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profile is a cross-section of the position-time sine-Gordon amplitude profile. Here we

show that when one system is embedded in a higher-dimensional system in this way,

obvious symmetries in the larger system can lead to nontrivial symmetries in the

embedded system. In particular, a thin buckled membrane on a fluid substrate has a

continuous degeneracy that interpolates between a symmetric and an antisymmetric

fold. We find the Hamiltonian generator of this symmetry and the corresponding

conserved momentum by interpreting the simple translational symmetries of the sine-

Gordon chain in terms of the embedded coordinates. We discuss possible extensions

to other embedded dynamical systems.
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I. INTRODUCTION

Thin elastic sheets form rich patterns when stressed or confined. One may try to account

for these patterns as weak deformations of a simple (e.g., flat) reference state. It has been

recognized, however, that as the sheet is made increasingly thin and bendable, the validity

range of such near-threshold analyses shrinks indefinitely, along with their experimental

relevance [1–3]. Crumpled paper is a prime example of such a far-from-threshold behavior

[4].

A thin elastic sheet, compressed on top of a heavy fluid [5–15], provides a simpler example

of this situation. The leading-order analysis of the deformation yields a periodic pattern

of wrinkles with wavelength λ = 2π[B/(ρg)]1/4 [5, 6]. The finite wavelength arises from a

competition between the resistance of the sheet to bending (B being the sheet’s bending

rigidity) and the resistance of the fluid substrate to height changes (ρ being the fluid mass

density and g the gravitational acceleration). Since B depends on the sheet thickness H

as B ∼ H3, the wrinkling wavelength decreases with decreasing thickness as λ ∼ H3/4.

A higher-order analysis reveals that the wrinkling pattern is actually stable only for small

lateral displacements, ∆ < ∆w ∼ λ2/L, where L is the total length of the sheet [13, 14].

This validity range diminishes with either decreasing H or increasing L. Beyond it the

deformation becomes localized in a finite domain (fold) of width κ−1 ∼ λ2/∆ [13, 14].

It takes a mere displacement of ∆ ∼ λ to concentrate all the deformation into a single

wavelength and make the fold contact itself [9, 13, 15]. Thus, the relevant response of a

sufficiently thin sheet is practically always far from threshold, involving a strong localized

deformation. Similar observations hold when the fluid substrate is replaced by an elastic

one [14, 16–22].

It is therefore fortunate and beneficial that the fluid-supported sheet under uniaxial

compression turns out to be an integrable system [15]. Exactly solvable problems often owe

their integrability to extra symmetries. In the current work we focus on the corresponding

extra symmetry in the fluid-supported sheet, which is manifest in a continuous degeneracy

of ground states [23, 24]. We connect this peculiar property of the one-dimensional buckling

problem to the simple translational symmetries of the two-dimensional sine-Gordon problem.

In Secs. II and III we repeat the definition of the problem and its representation as

a dynamical system [15]. In Sec. IV we establish the relation between our problem and
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the sine-Gordon chain. In Sec. V we characterize the resulting extra symmetry, including

consequences concerning the fluid mass displaced by the sheet and the associated buoyant

force. Finally, in Sec. VI we discuss consequences of the new symmetry and analogous cases

in other physical systems.

II. THE SYSTEM

The system under consideration is schematically illustrated in Fig. 1. An incompressible

sheet of bending modulus B lies on a semi-infinite fluid of mass density ρ. The sheet is

assumed to be indefinitely long and deform in the xz plane, remaining uncurved along the

y axis. The deformation is parameterized by either the height profile h(u) or the slope

angular profile φ(u) as a function of the arclength u along the sheet. The two functions are

geometrically linked by the relation ḣ = sinφ, where hereafter a dot denotes a derivative

with respect to u. The sheet is subjected at its edges to a uniaxial pressure P along x, which

is accompanied by a displacement ∆ =
∫∞

−∞
du(1− cos φ) between the two edges.

x
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FIG. 1. Schematic view of the system.

A given deformation costs energy per unit length, E = EB + EG, with contributions

from bending, EB = (B/2)
∫∞

−∞
duφ̇2, and from gravity, EG = (K/2)

∫∞

−∞
duh2 cosφ, where

K = ρg. We use dimensionless variables, where all lengths are scaled by (B/K)1/4 = λ/(2π)

and all energies by B. The pressure is consequently scaled by (BK)1/2. An equilibrium

shape of the sheet is one that minimizes E−P∆ for a given P and the appropriate boundary

conditions. We thus look for the minimum of the following functional:

S =

∫ ∞

−∞

duL(φ, h, φ̇, ḣ)

L =
1

2
φ̇2 +

1

2
h2 cosφ− P (1− cos φ)−Q(sin φ− ḣ). (1)
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In Eq. (1) a Lagrange multiplier, Q(u), has replaced the local constraint on the relation

between h and φ.

III. THE SHEET AS A DYNAMICAL SYSTEM

We study the deformation of the sheet using a mechanical analogy, where the arclength u

along the sheet stands for time, and the angle φ(u) and height h(u) represent two coordinates

with conjugate momenta pφ and ph [15]. The equilibrium shape of the sheet is given by the

trajectory [φ(u), h(u)] that minimizes the action in Eq. (1). The Lagrangian L(φ, h, φ̇, ḣ)

appearing in Eq. (1) transforms into the following Hamiltonian:

H(φ, h, pφ, ph) =
1

2
p2φ + ph sin φ−

1

2
h2 cosφ+ P (1− cosφ). (2)

The fact that H is a constant of motion corresponds to one apparent symmetry of the

homogeneous sheet— its invariance to translation in u. In what follows we explicitly distin-

guish between derivatives with respect to the canonical variables (using the symbol ∂) and

derivatives with respect to the coordinates (using dots and primes).

Hamilton’s equations yield the following dynamical system:

φ̇ = ∂pφH = pφ (3a)

ḣ = ∂phH = sinφ (3b)

ṗφ = −∂φH = −ph cosφ− (h2/2 + P ) sinφ (3c)

ṗh = −∂hH = h cosφ, (3d)

whose solution gives the equilibrium shape. Equations (3a) and (3d) identify the φ-conjugate

momentum as the local curvature, pφ = φ̇, and the h-conjugate momentum as the fluid

mass displaced by the deformed sheet up to point u, ph =
∫ u

−∞
du1h cosφ. In the case of a

localized fold in an infinite sheet the following boundary conditions apply: h, φ, φ̇ = pφ = 0

at u → ±∞, resulting inH = 0. Further requiring that φ̈ = 0 far away from the fold implies,

through Eq. (3c), that also ph = 0 at u → ±∞. We have found the exact solution of this

problem by relating it to the integrable sine-Gordon chain [15]. The integrability of our

system implies the existence of a complete set of conserved canonical momenta. Since the

system has two canonical momenta, it must thus have two conserved dynamical variables,

the Hamiltonian H and one other. We shall call this conserved quantity K and determine
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it in Sec. V. We need to discuss first the relation between our system and the sine-Gordon

chain.

IV. RELATION TO THE SINE-GORDON CHAIN

Equations (3a), (3c), and (2) with H = 0, yield

...
φ + (φ̇2/2 + P )φ̇+ h = 0, (4)

which is the known equation of Euler’s elastica [4, 25], with the hydrostatic pressure term h

(ρgh in dimensional terms) playing here the role of an external normal force. Differentiating

once with respect to u, we obtain a fourth-order equation for the angle φ(u) alone,

....
φ + [(3/2)φ̇2 + P ]φ̈+ sin φ = 0. (5)

Equation (5) is related to a known hierarchy of nonlinear partial differential equations—

the combined sine-Gordon and modified KdV (sG-mKdV) hierarchy [26]. The first three

equations in that hierarchy, for the two-dimensional function φ(u, v), read:

φ̇′ + 2(βeiφ − αe−iφ) = 0 (6a)

φ̇′ − iφ̈+ 2(βeiφ − αe−iφ) = 0 (6b)

φ̇′ + (i/4)
....
φ + (i/8)φ̇2φ̈− icφ̈+ 2(βeiφ − αe−iφ) = 0, (6c)

where a prime denotes a derivative with respect to v. Note that all equations in the hierarchy

are invariant to translations in both coordinates, u and v. Setting α = β = i/4 in Eq. (6a)

yields

φ̇′ = sin φ. (7)

This is the sine-Gordon (SG) equation in light-cone coordinates, u = (x+t)/2, v = (x−t)/2,

describing the swaying angle φ(x, t) of a pendulum at position x and time t along a chain

of coupled pendulums. Setting in Eq. (6b) α = β = −1/4 and projecting the equation onto

a constant v, we obtain the physical-pendulum (PP) equation,

φ̈+ sinφ = 0, (8)

where here φ(u) describes the swaying angle of a single pendulum at time u. Finally, upon

setting α = β = 1 and c = −P , and projecting onto a constant v, Eq. (6c) coincides with

the shape equation for the sheet, Eq. (5).



6

The relation to the sG-mKdV hierarchy enables us to obtain solutions of Eq. (5) from

known solutions of the PP equation (8) or projected solutions of the SG equation (7).

Specifically, we take the “breather” solution of Eq. (7),

φ(u, v) = 4 tan−1

[

κ

k

sin(k(u− v + c1))

cosh(κ(u+ v + c2))

]

, k2 + κ2 = 1, (9)

describing a standing localized wave in the chain of pendulums. The two arbitrary constants,

c1 and c2, reflect the two symmetries of the SG chain under translations in space x and time

t (equivalently, along the two light-cone coordinates u and v). Projection of the breather

solution onto one of the light-cone coordinates (e.g., u with v = 0) yields the solution to the

localized-fold profile,

φ(u) = 4 tan−1

[

κ

k

sin(k(u+ c1))

cosh(κ(u+ c2))

]

, k2 + κ2 = 1. (10)

Substituting it in Eq. (5), we find

k =
1

2
(2 + P )1/2, κ =

1

2
(2− P )1/2. (11)

The expression for the height profile, h(u), can be obtained in closed form as well but is

postponed until the end of Sec. V.

V. THE EXTRA SYMMETRY

The discussion above shows that the folding profiles φ(u) are embedded in an autonomous

two-dimensional system: the sine-Gordon system. The obvious translational invariance of

the sine-Gordon system in v entails a corresponding invariance of the folding profiles that is

not obvious: not only can the entire profile be translated along the sheet, but the oscillatory

and decaying parts of the profile can be shifted independently [cf. Eq. (10)]. Consequently,

in between the symmetric fold (c1 = c2 = 0) and the antisymmetric one (c1k = π/2, c2 = 0)

there exists a continuous family of degenerate profiles, having the exact same displacement

and the exact same (minimum) energy [23, 24]. This is demonstrated in Fig. 2.

We can directly demonstrate that the specific solution presented in the preceding section

satisfies this symmetry— i.e., that shifting v in the profile of Eq. (9) leaves all energy terms

invariant. The purpose of the current section, however, is to establish and characterize the

extra symmetry at the level of the original functional to be minimized, Eq. (1). Thus, any

other solution to the problem will have to satisfy this symmetry as well.
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FIG. 2. (color online). Shapes of a folded sheet for P = 1. In between the symmetric fold (lowest

black curve) and the antisymmetric one (uppermost red curve) there is a continuum of degenerate

shapes having the exact same displacement and energy. The shapes were calculated from Eqs. (10)

and (11) with c2 = 0 and c1k = 0, π/8, π/4, 3π/8, and π/2.

A. Conservation law

To find the conserved quantity associated with the extra symmetry, K(φ, h, pφ, ph), we

seek the generator of v-translations in the Hamiltonian phase space of Eq. (2),

{f,K} = f ′, (12)

where f(u, v) is an arbitrary function expressed in terms of our canonical variables [Eq.

(2)], and {· · · } are Poisson brackets. In the derivation below we make use of the following:

(a) our knowledge of the first conserved quantity, H [Eq. (2)], and the resulting Hamilton

equations (3); (b) the set of equations, analogous to Hamilton’s, that derive from K, i.e.,

{φ,K} = ∂pφK, {h,K} = ∂phK, {pφ,K} = −∂φK, {ph,K} = −∂hK; (c) the fact that φ(u, v)

should satisfy the SG equation (7). (Note, however, that we make no use of any particular

solution of the SG equation.) Below we obtain a set of differential constraints on K, find

a functional form consistent with these, and finally verify that this K, (a) generates the

desired shift in v, and (b) commutes with H.

Taking f = φ in Eq. (12) and differentiating both sides with respect to u, we find

(d/du){φ,K} = φ̇′ = sin φ = ḣ. Thus, up to an integration constant, taken as zero,

∂pφK = φ′ = h. (13)
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We note that the equation φ′ = h provides the connection between the coordinate v and the

actual sheet,

hdv = φ̇du.

It also represents the fact (now in terms of v rather than u) that φ and h are inter-

independent; just as ḣ = sinφ along the u coordinate, φ′ = h along the v coordinate.

Applying a similar procedure with f = h yields (d/du){h,K} = ḣ′ = (sinφ)′ = cosφφ′ =

h cosφ = ṗh. Thus, up to an integration constant,

∂phK = ph. (14)

Next, for f = pφ, we have {pφ,K} = p′φ = φ̇′ = sin φ. Thus,

∂φK = − sin φ. (15)

Finally, for f = ph, we get (d/du){ph,K} = ṗ′h = (h cosφ)′ = cosφh′ − h sinφφ′ = ph cosφ−

h2 sin φ. Using Hamilton’s equation (3c), we write this result as (d/du){ph,K} = −ṗφ −

[(3/2)h2 + P ] sinφ = −(d/du)[pφ + h3/2 + Ph]. Thus, up to an integration constant,

∂hK = pφ +
1

2
h3 + Ph. (16)

Gathering the information from Eqs. (13)–(16), we obtain an expression for the second

conserved quantity,

K =
1

2
p2h + hpφ +

1

2
h2(h2/4 + P )− (1− cosφ). (17)

We may now verify that this candidate form for K satisfies the requirements (a) and (b)

above. By construction, the K of Eq. (17) satisfies Eqs. (13)–(16). Thus, it generates a shift

in v, fulfilling requirement (a). To address requirement (b) we may explicitly verify that K

of Eq. (17) is a constant of motion,

{K,H} = (∂φK)(∂pφH)− (∂pφK)(∂φH) + (∂hK)(∂phH)− (∂phK)(∂hH) = 0, (18)

as can be verified by direct substitution using Eqs. (13)–(16). While this K bears no obvious

resemblance to H of Eq. (2), the two must nevertheless be equivalent in generating the fold.

The SG equation (7) is invariant to interchanging u and v, and a localized SG solution along
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a line of constant u must be equivalent to that along a line of constant v. To verify this

duality we form the Hamilton equations generated by K,

φ′ = ∂pφK = h (19a)

h′ = ∂phK = ph (19b)

p′φ = −∂φK = sinφ (19c)

p′h = −∂hK = −pφ − h3/2− Ph. (19d)

When the two dynamical systems (3) and (19) are compared, their equivalence is not obvious.

The replacement h ↔ pφ, however, makes Eqs. (19a) and (19c) the same as Eqs. (3a) and

(3b), respectively, and Eqs. (19b) and (19d) yield Eq. (4) of Euler’s elastica. Once a single

equation for φ(v) is constructed,

φ′′′′ + [(3/2)(φ′)2 + P ]φ′′ + sin φ = 0, (20)

and compared with Eq. (5), the equivalence is apparent.

Finally, we use the extra symmetry to obtain closed-form expressions which could not be

derived in earlier works. The height profile, h(u) =
∫ u

−∞
du1 sinφ, is obtained according to

Eq. (19a) by differentiating the breather, Eq. (9), with respect to v and then setting v = 0.

We get

h(u) = −4kκ
k cos ũ1 cosh ũ2 + κ sin ũ1 sinh ũ2

k2 cosh2 ũ2 + κ2 sin2 ũ1

(21)

ũ1 = k(u+ c1), ũ2 = κ(u+ c2).

Similarly, according to Eq. (19b), we obtain the profile of displaced fluid mass, ph =
∫ u

−∞
du1h cosφ, by differentiating the breather twice with respect to v and setting v = 0.

This yields

ph(u) =
2kκ

(k2 cosh2 ũ2 + κ2 sin2 ũ1)2

[

2kκ{k2 cosh(2ũ2) + κ2 cos(2ũ1) + k2 − κ2} cos ũ1 sinh ũ2

−{(k2 − κ2)[k2 cosh(2ũ2) + κ2 cos(2ũ1)] + k4 + 6k2κ2 + κ4} sin ũ1 cosh ũ2

]

. (22)

B. Shape transformation

The actual transformation generated by the extra symmetry is nontrivial. From Eqs.

(19a) and (19b) we see that a slight translation δv in the extra dimension adds to the
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angle of the sheet at each point a small amount proportional to the height at that point,

φ(u) → φ(u) + h(u)δv; to the height it adds a small amount proportional to ph, the fluid

mass displaced up to that point, h(u) → h(u) + ph(u)δv. In Fig. 2 one can try to follow

these small changes between consecutive curves.

We verify that such an infinitesimal transformation leaves the mechanical energy of the

sheet unchanged. Applying it to the bending energy, we get

δEB

δv
= φ̇ḣ = sin φφ̇ = −(d/du)(cosφ), (23)

which is a total differential, contributing only a boundary term to the integrated bending

energy. That contribution vanishes for our boundary conditions. For the gravitational

energy we get, with the help of Eq. (3d),

δEG

δv
= hph cosφ−

1

2
h3 sin φ = phṗh −

1

2
h3ḣ = (d/du)(p2h/2− h4/8), (24)

which is a total differential as well. The contribution from the h4 term vanishes for our

boundary conditions; the vanishing of the second boundary contribution is discussed in the

next subsection. Thus, both the bending energy and the substrate energy are separately

invariant to the transformation. We further confirm that the functional giving the displace-

ment for a given P is invariant too,

δ∆

δv
= h sinφ = hḣ = (d/du)(h2/2). (25)

Finally, the variations δḣ/δv = ṗh and δ sin φ/δv = h cosφ are equal thanks to Eq. (3d),

ensuring that the transformation does not violate the geometrical constraint ḣ = sin φ.

C. Buoyant force

When defining the system in Sec. II, we have prescribed the lateral force per unit length

acting on the sheet, P , which is coupled to the lateral displacement, ∆. By contrast, no

explicit term has been introduced to impose an external vertical force or a certain vertical

displacement, apart from the boundary condition h(u → ±∞) = 0. This is equivalent to

imposing a zero vertical force. In the absence of such an external force, the total vertically

displaced fluid mass must vanish. The localized solutions of the profile equation should

automatically satisfy this constraint.
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As mentioned above, the mass of vertically displaced fluid up to a certain point u in the

sheet is equal to the h-conjugate momentum, ph =
∫ u

−∞
du1h cosφ [cf. Eq. (3d)]. Thus, the

total displaced fluid mass is Mf = ph(∞). The fact that Mf = 0 then readily follows from

Eq. (3c) applied at u → ∞. It is inferred also from the conservation of K when setting

K(−∞) = K(∞) in Eq. (17). Finally, we explicitly confirm that ph(±∞) → 0 using the

closed-form expression for ph, Eq. (22).

VI. DISCUSSION

The physical property of the sheet–fluid composite, underlying the extra symmetry, is

unclear. We have found no physical argument to explain why the shape transformation

described in Sec. VB leaves the mechanical energy of the sheet invariant. Nonetheless, in the

two-dimensional problem, in which we have embedded our one-dimensional system, the extra

symmetry is a trivial translation invariance along the extra dimension. The surprising fact

that the different energy contributions are individually invariant to the shape transformation

generated by K follows as well from an evident symmetry of the sine-Gordon chain— the

invariance to exchange of its two light-cone coordinates (which in turn derives from the time-

reversal symmetry of the chain of pendulums). Each energy term is obviously invariant to

translation along the sheet (i.e., translation in u) and, therefore, due to the u ↔ v symmetry,

must be individually invariant also to translation in v.

This situation is reminiscent of the phason freedom in quasicrystals [27–29]. In the actual

quasicrystal the degenerate phason states correspond to nontrivial coordinated flips of atom

locations. Yet, once the quasicrystal is represented as a projection of a higher-dimensional

Bravais lattice [28], the phason flips are obtained from simple lattice translations along the

extra dimensions. An important distinction between the new symmetry and phasons is

that the generated transformation is continuous rather than discrete. Thus, there are no

energy barriers between the degenerate shapes. Boundary conditions are expected to remove

the degeneracy and will usually favor the symmetric and/or antisymmetric states [9]. The

corresponding energy differences, however, should be exponentially small in κL. Therefore,

we anticipate important consequences of the continuous degeneracy for the dynamics of

ultra-thin fluid-supported films.

On the face of it, the K symmetry arises only from the translational invariance of the two-
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dimensional host system in which it is embedded. There is no apparent need for integrability

of the host system. Yet, when one attempts to determine K in practice for a non-integrable

host system, the procedure of Eqs. (12)–(16) fails. The differential conditions imposed by

these equations do not integrate to a well-defined function of (φ, h, pφ, ph). The requirement

that these conditions must define a definite K function may then be a way of formulating

the condition for integrability of the host system.

The floating elastic sheets discussed here occur widely in physical systems, especially in

molecular and nanoparticle monolayers [9, 10, 30]. Thus we expect the degenerate shapes

described above to have physical implications. First, one should in principle see the de-

generacy in the model experiments on macroscopic sheets where this folding was initially

demonstrated [9]. However, only the symmetric and antisymmetric folds were reported.

These sheets had lengths L not much greater than the width of the deformed region, so that

boundary effects not considered here could have broken the degeneracy. In molecular sheets

[31] one may imagine a distortion of the y-invariant fold in which the asymmetry param-

eter varies slowly along the y direction, as demonstrated in Fig. 3. The extra energy for

such a distortion must vanish as its wavelength goes to infinity, even though its amplitude

is large. Here too, extra effects may act to select one or another of the asymmetric folds.

For example, self-attraction favors the symmetric fold, since this variant approaches itself

more closely than the others. On the other hand, the formation of a fold requires viscous

dissipation, enhanced by shear stress. This stress is likely greater in the symmetric fold, so

that the antisymmetric fold should be kinetically favored.

The symmetry and degeneracy found here were an indirect and mysterious consequence

of the integrability of the two-dimensional host system. Though we have discussed it in

the context of a particular embedded system of physical interest, we expect that analogous

symmetries occur elsewhere in the sG-mKdV hierarchy. These symmetries may ultimately

deepen our understanding of integrability in these systems. In physical terms these degener-

ate deformations and the aforementioned “soft modes” associated with them may ultimately

shed light on the experimental puzzles of how molecular folding and unfolding occur in prac-

tice [30–32].
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FIG. 3. (color online). Shape of a folded sheet whose y-invariance is broken by a “soft v-mode”.

Each xz cut is one of the degenerate solutions given by Eq. (10) with c2 = 0 and c1 that changes

linearly with y. The pressure is P = 0.5.
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