)

1.25 0.783(7) 0.836(4) 0.539(5) 0.688(9) 0.035(20) 1.196(6) 0.540(7)

1.30 0.770(11) 0.709(7) 0.530(2) 0.688(10) 0.013(28) 1.410(14) - - - -

βc (and T ∗

c ) values are given in Table III. An alternate method to finding the transition

temperature, which does not explicitly use the exponent φ, is to plot the leading roots in the

form Im[y1(N)] vs β1(N). The scaling assumptions given in Eqs. (10) and (11) imply that

these roots will fall on a straight line that intercepts the β-axis at the transition point βc.

Our results from this construction (not shown) are in agreement with those obtained from

the original method, supporting the consistency of the Eq. (10) and (11) scaling forms.

Given the N → ∞ collapse transition temperature Tc we can carry out a finite size scaling

analysis of the specific heat [Eq. (5)] which is expected to exhibit the following behavior

C(Tc)/NkB ∼ |T − Tc|
−α ∼ Nαφ. (12)

In Fig. 9c we show a scaling plot of the specific heat at the N → ∞ collapse transition

temperature T ∗

c versus chain length N . The lines are power law fits for each λ data set

and the resulting exponents αφ and α are given in Table III. The exponent α shows some

variation with well diameter λ but our results are all consistent with a value of α ≈ 0.66(2)

for the range 1.05 ≤ λ ≤ 1.30.

The self-consistency of the exponents α and φ can be checked by noting that, for large N ,

Eq. (5) gives C(Tc)/NkB ∼ 1/Nb21 where b1 = Im(y1). Combining this with Eq. (10) gives
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C(Tc)/NkB ∼ N2φ−1 which, upon comparison with Eq. (12) gives the exponent identity

2−α = 1/φ [45]. As shown in Table III, this identity is satisfied, or nearly satisfied, for the

cases studied here with our mean values giving α+1/φ = 1.98(4). As expected, both φ < 1

and α < 1 supporting the idea that the collapse transition is, in the thermodynamic limit,

a true second order phase transition [47].

In the case of the freezing transition we expect finite size effects to be dominated by the

relatively large fraction of sites forming the surface of the frozen chain. In this situation the

transition temperature for a chain of length N will be shifted from the infinite chain value

by a term proportional to the surface-to-volume ratio of the frozen chain. This gives the

scaling behavior [48]

Tf(N) ∼ Tf (∞)−BN−1/3 (13)

where the finite chain transition temperature is given directly by the leading root associated

with freezing in the complex temperature plane as T ∗

f (N) = 1/β1(N). In Fig. 10 we show

plots of T ∗

f (N) versus N−1/3 for SW diameters in the range 1.05 ≤ λ ≤ 1.25. The lines

are linear fits for each λ data set and the resulting T ∗

f (∞) values are given in Table III.

Comparison of the N → ∞ collapse and freezing transition temperatures show that Tc < Tf

for λ < 1.18 and thus, for these small SW diameters, chain collapse is pre-empted by the

freezing transition giving a direct coil→crystal transition. We have shown this behavior

previously for finite length chains [28, 29], but here we see that it persists in the long chain

limit with a coil-globule-crystal triple point existing for SW diameter λ ≈ 1.18.

In the above scaling analysis for the collapse transition we have used an approach that

would be appropriate to study a normal critical point. However, the collapse transition is

generally thought to be a tricritical point with upper critical dimension three [49]. This

implies that in three dimensions the collapse transition should exhibit mean-field behavior

(φ = 1/2, α = 0) with logarithmic corrections. The predicted tricritical scaling behavior is

[50]

Im[y1(N)] ∼ N−1/2(lnN)−µ (14)

and

C(Tc)/NkB ∼ (lnN)ζ (15)

where the logarithmic correction exponents are given by µ = 7/11 and ζ = 3/11. Verifying

this scaling behavior using simulation data has proven difficult as very long chains are
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required to clearly establish the logarithmic correction terms [44, 46, 50, 51]. Fits of our

data using the Eq. (14) and (15) scaling forms (not shown), give slightly larger χ2 values than

the fits to Eqs. (10) and (12) (shown in Fig. 9) and yield logarithmic correction exponents

of µ ≈ 1.0(1) and ζ ≈ 2.2(2) which do not agree with the tricritical predictions.

IV. DISCUSSION

In this work we have studied the zeros of the canonical partition function for an isolated

SW-chain polymer. The SW-chain is a continuum (i.e., non-lattice) model, but is charac-

terized by a discrete energy spectrum and thus the partition function is simply given by

a polynomial of order nmax = |Egs/ǫ| in the variable y = e1/T
∗

. The partition function

zeros encode the same information as the partition function itself, but the distribution of

these zeros across the complex y-plane provides an alternate approach to identifying and

characterizing phase transitions. The partition function zero or root maps for the SW-chain

develop very clear patterns with increasing chain length that serve as signatures for different

types of single chain conformational transitions. Here we have connected a circle of nearly

uniformly spaced roots with the freezing transition (i.e., either the globule-crystallite or di-

rect coil-crystallite transitions) and an elliptical horseshoe shaped boundary with the chain

collapse transition. For finite length chains the leading roots on the circle are sufficient

to determine a freezing transition temperature while an ellipse fit to the set of elliptical

boundary points approximately locates the collapse transition temperature. The elliptical

boundary connects with a fan-like tail at the point of closest approach to the Re(y)-axis. We

associate this change in boundary geometry at the leading roots for the collapse transition

with the different thermal behavior of the collapse transition when approached from above

and from below (as seen in Fig. 3).

We have also established an approximate local “circle theorem” associated with the pres-

ence of a convex intruder in the microcanonical entropy function S(E). In particular, a

transformation of the partition function relative to the double tangent line spanning the

convex intruder (and thus defining the transition region of width |∆E|) produces a local

self-reciprocal or mirror symmetry in the partition function polynomial coefficients. This

self-reciprocal or Lee-Yang structure leads to a nearly uniform circle of exactly |∆E|/ǫ zeros

in the complex plane. Furthermore, it is found that the portion of the partition function for
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energy states above the convex intruder (i.e., coil and globule states) produces zeros which

are all inside the circle while the portion of the partition function for energy states below

the convex intruder produces zeros which are all outside the circle. Thus, this circle exactly

divides the complex plane into two regions corresponding to crystallite and non-crystallite

states. Chomaz and Gulminelli have previously demonstrated a one-to-one correspondence

between a bimodal probability distribution and the Lee-Yang theorem in the thermody-

namic limit [11]. The connection we have drawn between the presence of a convex intruder

in S(E) and Lee-Yang behavior is quite similar as the convex intruder generates a bimodal

probability distribution.

The partition function zero maps we have presented for the SW chain model are not

dissimilar from the root maps found for other chain models [15–19, 21, 23]. However, as

noted in the Introduction, these previous studies have been restricted to rather modest

length chains and, thus, the root maps typically resemble our results for N = 32 shown

in Fig. 2a. Short chains simply do not posses enough partition function zeros to display

the well-defined structures we obtain for long chains. This problem is exacerbated in the

case of lattice chains in two-dimensions as studied in most of the above cited references.

The one chain molecule root map in the literature that has a different global topology for

the ones presented here is that for an atomistic model of polyalanine computed by Alves

and Hansmann [24]. This model has a continuous energy spectrum, which these authors

discretized for the analysis of partition function zeros. The resulting zeros cover a disk

region in the complex y-plane centered on the origin and within this disk is a dense circular

ring of zeros. This disk region of roots is bisected by a root-free strip that runs along the full

Re(y)-axis so the circular ring is actually two disconnected semicircles. This chain molecule

undergoes a helix-coil transition and a scaling analysis of the leading roots for 10 ≤ N ≤ 40

found exponents φ = 1.08(6) and α = 0.86(10), consistent with either a “strongly” second

order or a “weakly” first order transition.

We have carried out a similar scaling analysis of the leading partition function zeros for

SW chains with 32 ≤ N ≤ 256 which allows us to determine both transition temperatures

and critical exponents in the N → ∞ limit. In this long chain limit the freezing and collapse

transition temperatures are found to coincide for the case of λ ≈ 1.18. For smaller SW diam-

eters we find the collapse temperature to be lower than the freezing temperature, indicating

that the collapse transition is preempted by the freezing transition. We have previously

17



shown this result for finite length chains [28, 29] but here we are able to demonstrate that

a direct coil-crystal transition occurs in the long-chain limit. For the collapse (coil-globule)

transition our scaling analysis gives a polymer crossover exponent of φ ≈ 0.76(2) and a spe-

cific heat exponent of α ≈ 0.66(2) for square-well diameters in the range 1.05 ≤ λ ≤ 1.30.

These exponents are consistent with a second-order phase transition in the thermodynamic

limit [47]. Fitting our collapse data to a tricritical scaling theory (mean-field exponents

with logarithmic corrections) gives correction terms not consistent with the predictions of

tricritical scaling [50]. Although the recent work of Lee et al. [21] for very short chains

(N ≤ 24) on a cubic lattice does report agreement with the Eq. (14) tricritical scaling form,

the previous work of Meirovitch and Lim [44] on longer chains (N ≤ 250) find results similar

to those reported here.
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FIG. 1. (Color online) Logarithm of the density of states lng(E), relative to the value at E = 0,

vs energy E for a SW chain with SW diameter λ = 1.10 and length N = 32, 64, 128, and 256, as

indicated.
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FIG. 2. (Color online) Partition function zeros in the complex y-plane for a SW chain with SW

diameter λ = 1.10 and length N = (a) 32, (b) 64, (c) 128, and (d) 256. Here y = e1/T
∗

and positive

physical temperatures correspond to the real axis with Re(y) > 1. The g(E) shown in Fig. 1 are

the coefficients for the ZN (T ) polynomials whose roots are shown here. The number of roots in

each case corresponds to the minimum energy used in the Wang-Landau sampling. In (a), one root

located at y = −538 + 0i falls outside the plot range.
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FIG. 3. (Color online) Specific heat per monomer C(T )/NkB vs temperature T ∗ for a SW chain

with SW diameter λ = 1.10 and length N = 32, 64, 128, and 256, as indicated. These functions

have been computed directly from the partition function zeros shown in Fig. 2 via Eq. (5). Chain

collapse and freezing transitions are associated with the primary peaks in these functions. For

N = 256 we include, as symbols, results computed from the density states (which are found to be

identical to results obtained from the partition function zeros).
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FIG. 4. (Color online) Partition function zeros in the complex y-plane for a SW chain with SW

diameter λ = 1.10 and length N = 128. Three sets of roots, obtained from three independent WL

simulations, are plotted using a different symbol and color for each set. Notice that while individual

roots can shown significant variation, the elliptical and circular boundaries, and in particular, the

leading roots are well reproduced.
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FIG. 5. (Color online) Partition function zeros forming (a) the circular ring and (b) the elliptical

horseshoe boundary in the complex y-plane for a SW chain with SW diameter λ = 1.10 and length

N = 32, 64, 128, and 256, as indicated. In (a) the solid lines are circles centered on the origin

which pass through the leading pair of roots. In (b) the solid lines are fits to an ellipse for each set

of data points shown. In (a) and (b) the filled symbols on the positive real axis correspond to the

freezing and collapse transition temperatures, respectively, obtained from the specific heat curves

shown in Fig. 3. The inset in (a) shows an expanded view of the N = 128 and 256 roots near the

positive Re(y)-axis.
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FIG. 6. (Color online) Partition function zeros in the complex y-plane for a SW chain with N = 128

and square-well diameter λ of (a) 1.02, (b) 1.05, (c) 1.06, (d) 1.07, (e) 1.08, and (f) 1.15. In each

case the solid line is an ellipse fit to the set of points defining the elliptical horseshoe boundary.

The number of roots in each case corresponds to the minimum energy used in the Wang-Landau

sampling and here range from 439 for (a) to 450 for (f) (see Ref. [29]). In (f) three pairs of roots

fall outside the plot range.
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FIG. 7. (Color online) (a) Logarithm of the density of states lng(E) vs energy E for a SW chain with

N = 128 and λ = 1.10. The upper straight line is a double tangent construction used to identify

the energy range associated with the first-order freezing transition. Inset: Zeros of the polynomial

built from the transformed coefficients in the transition energy range. (b) Transformed coefficients

cn for the ZN (T ) polynomial in y/yf . These coefficients are seen to possess an approximate mirror

symmetry of the Lee-Yang type across the transition energy range.
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FIG. 8. (Color online) Partition function zeros in the complex y-plane for a SW chain with

N = 128 and SW diameter λ of (a,b) 1.25 and (c,d) 1.30. (b) and (d) provide expanded views

of the elliptical boundary region associated with the collapse transition. In (a) there is a pair

of leading roots approaching the Re(y)-axis at radial distance R =18.1 that is associated with a

sparse circle of roots and a weak freezing transition. In (c) 19 roots fall outside the plot range, but

none of these are near the positive real axis.
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FIG. 9. (Color online) Scaling plots for the leading partition function zeros and specific heat for the

collapse transition. In each case we show simulation results as symbols for SW diameters, from top

to bottom, of λ = 1.05, 1.10, 1.15, 1.20, 1.25, and 1.30. We include multiple results for each root

obtained from independent WL simulations and the symbol sizes are larger than or comparable to

the variation in these duplicate values. (a) The imaginary part of the leading roots y1 vs chain

length N with power law fits shown as lines. (b) The real part of the leading complex temperature

zero β1 vs scaled chain length N−φ where the exponents φ for each λ are given in Table III and

the lines are linear fits. (c) Specific heat C/NkB at the N → ∞ transition temperatures Tc, given

in Table III, vs chain length N with power law fits shown as lines.
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lines are power law fits to each data set.
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