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Bistable Liquid Crystal Displays (LCDs) offer the potential for considerable power savings, compared
with conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are
optically-distinct means that contrast can be maintained in a display without an externally-applied
electric field. An applied field is required only to switch the device from one state to the other, as
needed. In this paper we examine the basic physical principles involved in generating multiple stable
states, and the switching between these states. We consider a two-dimensional geometry in which
variable surface anchoring conditions are used to control the steady-state solutions and we explore
how different anchoring conditions can influence the number and type of solutions, and whether or
not switching is possible between the states. We find a wide range of possible behaviors, including
bistability, tristability and tetrastability, and we investigate how the solution landscape changes as
the boundary conditions are tuned.

PACS numbers: 42.70.Df, 61.30.Dk, 61.30.Gd, 61.30.Hn

I. INTRODUCTION

In “e-ink” display technology [1], spherical microcap-
sules are dispersed in a clear carrier fluid. Each micro-
capsule contains positively charged white particles and
negatively charged black ones, which segregate in a DC
electric field. If the electric field direction is reversed, so
is the segregation of white and black particles in the mi-
crocapsule. Hence, display contrast can be controlled by
applying fields of appropriate polarities in different por-
tions of the screen (pixels). Once the field is removed, the
particles maintain their segregation within the microcap-
sule, so that a field is required only to change the state
of the display. Thus, e-ink is a bistable technology and
uses very little power, giving excellent battery lifetimes.

Most e-readers in current use rely on e-ink technology,
but most portable phones, netbooks and music players
use conventional Liquid Crystal Display (LCD) technol-
ogy. This latter has better optical properties, but higher
power consumption because it requires continuous ap-
plication of an electric field. At the simplest level, an
LCD pixel comprises a thin layer of nematic liquid crystal
(NLC) sandwiched between two glass plates, and placed
between crossed polarizers. The NLC is birefringent: de-
pending on its internal molecular orientation, it can ro-
tate the plane of polarized light. The molecular orien-
tation can be controlled by boundary effects (so-called
surface anchoring; depending on how a surface is pre-
pared the NLC molecules have a preferred orientation
there), and by application of an electric field across the
layer (its typically rod-like molecules align in an applied
field). With the molecules aligned, the polarized light
that passed through the first polarizer is not rotated as
it passes through the NLC layer, and is blocked by the
second, crossed, polarizer. With no applied field, how-
ever, the molecular orientation within the layer is differ-
ent (dictated solely by anchoring now, rather than the

electric field); the polarized light is rotated as it passes
through the NLC layer, and can pass through the sec-
ond crossed polarizer. These two states are therefore
optically-distinct when light is passed through (the first
will be dark, the second bright), and form the basis of an
LCD. However, since the electric field must be “on” to
maintain the contrast between neighboring pixels, such
displays are energetically expensive.

One possible way to reduce the power consumption of
an LCD device is to design it so that it is bistable, with
two stable states for the molecular orientation in the ab-
sence of an applied electric field. Provided these stable
states are optically-distinct, and may be switched from
one to the other by transient application of an electric
field, power consumption could rival that of e-ink tech-
nology, yet with superior optical properties. With no
applied field the only way to control the molecular orien-
tation within the device is by surface anchoring effects;
hence to achieve bistability, control of surface anchoring
is key. If anchoring conditions are chosen appropriately
it is found that two (or more) steady states exist for the
molecular orientation, and that one can switch reversibly
between the two states by applying an electric field across
the bounding plates for a few milliseconds (see [2] and §IV
in the present paper).

In this paper we investigate theoretically a two dimen-
sional (2D) bistable LCD configuration that generalizes
an earlier 1D model [2]. The 1D model considered a sim-
ple nematic sandwich between parallel bounding plates,
and relied on the premise that the bounding surfaces
can be prepared so as to control the preferred molec-
ular orientation of the nematic molecules (the anchor-
ing angle) and the associated anchoring strengths, both
being constant on each boundary. Here we consider a
scenario in which anchoring properties (specifically, the
anchoring angles) vary periodically along the bounding
surfaces. This may be thought of as either a true varia-
tion in anchoring angle, due (e.g.) to chemical gradients
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along the flat bounding surfaces; or perhaps more real-
istically as an approximation to the anchoring variation
induced by a periodically-varying surface topography (as
in, e.g., the Zenithal Bistable Device, or ZBD [3]). We
can view this problem as a perturbation to the associ-
ated 1D problem: the anchoring angles are of the form
α = α(0) + δ cos(2πx∗/L∗) where α(0) is the constant an-
choring angle in the 1D problem, x∗ is the coordinate
parallel to the bounding surfaces, L∗ is the wavelength
of the anchoring variation, and δ is the amplitude, which
will play the role of a bifurcation parameter.

The paper is laid out as follows: in §II we introduce the
key dependent variables, and outline the basic mathemat-
ical model in §§II A, II B. Section II C recaps the results
of bistability and switching for the 1D model, present-
ing the full range of parameter space within which two-
way switching is found. Section IV describes briefly the
numerical approach taken, and presents our key results.
Finally in §V we draw our conclusions.

II. MATHEMATICAL MODEL

The basic setup is a layer of nematic liquid crystal
(NLC), sandwiched between parallel bounding surfaces
at z∗ = 0 and z∗ = h∗. Star superscripts will be used
throughout to denote dimensional quantities, and will
be dropped when we nondimensionalize. The molecules
of the NLC are rod-like, which imparts anisotropy. The
molecules like to align locally, which is modeled by associ-
ating an elastic energy with any deviations from uniform
alignment (§II A below). The local average molecular ori-
entation is described by a director field n, a unit vector
which, in our 2D model, is confined to the (x∗, z∗)-plane,
see Fig. 1. It may therefore be expressed in terms of a
single angle θ(x∗, z∗, t∗),

n = (sin θ, 0, cos θ), (1)

where t∗ is time. We further assume that the electric
field, when applied, is uniform throughout the NLC layer:
E∗ = E∗(t∗)(0, 0, 1). In reality the electric field and the
NLC interact, so that even if E∗ is uniform outside the
layer, it will vary across the layer. A more careful treat-
ment would take this into account; however, based on a
preliminary investigation into variable field effects within
a 1D device [4] we do not expect deviations from unifor-
mity to be significant under normal operating conditions,
and we expect the uniform field assumption is sufficient
for the proof-of-principle investigation here. We recall
that in any case an electric field is utilized only to switch
the nematic configuration from one state to the other,
and therefore the detailed properties of the field are not
so important.

Since we require bistability in the absence of an ap-
plied field, anchoring conditions at the bounding surfaces
z∗ = 0, h∗ are key. The anchoring pretilt angle (denoted
by α in our model, the preferred value of θ at either in-
terface) may be controlled by a variety of surface treat-

FIG. 1: Sketch showing the setup and summarizing the key pa-
rameters in the dimensionless coordinates.

ments; for example, mechanical or chemical treatments,
nano-patterning, and surface irradiation, have all been
shown to produce certain desired anchoring angles [5–17]
with a high degree of control. The anchoring strength
A∗ may also be controlled to some extent [9, 11, 13, 14]
by similar methods. As evidenced by these cited works,
advances in the degree of control attainable are continu-
ally being made and, while not quite yet a reality, “be-
spoke surfaces” with desired anchoring properties are a
real possibility for the near future. We shall therefore as-
sume that surface anchoring angles and strengths are ad-
justable parameters, within a range of physically-realistic
values. We shall furthermore allow the anchoring angles
to vary sinusoidally about some average value:

αi = α
(0)
i + δi cos(2πx∗/L∗ + φi) i = 0, 1, (2)

φ0 = 0, φ1 ∈ [0, π/2]

where i = 0, 1 denotes the lower/upper bounding sur-
face, respectively, and φ1 6= 0 allows for a phase differ-
ence between the variations on each surface. We expect
that such periodic variation will approximate the situ-
ation in which the bounding surfaces themselves have
periodically-varying topography (possibly with a phase
difference between upper and lower surfaces) as seen, for
example, in the Zenithal Bistable Device (ZBD) or Post
Aligned Bistable Device (PABD) [3, 18]. We consider two
cases for the amplitude parameters δ0, δ1: (i) they take
the same value, δ1 = δ0 = δ, or (ii) δ1 = 0, δ0 = δ (per-
turbation only on the lower boundary). Clearly, Eq.(2) is
not the most general form of periodic anchoring variation
that could be considered; nonetheless we expect the re-
sults obtained as δ and L∗ are varied to be representative
of the more general case, and in the interests of keeping
the investigation manageable we restrict attention to this
set of perturbations.

A. Energetics

The free energy of the liquid crystal layer, in the pres-
ence of an applied electric field and with specified an-
choring conditions at each bounding surface, has several
contributions. The bulk free energy density consists of
elastic, dielectric and flexoelectric contributions W ∗e , W ∗d ,
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W ∗f , and in our 2D model with the uniform field assump-
tion these are given by

2W ∗e = K∗1 (∇∗ · n)2 +K∗3 ((∇∗ × n)× n)2,

2W ∗d = −ε∗0(ε‖ − ε⊥)(n ·E∗)2,
W ∗f = −E∗ · (e∗1(∇∗ · n)n + e∗3(∇∗ × n)× n),

where K∗1 and K∗3 are elastic constants, ε∗0 is the per-
mittivity of free space, ε‖ and ε⊥ are the relative di-
electric permittivities parallel and perpendicular to the
long axis of the nematic molecules, and e∗1 and e∗3 are
flexoelectric constants [19–21]. With the director field
n as given by Eq. (1), and the common simplifying
assumption K∗1 = K∗3 = K∗, the total bulk free en-
ergy density W ∗ = W ∗e + W ∗d + W ∗f simplifies. Intro-

ducing the nondimensional forms W = K∗W ∗/h∗2 and
(x, z) = (x∗, z∗)/h∗,

W =
1

2
(θ2x + θ2z)−D cos2 θ +

F
2

(θz sin 2θ − θx cos 2θ)(3)

where

D =
h∗2E∗2ε∗0(ε‖ − ε⊥)

2K∗
, F =

h∗E∗(e∗1 + e∗3)

K∗
(4)

are dimensionless constants. With representative char-
acteristic values h∗ ∼ 2µm, E∗ ∼ 1Vµm−1, e∗1 + e∗3 ∼
5× 10−11C m−1, K∗ ∼ 1× 10−11N, ε‖ − ε⊥ ∼ 5, [22–24]
both D and F are O(1). We emphasize that these values
are not intended to be absolute; a fair degree of variation
about these values is possible, and indeed, many different
combinations of dimensional parameter values will lead
to the same model in dimensionless form. Note that D
and F are not independent; the ratio

Υ =
F2

D
=

2(e∗1 + e∗3)2

K∗ε∗0(ε‖ − ε⊥)
(5)

is a material parameter, independent of the geometry.
We consider the most common case in which the di-
electric anisotropy ε‖ − ε⊥ > 0 (molecules align paral-
lel, rather than perpendicular, to an applied field), so
that D > 0 always. The parameter F characterizing the
dimensionless strength of the applied electric field will,
however, change sign if the electric field direction is re-
versed. Since the representative parameter values listed
above give Υ ≈ 10, we assign this value to Υ throughout
our computations.

The surface anchoring is modeled by a Rapini-
Papoular form [25]; if g∗{0,h∗} = (K∗/h∗)g{0,1} are the

surface energies per unit length at the boundaries z∗ =
0, h∗, then

g0,1 =
A{0,1}

2
sin2(θ − α{0,1}), A{0,1} =

h∗A∗{0,h∗}

K∗
(6)

where A∗{0,h∗} are the anchoring strengths at z∗ = 0, h∗

and α{0,1} are the preferred angles, given by Eq. (2): in

dimensionless form,

αi = α
(0)
i + δi cos(2πx/L+ φi) i = 0, 1, (7)

φ0 = 0, φ1 ∈ [0, π/2]

where the dimensionless perturbation wavelength L =
L∗/h∗. As A → ∞ the anchoring becomes strong, and
the director angle is forced to take the value α. Figure 1
summarizes the setup and notation.

The total (dimensionless) free energy for the system is
given by

J =

∫ 1

0

∫ L

0

W (θ, θz) dxdz

+

∫ L

0

g0(x)|z=0 dx+

∫ L

0

g1(x)|z=1 dx,

and equilibrium solutions are those functions θ(x, z) that
minimize J . The standard calculus of variations ap-
proach, with θ(x, z) 7→ θ(x, z) + εη(x, z) (0 < ε � 1)
leads to J 7→ J [θ+ εη] = J0 + εJ1 + ε2J2 +O(ε3), and for
θ to be a minimizer of J we require J1 = 0, J2 > 0, for
all admissible variations η (the condition on J2 ensures
we have a minimum, rather than a maximum, of the free
energy). After Taylor expansion and integration by parts

J1 =

∫ 1

0

∫ L

0

η
(
Wθ −

(
Wθz

)
z
−
(
Wθx

)
x

)
dxdz

+

∫ L

0

η(g0θ −Wθz )|z=0 dx+

∫ L

0

η(g1θ +Wθz )|z=1 dx

−
∫ 1

0

ηWθx |x=0 dz +

∫ 1

0

ηWθx |x=L dz.

The condition that this vanishes for all admissible varia-
tions η leads to the usual Euler-Lagrange equation for θ,
subject to boundary conditions on z = 0, 1:

Wθ −
(
Wθx

)
x
−
(
Wθz

)
z

= 0, (8)

(g0θ −Wθz )|z=0 = 0, (g1θ +Wθz )|z=1 = 0. (9)

The net contribution to J1 coming from x = 0, 1 is easily
seen to vanish for the form of W specified by Eq. (3) if
periodic boundary conditions on θ are enforced (both θ
and θx continuous). We note that the second variation
J2 may be easily calculated if required to check stability.
However, in practice we find all steady states by solving
a diffusive equation arising from a gradient flow model
(below), which guarantees that only stable steady states
are found.

B. Time-dependent energetics: Gradient flow

As discussed in [2] for the 1D case, if the system is
not initially at equilibrium then it will evolve over time
towards a steady state described by the above equations.
An accurate description of these dynamics requires the
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full equations of nematodynamics [20, 26], which cou-
ple flow to director reorientation. For our explorations
of parameter space that follow, however, the full model
is extremely computationally intensive and instead we
follow several other authors (e.g. Kedney & Leslie [27]
and Davidson & Mottram [24]) in assuming that the sys-
tem evolves in the direction that minimizes its total free
energy (a gradient flow). Both bulk and surface com-
ponents will evolve in this way, and this process leads
to

θt +Wθ −
(
Wθx

)
x
−
(
Wθz

)
z

= 0,

(ν̃θt + g0θ −Wθz )|z=0 = 0, (ν̃θt + g1θ +Wθz )|z=1 = 0,

with the choice of dimensionless time set by

t = t∗
K∗

µ̃∗h∗2
(10)

where µ̃∗ is the dimensional rotational viscosity of the
NLC molecules, typically around 0.1 N s m−2. The pa-
rameter ν̃ is a dimensionless surface viscosity parameter
of size O(1) or smaller [24]; in practice simulations are not
very sensitive to the exact value chosen for ν̃ [28] and we
set it to unity throughout. With bulk and surface energy
densities given by Eqs. (3) and (6), the system becomes

θt = θxx + θzz −D sin 2θ (11)

ν̃θt = θz −
A0

2
sin 2(θ − α0) +

F
2

sin 2θ on z = 0 (12)

−ν̃θt = θz +
A1

2
sin 2(θ − α1) +

F
2

sin 2θ on z = 1 (13)

with D (dimensionless dielectric coefficient), F (dimen-
sionless field strength), A{0,1} (dimensionless surface en-
ergy) and α{0,1} (anchoring angles) given by Eqs. (4), (6)
and (7). An initial condition θ(x, z, 0) closes the model.
When θ is independent of time, Eqs. (11)–(13) are ex-
actly the steady-state model, specified by Eqs. (8), (9).
We will investigate the multistability and switching prop-
erties of Eqs. (11)–(13) as the anchoring perturbation
parameters δ, L, φ are varied. Before doing so, we first
summarize the results of [2] for the analogous 1D model.

C. Summary of results of the 1D model

In the investigation of the 1D model in which anchoring
conditions (and hence solutions) are independent of x, it
was found that at sufficiently weak anchoring strengths,
bistability is possible, with two-way switching between
the stable states, effected by transient application of a
moderate electric field across the bounding plates. The
“switching protocol” adopted when attempting to switch
between the stable steady states is as follows: a uniform
electric field is applied at a fixed strength (characterized
by a fixed value of |F| with both field directions consid-
ered) for t1 dimensionless time units, and then decreased
linearly to zero over a further t1/4 dimensionless time

units. For the subset of investigations relevant to the
present paper, the field strength was fixed at |F| = 5,
while t1 was fixed at 20 (corresponding to a total dimen-
sional switching time of about 150 ms).

The 1D model was optimized in the parameter space
defined by parameters that may be varied in experiments
– anchoring strengths and anchoring angles at the two
surfaces. The optimization was carried out according to
several criteria, principally: (i) maximize the anchoring
strengths allowing two-way switching (to maximize ro-
bustness); (ii) maximize the optical contrast between the
two stable states. If specific weights are assigned to each
of the criteria, an “optimal” configuration can be found,
and examples of this optimization are given in [2]. The
optimization in that paper was carried out in stages, the
first stage being an optimization to maximize surface en-
ergies (i) and contrast (ii), for the case in which the an-

choring angle α
(0)
1 at the upper surface is related to that

at the lower surface, α
(0)
0 , by

α
(0)
1 = α

(0)
0 − π/2. (14)

Following this stage the anchoring angle α
(0)
1 is allowed

to vary independently, and then further desirable criteria
are introduced into the optimization.

In the final optimal states achieved in the subsequent

trials, the anchoring angle α
(0)
1 is quite close to α

(0)
0 −π/2.

Therefore, when using this 1D model as the basis for the
2D geometry considered in the present work, we enforce
the restriction given by Eq. (14), giving a smaller param-
eter space to consider. We also use the same “switch-
ing protocol” outlined above when testing for switch-
ing between the stable states, applying a field of dimen-
sionless strength |F| = 5 for a fixed time interval be-
fore decreasing the field linearly to zero. With these re-

strictions, the entire region of (A0,A1, α
(0)
0 )-space within

which bistability with two-way switching is achieved in
the 1D model may be mapped out with reasonable com-
putational effort. Figure 2 shows this region. For triplets

(A0,A1, α
(0)
0 ) outside this region, no two-way switching is

found in the 1D model. Note in particular the existence
of definitive upper bounds on the anchoring strengths
A0, A1, at which the two-way switching is obtained. We
also note that, where switching is achieved, in either di-
rection, the sign of the electric field is always the same:
F = −5.

III. THE 2D MODEL INVESTIGATIONS

We investigate the effect of adding 2D boundary per-
turbations of the form (7) to the 1D model. This is moti-
vated by several considerations: (i) it is likely that intro-
ducing spatial variation in the boundary will allow the
region where two-way switching occurs to be extended;
(ii) the 2D system is mathematically more complex and
will likely lead to bifurcations to new steady states and
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FIG. 2: The 3D-region of (A0,A1, α
(0)
0 ) parameter space within

which two-way switching is achieved for the 1D model, showing the
particular points P1, P2, P3 used in our investigations of §III. All
points lying within the solid shaded region give two-way switching
under the given switching protocol. The grayscale (color online)
corresponds to the value of the anchoring angle at z = 0.

the possible disappearance of old ones; and (iii) in any
real device boundary variations are inevitable (even if
due only to edge effects) and a 2D study will shed some
light on the robustness of the 1D results.

We perturb the 1D model by replacing the con-

stant anchoring angles α
(0)
0 , α

(0)
1 at the boundaries by

sinusoidally-varying angles given by Eq. (7) (with α
(0)
1 =

α
(0)
0 −π/2). As noted, though such periodic perturbations

are not the most general that could be considered, they
do allow for a manageable parametric study to be carried
out, and we expect the results to be representative of the
more general case. We may view such a perturbation as
due either to surface treatment, which alters the surface
chemistry and causes the anchoring angle to vary; or as
an approximation to the changes in anchoring caused by
topographical variation in the bounding surfaces (as in
the ZBD or PABD devices [3, 18]). One motivation for
allowing such variations is to increase the size of the re-
gion where useful two-way switching is possible (relative
to that for the 1D model), and a key consideration for
robustness of a device to shocks is increasing the allow-
able anchoring strengths at which the device will work.
Hence, we first consider how this might be achieved.

We choose points (A0,A1, α
(0)
0 ) in our parameter space

that are outside the two-way switching region illustrated
in Fig. 2, but close to its boundary. In particular, we in-
crease the surface energies beyond the confines of the 1D
switching region. For such points two-way switching is
not achievable within the 1D framework; but in 2D it may
be possible. We choose three such points to investigate,
all in the region of parameter space close to the highest
allowable surface energies: points P1 = (5.41, 2.45, 1.40),
P2 = (5.50, 2.30, 1.46) and P3 = (4.85, 2.10, 1.46). Other

points (including some that are far from the 1D opti-
mum) were investigated, but did not yield significantly
different results from those for these three points.

For each chosen point we perturb the anchoring bound-
ary conditions in several ways. (i) Perturb the anchoring
only at the lower boundary. This involves setting δ1 = 0
in Eq. (7) and, with no loss of generality, φ0 = 0, leaving
just two perturbation parameters δ and L. (ii) Perturb
the anchoring at both boundaries, with the same ampli-
tude δ1 = δ0 = δ, and with no phase difference between
the boundaries: φ0 = 0, leaving just two perturbation
parameters δ and L. (iii) Perturb the anchoring at both
boundaries, with the same amplitude δ1 = δ0 = δ, and
with variable phase difference between the boundaries:
φ0 = φ ∈ [0, π/2], but fixing the domain length L. This
again leaves just two perturbation parameters, δ and φ.

We describe the outcome of these investigations below.
In all cases we use numerical continuation to generate
our basic stable states. We start from the 1D problem,
where the two stable steady states, which we label n1

and n2, are known analytically [2]. We apply a small
perturbation, δ = 0.1, using each 1D steady state as an
initial condition in Eqs. (11)–(13) (at zero field, D =
F = 0). We solve these equations using a standard ADI
scheme, and look for steady-state solutions, which are
in practice found by evolving Eqs. (11)–(13) until the
results do not change further (typically it is enough to
simulate until t = 30 (dimensionless time units) to ensure
that true steady-state solutions are found). Then, we
use these newly found steady-state solutions as initial
conditions for the more strongly perturbed case, with
δ = 0.2, and so on. If at any stage a new steady state
appears, backward continuation in δ is used to locate its
first appearance. We then subject all solutions found to
our switching protocol (apply a transient electric field, as
for the 1D case described in §II C above). It is possible
that this produces new steady states. If this happens,
these states are also tracked using continuation in δ, as
described above.

To illustrate further the coexistence of the multiple
steady states and the transitions between them, we also
construct bifurcation diagrams in several cases, by plot-
ting a norm of the (stable) steady states versus δ:

norm(n) :=

√√√√M,N∑
i,j=1

(
θi,j(mod.π)2)

MN

)
, (15)

where θi,j is the discretization of the director angle θ
at grid point (i, j), and M,N are the total number of
mesh grid points in each direction. The different steady
states have different norms, hence the solution branches
are distinct when plotted in this way and bifurcations
are evident. Since (as described above) all steady states
are found by time-evolving the dynamic system until no
further change is seen, this method of constructing the
bifurcation diagram can produce only the stable solution
branches. No unstable steady solutions are found by our
methods.
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IV. RESULTS

We summarize our results for each type of bound-
ary perturbation, and for each of the three chosen “test
points” in parameter space, below. The system exhibits
rich behavior, with as many as four distinct steady states
found in certain parameter regimes. We label these four
steady states n1, n2, n3, n4. In accordance with our
continuation methods, n1 and n2 are always the contin-
uations of the 1D steady states found in the unperturbed
problem (consistent with the results of [2]), while n3 and
n4 are new states that only exist with perturbed anchor-
ing. The results on switching are presented symbolically
to denote the outcome at each point in parameter space,
with reference to the global legend presented in Fig. 3.
Each symbol in that legend records which steady states
exist (listed within braces {·}), and what switching is
found between those states (denoted by directional ar-
rows as described in the caption). An example of three
coexisting steady states is shown in Fig. 4.

We note that exploring the complete 3D parameter
space considered would be computationally very demand-
ing. The discussion that follows is limited to illustrating
just some features of the results that may be expected.

A. Equal-amplitude perturbations to anchoring
angles at both boundaries with zero phase difference

Here we consider the domain with anchoring angles α0,
α1 at lower and upper boundaries given by

α0 = α
(0)
0 + δ cos(2πx/L),

α1 = α
(0)
0 − π/2 + δ cos(2πx/L), (16)

as the perturbation amplitude δ and domain length L
vary.

1. Point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40)

Figure 5 shows the results of the switching investi-
gation when the 1D case represented by point P1 in
(A0,A1, α

(0))-space is perturbed at both boundaries,
with no phase difference, as in Eq. (16). We see that for
sufficiently small perturbation amplitude δ the continu-
ations of the two 1D stable steady states exist and there
is still no two-way switching between them. This is to be
anticipated, since the point P1 lies outside the switching
region for the 1D problem. As δ increases however, more
complex behavior emerges.

For sufficiently small values of L, once δ passes a first
threshold value, a window of two-way switching n1 ↔ n2

is observed. This is already a significant finding, since it
shows that two-way switching is possible in the 2D geom-
etry even if it does not occur for the 1D case. This win-
dow disappears when δ passes a second threshold value.
Both threshold values decrease as L increases. When δ

is increased further still, a new steady state n3 is ob-
served. As an illustration, Fig. 4 shows n1, n2, n3 as
vector plots in (x, z)-space over a single wavelength, for
(L, δ) = (4, 0.7).

For small values of L, n3 appears to arise from a pitch-
fork bifurcation of n1 and n2, as shown in Fig. 6. This
figure shows a bifurcation diagram, constructed by plot-
ting a norm of the (stable) steady states versus δ (see
Eq.(15)), Figure 6 shows bifurcation diagrams for the
cases L = 0.5 and L = 4: the case L = 0.5 clearly indi-
cates the pitchfork bifurcation. For this value of L the
stable steady state n3 never coexists with stable steady
states n1 and n2, but replaces them at large δ. As de-
scribed in §III, these bifurcation diagrams show only the
stable solution branches; unstable steady solutions are
not found by our methods.

Figure 5 shows that for larger values of L, L & 2,
the two-way switching between n1 and n2 is suppressed.
The stable steady state n3 appears sooner, at smaller
values of δ, and now coexists with n1 and n2. For
L = 3, although there is no two-way switching n1 ↔ n2,
we do find two-way switching between n2 and n3 (for
δ = 0.6, 0.7, and presumably also in some surrounding
neighborhood of (L, δ)-space), and for δ = 0.5 it is par-
ticularly interesting to observe cyclic switching involving
all three steady states: we see the switching sequence
n1 → n3 → n2 → n1. We expect that this cyclic switch-
ing occurs in some small surrounding neighborhood of
(L, δ)-space.

For L = 6 (the largest value of L considered) the steady
state n3 appears even for the smallest value of δ used, δ =
0.1. More generally, though more steady states exist with
(one would imagine) greater potential for switchability
for larger L, no two-way switching is found for L > 3.
Another consequence of longer domains (larger L) is an
increased degree of solution complexity, as is apparent
from the bifurcation diagram shown in Fig. 6(b).

The steady state n3, once formed, appears rather ro-
bust under the conditions investigated here: other than
the switching noted above for L = 3, and n3 → n2

switching at small δ for L = 6, no switching was found
from this state to any other. Far more switching is found
from the steady states n1 and n2 to other states.

2. Point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46)

Figure 7 shows results when the 1D case represented
by point P2 in (A0,A1, α

(0)) is perturbed at both bound-
aries, with no phase difference, as in Eq. (16). For very
short domains, no two-way switching is found, at any
perturbation amplitude. Only the two steady states n1

and n2 exist until δ = 0.9, when the third steady state
n3 appears. This state replaces both n1 and n2; see
also the bifurcation plot in Fig. 8(a). As the length L
is increased slightly (as with the point P1) a window of
two-way switching opens for a range of δ-values. Again,
at higher δ the third steady state n3 appears, and the
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{n1,n2}  n1An2
{n1,n2,n3}  n2An1, n3An2
{n1,n2}  n2An1
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{n1,n2}  n1Cn2
{n1,n2,n3}  n1An2, n3An1
{n1,n2,n3}  n1An3, n2An3
{n1,n2,n3}  n2Cn3, n1An3
{n1,n2,n3}  n2An1
{n1,n2,n3}  n1An3, n2An1
{n1,n2,n3}  n1An3, n3An2, n2An1
{n2,n3}  n3An2
{n1,n2,n3,n4}  n1An3, n4An2
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{n1,n2,n3}  n1An3
{n1,n2,n3,n4}  n1An4, n3An2
{n1,n2,n4}  n1An4
{n1,n2,n4}  n1An2, n4An2
{n1,n2,n3,n4}  n1An4, n3An2, n4An2
{n1,n2,n4}  n2An4
{n1,n2,n3,n4}  n2An4
{n3}

{n1,n2,n4}  n2An1
{n1,n2,n3}

{n1,n2}

{n1,n3}

{n3,n4}  n3An4
{n1,n2,n4}  n1An4, n2An4

 

 
{n1,n2,n4}  n1An4, n4An2
{n1,n2,n3,n4}  n1An3, n2An3
{n1,n2,n3,n4}  n1An3, n2An4
{n1,n2,n3,n4}  n3An1, n2An4
{n1,n2,n3,n4}  n1An4
{n1,n2,n3,n4}
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{n1,n2,n3,n4}  n1An2, n3An2, n4An2
{n1,n2,n3,n4}  n1An2, n3An2
{n1,n2,n3,n4}  n1An4, n2An3

FIG. 3: (Color online.) Explanation of symbols used in the switching results that follow below. The notation within braces denotes which
steady states exist at a given point in parameter space. The statement ni → nj denotes that switching occurs from state ni to nj ; and
ni ↔ nj denotes that two-way switching occurs between states ni and nj .
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FIG. 4: The three steady states (a-c) n1, n2, n3, corresponding to the point (L, δ) = (4, 0.7) in Fig. 5.

δ-value at which n3 appears decreases as L increases. At
L = 2 yet another steady state n4 appears at large δ: at
this L-value as δ increases we have just two steady states
for 0 ≤ δ ≤ 0.5, with two-way switching for δ = 0.3, 0.4;
for δ = 0.6, 0.7 three steady states n1, n2, n3 coexist;
for δ = 0.8 just n3 exists; and for δ = 0.9 the new steady
state n4 comes into existence, coexisting with n3. No
further two-way switching is found, however. For larger
values L > 3, though the solution space becomes much
richer and more complex, no two-way switching is found
between any pair of stable states, even though for some
parameter ranges all four steady states can coexist (see
the bifurcation diagram for L = 4 in Fig. 8(b) where the
four states coexist for a wide range of δ values). The
steady state n4 appears to be particularly stable here,
since it does not switch to any other state.

The trend of two-way switching for smaller domains,
and of increased solution complexity for longer domains,
is as seen for the point P1 described above. Increased
complexity could be loosely explained based on the in-

creased ability of the director orientation to find addi-
tional configurations; however, we do not have a good
explanation for the lack of two- way switching for these
large domains.

Examples of the four steady states that can coexist are
shown in Fig. 9.

3. Point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46)

Figure 10 shows results when the 1D case represented
by point P3 in (A0,A1, α

(0))-space is perturbed at both
boundaries, with no phase difference, as in Eq. (16). This
case differs from the previous two: the region of two-
way switching has shrunk considerably, to some small
neighborhood of the point (L, δ) = (1, 0.5). As with the
two other points though, the solution space complexity
increases markedly as L increases: for L ≥ 1 we find three
solutions can coexist (n1, n2 and n3), while for L ≥ 4
we again find four solutions that can coexist for a wide
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FIG. 5: Switching results when perturbing the 1D case repre-

sented by point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40), according to

Eq. (16). Symbols are defined in the global legend of Fig. 3.

range of δ-values. This increase in solution complexity
may again be illustrated by bifurcation diagrams as the
bifurcation parameter δ is increased: Fig. 11 shows the
bifurcation diagrams for L = 0.5 and L = 4. As usual,
the shorter domain length leads to a simple pitchfork
bifurcation.

B. Equal-amplitude perturbations to anchoring
angles at both boundaries with phase difference

In this section we consider the case with anchoring
angles α0, α1 at lower and upper boundaries given by

α0 = α
(0)
0 + δ cos(2πx/L+ φ),

α1 = α
(0)
0 − π/2 + δ cos(2πx/L), (17)

as the perturbation amplitude δ and phase-shift φ vary.
For each point in parameter space considered, motivated
by the underlying application (which requires two-way
switching for utility) we fix the domain length L at the
“most promising” value indicated by the results of §IV A.

1. Point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40)

For this point, the (equal) best domain length in terms
of achieving the largest window of two-way switching, as
indicated by the results of §IV A, Fig. 5, is L = 0.5.
We therefore consider the influence of introducing a
phase difference, φ, into the anchoring variations on both
boundaries, as indicated in Eq. (17) above, with L fixed
at this value.

Figure 12 shows the results as the phase difference in
boundary conditions, Eq. (17), is increased from φ = 0
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FIG. 6: Bifurcation diagrams representing stable steady states
obtained when perturbing the 1D case represented by point P1,

(A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40), for the cases L = 0.5 (a) and

L = 4 (b).

to φ = π. Note that for this and the subsequent points
considered, the results for π ≤ φ ≤ 2π may be obtained
by reflecting Fig. 5 about φ = π. Curiously, the results
are almost independent of the phase difference, a sizeable
window of two-way switching persisting for all values of
φ tested. No pattern of increasing solution complexity
emerges here: the third steady state n3 is always ob-
served only for large δ, and no fourth steady state is
found.

2. Point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46)

For this point, the best domain length in terms of
achieving the largest window of two-way switching, as in-
dicated by the results of §IV A, Fig. 7, is again L = 0.5.
Figure 13 shows the results as the phase difference in
Eq. (17) is increased from φ = 0 to φ = π. In this case the
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FIG. 7: Switching results when perturbing the 1D case repre-

sented by point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46), according to

Eq. (16). Symbols are defined in the global legend of Fig. 3.

window of two-way switching shrinks as φ is increased,
and disappears. Otherwise, the behavior is similar to
that observed for point P1 above: there is no evidence of
increasing solution complexity as φ is varied; n3 is found
only at large δ; and no fourth steady state is ever found.

3. Point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46)

For this point, two-way switching was observed in the
results of §IV A only for the domain length L = 1 (see
Fig. 10), hence we fix L = 1 here.

Figure 14 shows the results as the phase difference in
Eq. (17) is increased from φ = 0 to φ = π. As with point
P1, little variation with φ is observed. The small window
of two-way switching persists until φ = π/2, after which
it vanishes. The steady state n3 appears at the same δ
value for all phase shifts φ (δ = 0.7), in coexistence with
n1 and n2 for 0 ≤ φ ≤ π/2, and in coexistence with n2

only for φ > π/2 (so the bifurcation structure changes
slightly as φ is increased).

To conclude, though we carried out only limited tests,
it does not appear that introducing phase difference
into the boundary conditions leads to increased two-way
switching.

C. Perturbation to anchoring angle at one
boundary only

In this section we investigate the effects of anchoring
variations at one bounding surface only (we choose the
lower surface). The anchoring angles imposed when solv-
ing Eqs. (11)–(13) are

α0 = α
(0)
0 + δ cos(2πx/L), α1 = α

(0)
0 − π/2. (18)
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FIG. 8: Bifurcation diagrams representing stable steady states
obtained when perturbing the 1D case represented by point P2,

(A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46), for the cases L = 0.5 (a) and

L = 4 (b).

1. Point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40)

Figure 15 shows that, in line with our earlier results, in-
creasing the domain length, L, is associated with increas-
ing solution complexity; though the switching obtained
is less complex than in §IV A where both boundaries are
perturbed. No two-way switching is ever found, nor any
switching cycles, therefore in this instance at least, per-
turbing just the one boundary does not appear to be
advantageous.

2. Point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46)

Figure 16 shows the results of a perturbation repre-
sented by Eq. (18) to the anchoring conditions on the
lower boundary only, the unperturbed case being repre-
sented by point P2 in the 1D problem. The same general
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FIG. 9: The four steady states (a-d) n1, n2, n3, n4, corresponding to the point (L, δ) = (6, 0.6) in Fig. 7.

0.25 0.5 1 2 3 4 6
0

0.2

0.4

0.6

0.8

1

L

!

FIG. 10: Switching results when perturbing the 1D case repre-

sented by point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46), according to

Eq. (16). Symbols are defined in the global legend of Fig. 3.

observations as for point P1 above hold: again, increas-
ing the domain length, L, is clearly associated with in-
creasing solution complexity, but behavior is overall less
complex than in §IV A where both boundaries are per-
turbed. No two-way switching or switching cycles are
found for any (L, δ)-values tested, therefore for P2 this
type of boundary perturbation also does not lead to de-
sired two-way switching.

3. Point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46)

Figure 17 shows the results for point P3 in the 1D
problem. This case behaves similarly to points P1 and P2

above, with increasing L leading to increased complexity,
but with no useful two-way or cyclic switching found.

V. DISCUSSION AND CONCLUSIONS

We have taken a basic but promising 1D model for
a bistable LCD device [2], and investigated how it be-
haves under a specific class of spatial perturbations to
the anchoring boundary conditions (sinusoidal perturba-
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FIG. 11: Bifurcation diagrams representing stable steady states
obtained when perturbing the 1D case represented by point P3,

(A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46), for the cases L = 0.5 (a) and

L = 4 (b).

tions to the anchoring angles at the flat bounding sur-
faces). While more general periodic boundary perturba-
tions could be considered, we restrict attention to those of
the form (7), because they afford a manageable parame-
ter space to study, and because we believe the results will
be representative of the more general case. Such pertur-
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FIG. 12: Switching results when perturbing the 1D case repre-

sented by point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40), according

to Eq. (17). The domain length is fixed at L = 0.5. Symbols are
defined in the global legend of Fig. 3.
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FIG. 13: Switching results when perturbing the 1D case repre-

sented by point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46), according

to Eq. (17). The domain length is fixed at L = 0.5. Symbols are
defined in the global legend of Fig. 3.

bations to the anchoring angles could be due to periodic
chemical gradients imposed at the surfaces, or may be
thought of as approximating a device with periodic to-
pographical variations. The study of such variations is
important for two reasons: firstly, it may provide useful
indications of how to tune boundaries to create a work-
able bistable device of this kind, which improves on the
simpler 1D model proposed in [2]; and secondly, it affords
insight into the robustness of the underlying 1D device
to engineering imperfections.

Our results are presented for a few chosen sample
points in the space of surface energies A0, A1, at the
upper and lower bounding surfaces respectively, and un-

0 pi/4 pi/2 3pi/4 pi
0

0.2

0.4

0.6

0.8

1

q

b

FIG. 14: Switching results when perturbing the 1D case repre-

sented by point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46), according to

Eq. (17). The domain length is fixed at L = 1. Symbols are defined
in the global legend of Fig. 3.
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FIG. 15: Switching results when perturbing the 1D case repre-

sented by point P1, (A0,A1, α
(0)
0 ) = (5.41, 2.45, 1.40), according to

Eq. (18). The lower boundary only is perturbed, and δ and L vary.
Symbols are defined in the global legend of Fig. 3.

perturbed anchoring angle α
(0)
0 at the lower bounding

surface, as outlined in §II C and §III. The motivation
for choosing these test points was that they lie nearby
the most promising region of parameter space for the
1D model, but when unperturbed, do not permit two-
way switching [2]. Perturbing a 1D device based on
these points therefore gives some insight into whether
2D effects can lead to improvements over the 1D re-
sults. The unperturbed anchoring angle at the upper

bounding surface, α
(0)
1 , is fixed by Eq. (14). Both an-

choring angles are systematically perturbed according to
three different protocols, described in §IV A (in-phase,
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FIG. 16: Switching results when perturbing the 1D case repre-

sented by point P2, (A0,A1, α
(0)
0 ) = (5.50, 2.30, 1.46), according to

Eq. (18). The lower boundary only is perturbed, and δ and L vary.
Symbols are defined in the global legend of Fig. 3.
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FIG. 17: Switching results when perturbing the 1D case repre-

sented by point P3, (A0,A1, α
(0)
0 ) = (4.85, 2.10, 1.46), according to

Eq. (18). The lower boundary only is perturbed, and δ and L vary.
Symbols are defined in the global legend of Fig. 3.

variable-amplitude, variable wavelength perturbations to
both angles), §IV B (variable phase, variable amplitude,
fixed wavelength perturbations to both angles) and §IV C
(variable amplitude, variable wavelength perturbations
to one angle only). Where both boundaries are per-
turbed, the perturbation amplitude, δ, is the same at
each boundary; where only the lower boundary is per-
turbed, the phase difference, φ, is zero by default. Since
only two of the three variables δ, L (domain length) and
φ are perturbed in any set of experiments, our results on
the steady states found and switching between them can
be represented graphically by 2D parametric plots.

For all cases studied the perturbations lead to surpris-

ingly rich behavior when compared with the 1D case.
As we would expect, for sufficiently small δ, the results
are close to those found in 1D: only two stable steady
states, with no two-way switching under transient appli-
cation of an electric field. However, for a given L we find
a threshold value δ∗ at which a bifurcation occurs and
new steady states are found. This threshold value δ∗ de-
creases as L increases. Depending on the value of L, the
new steady state(s) may either replace the continuations
of the original steady states n1 and n2 (a simple pitchfork
bifurcation; Figs. 6(a), 8(a), 11(a)), or else coexist with
them (a saddle-node bifurcation; Figs. 6(b), 8(b), 11(b)).
Though a full bifurcation study was not performed, our
results indicate that short domains (small L) lead to a
pitchfork bifurcation in which bistability yields to monos-
tability, while long domains give a more complex bifur-
cation structure with folds, in which multiple distinct
steady states can coexist (in the cases we considered, up
to four states were found simultaneously). The bifurca-
tion to tri- and tetrastability can occur at very small δ∗

for the largest L’s considered. Somewhat surprisingly,
introducing a phase difference between perturbations at
the two boundaries does not have a significant effect on
the results obtained, at least for the domains considered.

On the one hand, our results indicate that long-
wavelength perturbations of even very small amplitude
may introduce significant complexity, in particular mul-
tiple stable steady states, but with a lack of reversible
switching between them. While interesting from a scien-
tific point of view, this finding also has a practical conse-
quence, since it suggests that such perturbations are not
useful if a reliable bistable device with two-way switching
is desired. This finding also suggests that an unperturbed
device, of the kind discussed in [2], may be unstable if the
domain length is large, with possible multistability and
undesired complexity.

On the other hand, we do find a sizeable set of bound-
ary perturbations for which two-way switching is found
between states n1 and n2, for parameters for which two-
way switching is not possible in the unperturbed case.
Even more interestingly, we find that two-way switching
between the newly-found n3 state and the n2 state, as
well as cyclic switching n1 → n3 → n2 → n1, may
occur. Therefore, we find significant potential utility
of the boundary perturbations, particularly of shorter
wavelengths, provided one can make boundary modifica-
tions of wavelength comparable to or smaller than the de-
vice thickness, and of reasonable amplitude. Presumably
the finite-sized amplitude of such perturbations would
be sufficient to destroy the undesired sensitivity to long-
wavelength, small amplitude perturbations noted above.
Though both directions of the electric field are consid-
ered when testing for switching (F = ±5), the switching
is always found for F = −5 (this was also the case for
the 1D problem [2]).

We note that our results are also of interest when com-
pared to theoretical simulations of the so-called ZBD
(Zenithal Bistable Device) [3]. In that device a 2D model
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is found to permit bistability and two-way switching via
boundary perturbations (geometric, for the ZBD); but
one of the two steady states always has a disclination.
Our model suggests that a truly 2D bistable switchable
device may in fact be possible without any disclinations.

Throughout this study, in our switching investigations
it was assumed that the electric field, when applied, is
uniform throughout the NLC. In reality of course there
is interaction between the field and the NLC, leading to
nonuniformities in the field. A preliminary investigation
into the size of such deviations from uniformity for the
1D model suggests that, under typical operating condi-
tions, they are small [4]; more details of nonuniform field
effects will be published in a forthcoming paper. We have
not explored extensively the influence of the strength or
duration of the applied electric field but, based on our
previous analysis of the one dimensional configuration
in [2], we would not expect to see significant influence of
these quantities on the presented results (the field is sim-
ply the means by which switching is effected: as long as
it is sufficiently strong and applied for sufficiently long,
which we believe is the case in the present paper, then if
switching is theoretically possible it should be observed).

We do not, in this paper, carry out a detailed study of
optical contrast between the stable states found, since we
are far from producing any kind of optimal device of this
kind. We note however that optical contrast ratios were
calculated for the 1D solutions of [2] from which our 2D
solutions derive, and were found to be generally good.
In addition, the bifurcation plots in the present paper,
showing the norm of the director field versus perturbation
amplitude, provide some crude estimate of the contrast
between the steady states.

In this work, we have considered a three dimensional

parameter space defined by (A0, A1, α
(0)
0 ). It is clearly

difficult to analyze this large space in detail by the
present methods, and we certainly cannot claim that the
results found at the considered isolated points cover the
whole range of possible behavior. For example, we found
that up to four steady states can co-exist in some cases;
however even more complex scenarios with a larger num-
ber of stable solutions are possible. Despite the limi-

tations of the presented analysis, our results do suggest
that improvements from the unperturbed 1D configura-
tions are possible; however, the extent of these improve-
ments may depend on the choice of physical parameters
(anchoring strengths and angles). In addition, our results
strongly suggest that short wavelength perturbations are
more promising if formulation of a bistable switchable de-
vice is desired. A more detailed study, beyond the scope
of the present paper, is required to determine the true
utility of such a device. More points in parameter space
should be considered to confirm the generality of our find-
ings for the few points studied here; and for the most
promising short-wavelength boundary perturbations, a
detailed study of the energy landscape should be made
(the energy barriers between stable states should be nei-
ther too high to surmount, nor too low for robustness to
shocks), and the optical contrast ratios calculated.

Finally, we note that, of course, all of our results here
are restricted to two space dimensions, and take no ac-
count of three-dimensional effects. The 2D problem for
the director field in an NLC is rather special, since n
may be described in terms of a single polar angle, θ. If
3D variations are permitted to either device boundary
then a second (azimuthal) angle φ is required to charac-
terize the director, and a system of coupled PDEs for θ
and φ (arising from the gradient flow model due to the
more complicated free energy describing 3D elastic de-
formation) must be solved. Even for simple classes of
3D perturbations to the bounding surfaces, and for the
simplest case of conical anchoring on φ at both surfaces,
we might expect the results to be correspondingly richer
still than those presented here.
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