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We explore how a frozen background metric affects the mechanical properties of planar membranes
with a shear modulus. We focus on a special class of “warped membranes” with a preferred random
height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and
variance 〈|h(q)|2〉 ∼ q−dh and show that in the linear response regime the mechanical properties
depend dramatically on the system size L for dh ≥ 2. Membranes with dh = 4 could be produced
by flash polymerization of lyotropic smectic liquid crystals. Via a self consistent screening approxi-
mation we find that the renormalized bending rigidity increases as κR ∼ L(dh−2)/2 for membranes
of size L, while the Young and shear modulii decrease according to YR, µR ∼ L−(dh−2)/2 resulting
in a universal Poisson ratio. Numerical results show good agreement with analytically determined
exponents.

PACS numbers: 68.35.Gy, 61.43.-j, 05.20.-y, 46.05.+b

I. INTRODUCTION

Consider the mechanical properties of a thin, approx-
imately planar piece of crumpled paper. While a flat
piece of paper is almost impossible to stretch or shear,
the crumpled paper can be easily stretched and sheared.
On the other hand, the crumpled paper is much harder
to bend, as can be observed from the response to grav-
ity upon supporting it at only one end. Intuitively, we
can understand these mechanical properties in the fol-
lowing way. The shape of crumpled paper can be con-
structed as a linear superposition of different Fourier
modes (Fig. 1a). It is very easy to stretch, compress
or shear along the wave (Fig. 1b), because we are locally
bending rather than stretching material, thus exploiting
the stored or “hidden” area. At the same time bending
across the wave (Fig. 1c) is harder due to the introduced
local Gaussian curvature (nonzero radius of curvature in
two directions) and the fact that it is not possible to com-
pletely release the stresses without local stretching of the
material.

In this paper we study a simplified model of the al-
tered mechanical properties caused by a frozen back-
ground geometry. Specifically we study the effect of
a quenched random set of preferred Fourier modes in
a membrane with a shear modulus. Our membranes
are approximately flat and made of isotropic amorphous
material with uniform thickness t and whose mid-plane
shape is described with a random height profile h(x, y)
(see Fig. 2). In Fourier space the height profile h(q) =
∫

d2x e−iq·xh(x)/A is assumed to be a random Gaussian
variable with zero mean and a power law variance for
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small q,

〈|h(q)|2〉 = ∆2

Aqdh

, (1)

where A is the membrane area, and 〈〉 denotes averaging
over a quenched random Gaussian distribution funtion.
The exponent dh controls the relative importance of dif-
ferent length scales. The case dh = 0 corresponds to
white spatial noise where all length scales have the same
amplitude, while for dh > 0 the amplitude of long wave-
length modes is more pronounced and membranes appear
“smoother”. See Fig. 2 for surfaces generated from vari-
ous probability distributions on a computer.
With the advance of 3D printing techniques it is pos-

sible to design membranes of arbitrary shapes [1], but
in principle they can be obtained experimentally as well.
A whole set of individual amphiphilic bilayers could be
swollen apart in a lyotropic smectic liquid crystal by
adding water [2, 3]. The thermal fluctuations of the
nearly flat bilayers can be described approximately by a
profile 〈|h(q)|2〉 ≈ kBT/Aκq

4 [4], where kB is the Boltz-
mann constant, T the ambient temperature, A the bilayer
area, and κ the bending rigidity. The fluctuating shape of
the bilayer could then be “frozen” in by rapid polymeriza-
tion [5] of chemical groups embedded in the hydrocarbon
chains of the amphiphilic molecules. (For an analogous
polymerization experiment on spherical vesicles, see [6]).
The resulting profile would be described by dh ≈ 4. If a
constant tension could be exerted on the edge of a lipid
bilayer stack, or the stack oriented by application of an
external electric or magnetic field prior to the polymer-
ization, one could create surface with dh ≈ 2. In this case
a profile due to thermal fluctuations can be described ap-
proximately by 〈|h(q)|2〉 ≈ kBT/A(κq

4+γq2), where γ is
related to the external tension, or to an external electric
field E (magnetic field H) and the electric polarizabil-
ity α (magnetic susceptibility χ) of lipids with γ ∝ αE2

(γ ∝ χH2). For sufficiently large membranes (small q)
or strong external tensions or fields (large γ), the poly-
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FIG. 1: Mechanical properties of approximately planar crumpled paper. a) The shape can be reconstructed from a linear
superposition of different wave modes. b) It is easier to stretch, compress or shear in the presence of a single Fourier mode. c)
However, it is harder to bend across this periodic ondulation.

merized membranes could be described with dh ≈ 2.
A height profile that corresponds to dh = 0 describes
the surface of a crystal in equilibrium with its vapor be-
low the temperature of the roughening transition [7]. A
frozen crystal surface of this kind could serve as a tem-
plate for constructing a randomly shaped warped surface
with dh = 0.

In this paper we neglect thermal fluctuations and study
mechanical properties for membranes characterized by
dh = 4, 2, and 0 (see Fig. 2) in the linear response regime
in the presence of small forces, edge torques and exter-
nal pressures across a supported membrane. Special at-
tention is given to the asymptotic scaling of mechanical
properties in the thermodynamic limit of large membrane
sizes (L) or equivalently the long-wavelength behavior of
in- and out-of-plane phonon modes (small q). We show
that these three cases have qualitatively different behav-
ior and that the effective in-plane elastic constants and
effective bending rigidity scale with the system size L
for dh = 4, scale with the logarithm of the system size
(lnL) for dh = 2 and have no system size dependence for
dh = 0. Only the later case agrees with expectations from
conventional linear elastic theory of macroscopic materi-
als [8].

The remainder of the paper is organized as follows. In
Section II we derive the free energy cost of deformations
for thin membranes of arbitrary shape by taking into ac-
count the translational and rotational symmetries. In
Section III we derive the shallow shell equations [9, 10]
applicable for nearly flat membranes in mechanical equi-
librium by minimizing the total free energy in the pres-
ence of external forces and torques. Since the shallow
shell equations cannot be solved exactly, we discuss meth-
ods for solving them approximately in Section IV. The
iterative perturbation method (Sec. IVA) has a very lim-

ited practical use and fails for large membrane sizes when
dh ≥ 2. Therefore we introduce a diagrammatic represen-
tation (Sec. IVB) to describe the Self Consistent Screen-
ing Approximation (SCSA) method (Sec. IVC), which
is rooted in statistical physics [11] and enables us to de-
termine how the anomalous elastic properties scale with
system size. Finally we compare the approximate ana-
lytical results with numerical solutions of shallow shell
equations (Sec. IVD).

II. FREE ENERGY COST OF THIN

MEMBRANE DEFORMATIONS

Deforming a nearly flat reference membrane de-
scribed with a 3-dimensional position vector X0(xk)
parametrized by two internal parameters x1, x2 into con-
figuration X(xk) is associated with the free energy cost.
In general, the free energy density F associated with this
deformation is a function of the deformed configuration
X and its derivatives ∂iX, ∂i∂jX, . . . [4, 12–15]. From
differential geometry [4, 16] we know that the first or-
der derivatives can be interpreted as local tangent vec-
tors ti = ∂iX, and the second order derivatives can be
decomposed into ∂i∂jX = bijn̂ + Γk

ijtk, where bij is a
symmetric curvature tensor, n̂ is the unit normal vector
to the deformed surface, and Γk

ij are Christoffel symbols.

The translational invariance requires that the free en-
ergy density F does not depend explicitly on the config-
uration X, while the rotational invariance requires that
all terms in the free energy must be scalars. For small
deformations the free energy density F can thus be writ-
ten as a “Landau-Ginzburg”-like expansion in tangents
ti and curvatures bij [12–14], where in general we also
need to introduce couplings to the quenched fields, which
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FIG. 2: (Color online) Warped membranes. a) The mid-plane of nearly flat warped membranes is described with a height
profile h(x, y) in the Monge representation. The unit vectors t̂0x, t̂

0
y , and n̂0 denote local tangents and the normal to the warped

membrane surface. b-d) Computer generated examples of warped membranes characterized with different power law height
distributions determined by the exponent dh (see Eq. (1)). For clarity, the surface heights are also indicated by a heat map,
where white indicates large positive heights and dark red indicates large negative ones.

could represent disorder in material or a preferred metric
and curvatures [15]. For nearly flat membranes the con-
tribution from Christoffel symbols Γk

ij is negligible for
long wavelength membrane deformations and they can

be omitted in the expansion. The expansion of the free
energy density in the tangents and the curvature tensor
then reads

F = −α

2
(ti · ti) +

λ

8
(ti · ti)2 +

µ

4
(ti · tj)2 −

ǫS

2
(ti · ti)−

ηSij
2

(ti · tj) +
(κ− κG)

2
b2ii +

κG

2
b2ij − ǫBbii − ηBijbij , (2)

where we sum over indices i and j and introduce position-

dependent quenched fields ǫS,B(xk) and ηS,Bij (xk). We
assume α > 0 which biases the system toward flat con-
figurations and neglect quenched random disorder that
is fourth order in the tangent fields and second order in
curvatures. Such quenched fields could be used to de-
scribe membranes with varying thickness. Without loss

of generality we can assume that the parameters ηS,Bij are

traceless, i.e. ηS,Bii = 0. Terms like bijn̂ · (ti× tj) are also
allowed by rotational symmetries, but they are exactly
equal to 0 due to the symmetry bij = bji of the curvature
tensor.
Up to an additive constant, the expansion above can

be rewritten in a suggestive form,

F =
1

2
λu2

ii + µu2
ij +

1

2
κK2

ii − κG det(Kij), (3)

which generalizes the well known expression for flat
plates [8]. The first two terms represent the free energy

cost of stretching and the last two terms represent the
cost of bending. Above we introduced a strain tensor
uij(x

k) and a bending strain tensor Kij(x
k) given by

uij = (ti · tj −Aij)/2,

Kij = bij −Bij , (4)

where we introduce quenched random tensors Aij =
δij(α + ǫS)/(µ + λ) + ηSij/µ and Bij = δijǫ

B/(2κ −
κG) + ηBij/κG, with δij the Kronecker delta. For ar-
bitrary Aij and Bij , there is in general no membrane
configuration X(xk) that would correspond to the zero
free energy in Eq. (3), due to geometrical frustration.
A unique ground state without strains is only possi-
ble when quenched tensors satisfy the Gauss-Codazzi-
Mainardi relations [16] and can thus be expressed as a
metric tensor Aij = ∂iX

0 · ∂jX0 and a curvature ten-
sor Bij = n̂0 · ∂i∂jX0 of a preferred membrane con-
figuration X0 that corresponds to the minimum free
energy. The Gauss-Codazzi-Mainardi relations can be
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derived from equations ∂2(∂1∂1X
0) = ∂1(∂1∂2X

0) and
∂1(∂2∂2X

0) = ∂2(∂2∂1X
0), which must be satisfied by

any single valued surface.
Mechanical properties of membranes in a presence of

quenched random tensors Aij(x
k) and Bij(x

k) have been
studied before and it was shown that quenched averaged
renormalized elastic constants can become length scale
dependent [15, 17–19]. In this paper we study a par-
ticular class of quenched random tensors, which are re-
lated to each other and correspond exactly to the metric
tensor (Aij) and curvature tensor (Bij) of the quenched
random membrane configuration X0(xk). We call this
class of quenched random surfaces, which have a unique
ground state X0(xk) in the absence of external forces and
torques, “warped membranes”. In the language of spin
glasses these warped membranes are similar to the Mat-
tis spin glass model [20], where the glassy ground state
of spins is known, while the general case is similar to the
frustrated spin glasses, e.g. the Edwards-Anderson spin
glass model [21].
Note that when the reference membrane configuration

X0(xk) is not nearly flat, the free energy density should
be expressed as

F =
λ

2
(ui

i)
2 + µuiju

ij

+
κ

2
(Ki

i)
2 +

κG

2

(

KijK
ij −Ki

iK
j
j

)

, (5)

where indices are raised and lowered according to the
metric tensor g0ij = ∂iX

0 · ∂jX0 of the reference mem-

brane configuration X0(xk). This elastic description of
warped membranes is known as thin shell theory [9, 10].
If we assume that thin membranes of thickness t are ac-
tually constructed from a uniform isotropic 3d material
(Young modulus E and Poisson ratio ν), then the elastic
constants in Eq. (5) can be expressed [9, 10] as

λ = Eνt/(1− ν2), µ = Et/2(1 + ν),

κ = Et3/12(1− ν2), κG = Et3/12(1 + ν). (6)

III. SHALLOW SHELL EQUATIONS

For nearly flat warped membranes it is convenient to
use the Monge representation to describe the reference
warped surface

X0(x, y) = xêx + yêy + h(x, y)êz (7)

and then decompose the displacements of deformed mem-
brane configuration in response to external forces into
in-plane displacements ui(x, y) and out-of-plane displace-
ments f(x, y), such that

X = X0 + uit̂
0
i + f n̂0, (8)

where t̂0i = (êi + (∂ih)êz)/
√

1 + (∂ih)2 is a unit tan-

gent vector and n̂0 = (êz −
∑

i(∂ih)êi)/
√

1 +
∑

i(∂ih)
2

a unit normal vector to the warped reference surface (see
Fig. 2a). For nearly flat membranes we assume that
(∂ih)

2 ≪ 1 and the metric tensor g0ij ≈ δij , where δij
is Kronecker’s delta. Raising and lowering indices is thus
a trivial operation and for simplicity we keep all indices
of vectors and gradients as subscripts in the rest of the
paper. In this decomposition the strain tensor uij(x, y)
and the bending strain tensor Kij(x, y) become

uij =
1

2
(∂iuj + ∂jui) +

1

2
∂if∂jf − f∂i∂jh,

Kij = ∂i∂jf, (9)

where we kept only the lowest order terms. Note that
the frozen spatially-varying component h(x, y) breaks the
inversion symmetry of uij under f → −f . This result is
known as a shallow shell theory or the Donnell-Mushtari-
Vlasov approximation [9, 10].
In the presence of external forces and torques the de-

formed membrane configuration is obtained by minimiz-
ing the total free energy functional

F [ui, f ] =

∫

dA
(

F − pf
)

−
∮

∂A

ds (Tiui +m∂nf), (10)

where F is the free energy density from Eq. (3), p(x, y)
is the force/area difference across the membrane (body
forces like gravity would enter in a similar way), Ti(s)
is an in-plane vector ”tension” or force at the boundary,
m(s) is a local or “edge torque” acting at the boundary,
and ∂n is the derivative in direction normal to the mem-
brane boundary. A uniform pressure difference across
the membrane would correspond to p(x, y) ≡ p0. Local
torques on the membrane edge can be realized by sup-
porting the membrane and applying external force on the
membrane part that lies outside the support (see Fig. 3).
In this case the membrane “edge” is considered to coin-
cide with the supports. In principle terms with tangential
forces inside the boundary of the membrane −

∫

dApiui

(e.g. viscous drag, electromagnetic forces) and out of
plane forces at the boundary −

∮

∂A
dsQf could also be

included, but for simplicity we assume that they are ab-
sent.

F F

FIG. 3: (Color online) Edge torques acting on a membrane.
The part of membrane that lies between the triangular sup-
ports, is influenced by external torques connected by a mo-
ment arm to the support. Torques are the consequence of
external forces F acting on the sides of the membrane that
lie outside the supports.
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The equilibrium equations for the deformed membrane
are obtained by minimizing the free energy functional in
Eq. (10), which leads to

0 = ∂jσij ,

p = ∂i∂jMij − σij∂i∂jh− ∂j(σij∂if), (11)

where we define the stress tensor σij and the bending
stress tensor Mij via

σij ≡ δF/δuij = λukkδij + 2µuij,

Mij ≡ δF/δKij = (κ− κG)Kkkδij + κGKij , (12)

At the boundary we must either prescribe displacements
and slopes, ui, f , and ∂nf , or match the corresponding
forces and torques

Ti = σij n̂
(s)
j ,

0 = n̂
(s)
i σij∂jf − n̂

(s)
i ∂jMij − t̂

(s)
k ∂k

(

n̂
(s)
i Mij t̂

(s)
j

)

,

m = n̂
(s)
i Mij n̂

(s)
j , (13)

where n̂
(s)
i and t̂

(s)
i are respectively a unit normal vector

and a unit tangent vector to the boundary of the mem-
brane domain ∂A in the parameter space (x, y).

The equilibrium equations (11) are complicated func-
tions of the in-plane displacements ui, and in mechanics
it is often convenient to replace them with the corre-
sponding equations for stresses σij . This is achieved with
the introduction of the Airy stress function χ, such that
σij = ǫikǫjℓ∂k∂ℓχ (ǫij is the antisymmetric Levi-Cita ten-
sor in two dimensions) or in components

σxx = ∂y∂yχ, σyy = ∂x∂xχ, σxy = −∂x∂yχ. (14)

Although any choice for χ yields a stress tensor that
satisfies the first equilibrium equation in Eq. (11), the
choice cannot be arbitrary. For any physically realizable
stress distribution, there must correspond some displace-
ment vector field ui such that that the stress-strain re-
lation in Eq. (12) is satisfied. In plane displacements
ui can be eliminated from this relation by evaluating
ǫikǫjℓ∂k∂ℓuij , which leads to the equilibrium shallow shell
equations [9, 22]

0 = ∆2χ+ Y

[

{h, f}+ 1

2
{f, f}

]

,

p = κ∆2f − {χ, f} − {χ, h}, (15)

with the same boundary conditions. Above we used the
Laplace operator ∆ and introduced the Young’s mod-
ulus Y = 4µ(µ + λ)/(2µ + λ) and the Airy bracket
{A,B} ≡ ǫikǫjℓ(∂i∂jA)(∂k∂ℓB). Note that the Eqs. (15)
reduce to the familiar Föppl-von Kármán equations for
flat reference surfaces, i.e. for h(x, y) ≡ 0 [8].

IV. LINEAR RESPONSE MECHANICAL

PROPERTIES

In this paper we focus on the mechanical properties
of warped membranes in the linear response regime in
presence of small external pressure p, external stress σ0

ij ,
and external torques described by the bending stress
M0

ij . In this limit the Airy stress function χ and out
of plane displacements f entering Eqs. (15) are assumed
to depend linearly on external forces (p and σ0

ij) and

torques (M0
ij). The linear response mechanical proper-

ties of warped membrane are thus obtained by solving
the linearized equilibrium equations

0 = ∆2χ+ Y {h, f},
p = κ∆2f − {χ, h}, (16)

with appropriate boundary conditions. The equations
above can be solved exactly only for certain special mem-
brane shapes (e.g. spherical caps, cylinders, etc.); there-
fore we treat them approximately.
As discussed above the warped membranes of inter-

est are characterized by a unique ground state, described
by a frozen height profile h(x, y). In Fourier space, the
{h(q)} are quenched random Gaussian variables with
zero mean and variance

〈h(q)h(q′)〉 = ∆2δq,−q′

Aqdh

, (17)

where ∆ is an amplitude, δ is Kronecker’s delta, A
the membrane area, and dh the characteristic exponent.
Specifically we study warped membranes characterized
with exponents dh = 0, 2, and 4, and determine the scal-
ing of mechanical properties in the thermodynamic limit
of large membrane sizes L or equivalently in the long
wavelength limit (small q).
First we focus on the linear response to external pres-

sure p 6= 0 and no external forces (σ0
ij = 0) and torques

(M0
ij = 0) at the membrane edge. Note from Eq. (13)

that M0
ij is related to the edge torque m(s). For sim-

plicity we assume the periodic boundary conditions. The
choice of boundary condition does change the numerical
prefactor of the mechanical response, but does not affect
the scaling with the system size and material properties
(numerical data not shown; the situation is similar to the
critical force dependence on boundary conditions for the
Euler buckling instability in rods [8]). Periodic boundary
conditions enable us to rewrite equilibrium equations (16)
in Fourier space as

0 = q4χ(q) + Y
∑

q1 6=0

(q× q1)
2h(q− q1)f(q1),

p(q) = κq4f(q)−
∑

q1 6=0

(q× q1)
2h(q− q1)χ(q1). (18)

Note that we embedded the two dimensional wave vectors
q in a three dimensional space by setting the third vector
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component to 0 in order to use the vector cross product.
By solving the first equation for the Airy stress function

χ(q), we obtain a self-consistent integral equation for the
out-of-plane displacement f , namely

f(q) =
p(q)

κq4
− Y

κ

∑

q1,q2 6=0

(q × q1)
2(q1 × q2)

2

q4q41
h(q− q1)h(q1 − q2)f(q2). (19)

For flat reference states (h ≡ 0) the external pressure
of specific mode p(q) only induces out of plane displace-
ments of the same mode, f(q) = p(q)/κq4. However, for
a given realization of a nonzero warping function h(q),
the mode couplings in Eq. (19) also induce out of plane
displacements of other modes. Nevertheless, summing
the response over all possible realizations of the quenched
random membrane profiles h(q), leads on average to a
single induced mode,

〈f(q)〉 ≡ p(q)

κR(q)q4
, (20)

where we introduced the renormalized bending rigidity
κR(q), and the brackets 〈〉 represent an average over refer-
ence surfaces. Note that carrying out the quenched aver-
age in Eq. (20) is quite challenging, since the out-of-plane
displacement f(q) appears on both sides of Eq. (19).
It is important also to consider variations for differ-

ent realizations of quenched random membrane profiles
and ask whether they are negligible compared to the
quenched average above in the thermodynamic limit. If
variations are negligible, then the quenched averaged re-
sponse 〈f(q)〉 for large wavelengths (small q) also repre-
sent the response for any given random realization of the
membrane profile h(q) and the membranes would have
the self-averaging property. Self-averaging would imply
that any given random realization of the membrane pro-
file h(x) could be broken down into smaller blocks in
real space, where each block would represent an indepen-

dent realization of the quenched random membrane pro-
file. Thus the mechanical properties of the whole mem-
brane would be characterized by the quenched averaged
properties of individual blocks. However, similar to spin
glasses, [23] we expect that the quenched random mem-
branes considered here do not in general have the self av-
eraging properties, because the height profiles h(x) have
long range correlations 〈h(x)h(x′)〉 ∼ |x − x′|dh−2. The
only potential exception could be membranes character-

ized by dh = 0, where the height profile is completely
uncorrelated 〈h(x)h(x′)〉 ∼ δ(x − x′). But even in this
case the numerical results discussed in Sec. IVD imply
that there is no self-averaging (see Fig. 7, where sample
to sample variations seem constant when reducing q for
membranes characterized by dh = 0).
Since the integral equation (19) cannot be solved ex-

actly for arbitrary reference membrane configurations
h(q), we explain how to solve it approximately in two
different regimes: a) a typical warped membrane height
profile is small compared to the membrane thickness
(|h(x)| ≪ t), b) the thermodynamic limit of large mem-
brane size (q → 0). The first regime can be treated with
a perturbation method, where the integral equation (19)
is solved iteratively. The second regime can be approx-
imately solved using the Self-Consistent Screening Ap-
proximation (SCSA) method, which is rooted in statisti-
cal physics [11]. Approximations made in both regimes
can be effectively understood with the diagrammatic rep-
resentation. See Ref. [24] for an analogous treatment of
spin systems with quenched randomness.
In the next subsections we describe the iterative per-

turbation method, the diagrammatic representation and
the SCSA method.

A. Iterative perturbation method

Our first attempt at approximately solving the integral
equation (19) is with iterative perturbation theory. The
initial approximate solution for Fourier mode q of the
height deviation f(x) is assigned as

f (0)(q) =
p(q)

κq4
(21)

and the subsequent approximative solutions are con-
structed by iteration:

f (i+1)(q) =
p(q)

κq4
− Y

κq4

∑

q1,q2 6=0

(q× q1)
2(q1 × q2)

2

q41
h(q− q1)h(q1 − q2)f

(i)(q2). (22)

The result is a series with alternating signs, where the
exact solution is reached by summing all terms in the

limit i → ∞. Upon averaging over all realizations of ran-
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dom warped membranes, each round of iteration yields a
new term with an additional factor −Y/κ and an effective
height variance h2

eff(q), closely related to the statistics of
the frozen height profile h. Thus we are led to a pertur-
bation series of the form

〈f(q)〉 = p(q)

κq4

[

1−α2
Y h2

eff(q)

κ
+α4

(

Y h2
eff(q)

κ

)2

− · · ·
]

,

〈f(q)〉 ≡ p(q)

κq4
F

(

Y h2
eff(q)

κ

)

, (23)

where we introduced a scaling function F , and the {αi}
are numerical factors that can be evaluated order by or-
der in perturbation theory. This alternating series con-
verges only when Y h2

eff(q)/κ ≪ 1 or equivalently (since
Y ∼ t and κ ∼ t3) when the typical height deviation |h|
of the unperturbed warped membrane is much smaller
than the membrane thickness, |h| ≪ t.
In our problem the effective height profile is

h2
eff(q) ≡

〈

h2(x; q)
〉

=
∑

q<k<Λ

〈|h(k)|2〉, (24)

where h(x; q) =
∑

q<k<Λ eik·xh(k) and we introduced an
ultraviolet cutoff Λ to prevent potential divergences at
large momenta. One can think of this cutoff being asso-
ciated with a small length scale Λ−1 where the continuum
description starts to break down (e.g. an atomistic scale).
At long wavelengths the effective height profile scales as

h2
eff(q) ∼







∆2/qdh−2, dh > 2
∆2 ln(Λ/q), dh = 2
∆2Λ2−dh , dh < 2

. (25)

The results above imply that for dh ≥ 2 the effective
height profile diverges at long wavelengths (small q) and
the alternating perturbation series in Eq. (23) does not
converge! Therefore we need a different approach to
find the asymptotic behavior of the scaling function F
in Eq. (23). However, first we need to introduce a dia-
grammatic representation. Note that for dh < 2 there are
no divergences at long wavelengths. For this case we ex-
pect only a finite renormalization of the bending rigidity,
which is q independent as q → 0.

B. Diagrammatic representation

The integral Equation (19) can be schematically rep-
resented with the Feynman diagrams shown in Fig. 4. In
this scheme the “propagator” 1/κq4 is represented with
a black solid line, the out-of-plane displacement f(q) is
represented with a double black solid line (indicating the
“renormalized propagator” 1/κR(q)q

4), each vertex car-
ries a factor Y as well as momentum factors and an even
number of external legs (red dashed lines) representing
h. The squares represent the perturbing external pres-
sure p. The arrows indicate that propagators and legs

= +

= + + + · · ·

〈 〉 = + +

+ + · · ·+

a)

b)

c)

FIG. 4: (Color online) Diagrammatic representation of a) the
integral Equation (19), b) the iterative perturbation expan-
sion, and c) the perturbation expansion averaged over all pos-
sible realizations of warped membranes. Single solid lines rep-
resent propagators 1/κq4, double solid lines represent the out
of plane displacements f , red dashed lines represent shape
profile h, a square represents the external pressure p, and
each vertex carries a factor Y .

carry momenta, where the sum of outgoing and ingoing
momenta at each vertex must match.

Fig. 4b shows schematically the perturbation expan-
sion, and the various approximations f (i)(q) to the in-
tegral equation sum only over diagrams with i or less
vertices. Quenched averaging over all membrane real-
izations is obtained by averaging every diagram over all
warped membrane realizations h(x). Because the {h(q)}
are assumed to be random Gaussian variables, Wick’s
theorem [25] allows us to average by pairing up h fields
(i.e. connecting red dashed legs in Fig. 4c) in all possible
ways and using the second moment averages displayed
in Eq. (17). In principle the exact solution is obtained
by summing over all diagrams, where red dashed legs are
connected in every possible way.

For clarity we explicitly write the algebraic expressions
for three Feynman diagrams (the first unavaraged) in
Fig. 5.

C. Self Consistent Screening Approximation

method

Since it is not possible to exactly sum up all diagrams,
we exploit a Self Consistent Screening Approximation
(SCSA) that sums an infinite subset of all possible di-
agrams to obtain the asymptotic behavior for small q.
The SCSA method was first introduced to estimate crit-
ical exponents in the Landau-Ginzburg model of criti-
cal phenomena [26, 27] and was later applied to calcu-
late the effective elastic constants due to thermal fluc-
tuations of tethered surfaces [11, 28, 29] and to study
their properties in the presence of quenched random dis-
order [18, 19]. For thermally fluctuating tethered surfaces
the SCSA method [11, 28, 29] gives more accurate scaling
of effective elastic constants than the first order epsilon
expansion in renormalization group [13, 30]. Note that
for the abstract problem, where two dimensional mem-
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a)

b)

c)

=

=

=

×〈h(q − q1)h(q2 − q3)〉 × 〈h(q1 − q2)h(q3 − q4)〉

× 〈h(q − q1)h(q3 − q4)〉 × 〈h(q1 − q2)h(q2 − q3)〉

1

κq4

∑

q
1
,q2 !=0

(−Y )

q4

1

(q× q1)
2(q1 × q2)

2h(q− q1)h(q1 − q2)

×

1

κq4

2

∑

q
3
,q4 !=0

(−Y )

q4

3

(q2 × q3)
2(q3 × q4)

2h(q2 − q3)h(q3 − q4)
p(q4)

κq4

4

1

κq4

∑

q
1
,q2,q3,q4 !=0

Y 2p(q4)

κ
2q4

1
q4

2
q4

3
q4

4

(q× q1)
2(q1 × q2)

2(q2 × q3)
2(q3 × q4)

2

1

κq4

∑

q
1
,q2,q3,q4 !=0

Y 2p(q4)

κ
2q4

1
q4

2
q4

3
q4

4

(q× q1)
2(q1 × q2)

2(q2 × q3)
2(q3 × q4)

2

FIG. 5: (Color online) Algebraic expressions for sample diagrams.

branes are embedded in d-dimensional space the SCSA
is equivalent to 1/(d − 2) expansion and thus becomes
exact when the embedding space dimension d is large.
In this paper we show how to use the SCSA to sum

up all diagrams with no crossings among red dashed dis-
ordered lines (e.g. the last diagram with crossed inter-
action lines in Fig. 4c is excluded, while all non-crossing
diagrams are included). This approximation is equivalent

to expansion to the order 1/(d − 2), while exact results
at higher orders would require summing as well a subset
of crossing diagrams. The SCSA infinite summation is
achieved by the two self-consistent diagrammatic series
in Fig. 6, where we introduce a “renormalized vertex”
with black dot that carries a renormalized elastic cou-
pling YR(q). The two diagrammatic series are described
as

p(q)

κR(q)q4
=

p(q)

κq4
−

∑

q1 6=0

1

κq4
YR(q1)|q × q1|4

q41
〈|h(q − q1)|2〉

p(q)

κR(q)q4
,

YR(q) = Y −
∑

q1 6=0

Y
|q× q1|4

κR(q1)q4q41
〈|h(q− q1)|2〉YR(q). (26)

We reorganize the equations above to extract the renor-
malized bending rigidity κR(q) and the renormalized
Young’s modulus YR(q) and get

κR(q)

κ
= 1+

∑

q1 6=0

YR(q1)|q× q1|4
κq4q41

〈|h(q− q1)|2〉,

YR(q)

Y
=



1 +
∑

q1 6=0

Y |q× q1|4
κR(q1)q4q41

〈|h(q − q1)|2〉





−1

.

(27)

Note that the renormalized bending rigidity κR(q) is in-
creased relative to its bare value, while the renormalized
Young’s modulus is always decreased. The above sys-
tem of equations has to be solved self-consistently for

the renormalized propagator κR(q) and the renormal-
ized vertex YR(q). The coupled integral equations above
and the perturbation series described earlier (Eq. (23))
suggest that the renormalized quantities obey the scaling
form

κR(q)

κ
= Fκ

(

Y∆2

κqdh−2

)

YR(q)

Y
= FY

(

Y∆2

κqdh−2

)

(28)

for membranes characterized with dh > 2.
It is also not possible to solve the self-consistent system

of Equations (27) to obtain the scaling functions Fκ and
FY exactly. However, it is possible to obtain the self-
consistent solution for the asymptotic behavior in the
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a)

+ ==〈 〉

b)

= + =

+ · · ·+ +

+ + + · · ·

FIG. 6: Diagrammatic representation of the SCSA method. a) The diagrammatic series for the renormalized propagator, and
b) the diagrammatic series for the renormalized vertex.

long wavelength limit (q → 0), where we assume that

κR(q)

κ
= Fκ

(

Y∆2

κqdh−2

)

∼ Cκq
−η

(

Y∆2

κ

)η/(dh−2)

,

(29)
where Cκ is a constant amplitude. Dominant contribu-
tions in the sums of the self-consistent Equations (27)
come from small q1, where we can use the asymptotic
expressions for the renormalized quantities. Replacing
the renormalized bending rigidity in the second self-
consistent equation in Eq. (27) with the asymptotic ex-
pression above leads to the remormalized vertex

YR(q)

Y
∼ Cκq

dh−2−η

I(dh/2, 2− η/2)

(

Y∆2

κ

)(η−dh+2)/(dh−2)

,

(30)
where we introduced the function I(α, β) to describe the
small q behavior of a sum,

q6−2α−2βI(α, β) ≡
∑

q1 6=0

|q× q1|4
Aq4q2α1 |q− q1|2β

,

I(α, β) =
3

16π

Γ[α+ β − 3]Γ[3− α]Γ[3− β]

Γ[α]Γ[β]Γ[6− α− β]
,

(31)

where A is the membrane area. The renormalized ver-
tex YR can then be used to calculate the renormalized
propagator

κR(q)

κ
= Cκq

−η I(dh/2, 3 + (η − dh)/2)

I(dh/2, 2− η/2)

(

Y∆2

κ

)η/(dh−2)

.

(32)
Self-consistency requires that the asymptotic expressions
in Eqs. (29) and (32) match, which is achieved for

η =
dh − 2

2
. (33)

Thus the SCSA method predicts that in the q → 0 limit
renormalized quantities scale as

κR(q)

κ
∼ Cκq

−(dh−2)/2

√

Y∆2

κ
,

YR(q)

Y
∼ CY q

+(dh−2)/2

√

κ

Y∆2
, (34)

where Cκ and CY are numerical constants. Membranes
characterized by dh = 2 have logarithmic corrections

that behave like ln1/2(Λ/q). Indeed, using the same self-
consistent procedure as above we find that

κR(q)

κ
= Fκ

(

Y∆2

κ
ln (Λ/q)

)

∼ Cκ

√

Y∆2

κ
ln (Λ/q),

YR(q)

Y
= FY

(

Y∆2

κ
ln (Λ/q)

)

∼ CY

√

κ

Y∆2 ln (Λ/q)
.

(35)

Interestingly, if we use the effective height profile
h2
eff(q) introduced in the perturbation series section

(Eq. (25)) the results above can be summarized as

κR(q)

κ
∼ Cκ

√

Y h2
eff(q)

κ
,

YR(q)

Y
∼ CY

√

κ

Y h2
eff(q)

. (36)

Note that the SCSA method cannot be used for warped
surfaces characterized by dh < 2, because there is no q
dependence of the renormalized elastic constants in the
long wavelength limit. However, we expect that the scal-
ing description above in terms of the effective height pro-
file to be valid for this case as well.

D. Numerical results

To test our analytical results, we numerically solved
the linearized shallow shell equations (16), without mak-
ing the self consistent screening approximation, using
the finite difference method [31] on a 400 × 400 mesh.
We expect that the unfrustrated nature of the Mat-
tis model-like unfrustrated ground state of the warped
surfaces studied here allows this procedure to converge
rapidly. Membrane profiles were generated in Fourier
space, where h(q) = h∗(−q) are Gaussian random vari-
ables with zero mean and variance

〈|h(q)|2〉 =
{

∆2

Aqdh
, q < Λ

0, q > Λ
, (37)
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FIG. 7: (Color online) Numerical results for the renormalized bending rigidity κR for warped membranes characterized by
dh = 4, 2, and 0. Colors of data points represent different quenched warping amplitudes ∆ (red (dark grey) largest, yellow
(light grey) smallest) separated by constant multiplicative factors (∼ 3) and errorbars correspond to the standard deviation for
different membrane samples. The black dashed lines in the first row of figures indicate the cutoff momenta Λ of the quenched
randomness. Note that κR(q) is well defined even above this momentum. The second row shows high quality data collapse,
where only data points with q/Λ < 0.4 were included. Black dashed lines indicate the power law fits predicted by Eqs. (34-36),
while the solid green (light gray) and blue (dark gray) lines show respectively the first and second approximations obtained
within the perturbation expansion.

and then inverse Fourier transformed back to real space.
An ultraviolet cutoff Λ must be introduced for numerical
stability, because the mesh size a must be smaller than
the geometrical mean of the membrane thickness t and
the typical curvature radius R, i.e. a ≪

√
Rt. Typical

values used in our numerical tests were the elastic prop-
erties of rubber with bulk Young’s modulus E = 0.1GPa,
Poisson ratio ν = 0.5, the thickness t = 10µm, the mem-
brane size L = 1cm, the cutoff Λ given by ΛL/2π =
8−15, while the disorder amplitude ∆ was varied system-
atically, such that the heff(qmin)/t approximately spans a
range (10−1, 102), where qmin = 2π/L and heff is defined
in Eq. (24). We imposed a sinusoidal external pressure p
variation along one of the coordinate axes with the wave
vector in the range qL/2π = 1−25 and then averaged the
out-of-plane displacement response f over 500 different
random membrane realizations, to obtain the renormal-
ized bending rigidity from Eq. (20).

A numerical test of our theory is presented in Fig. 7.
The first row of plots reveals two regimes: For q ≫ Λ the

renormalized bending rigidity κR approaches the micro-
scopic value κ. This behavior is expected since we are
trying to bend the membrane on a much smaller scale
then the shortest wavelength of the quenched shape mod-
ulation, so the warped membrane locally appears flat.
For q ≪ Λ we expect to observe the asymptotic scaling
behavior calculated in the previous section. Indeed for
membranes characterized with dh = 4 and dh = 2 the
renormalized bending rigidity changes with q, while it
levels off as q → 0 for membranes characterized by white
noise spatial warping with dh = 0. The theory also pre-
dicts that for small q there is data collapse onto a single
scaling function (see Eq. (23)), which is shown in the
second row of Fig. 7 for data points with qΛ < 0.4. The
numerically fitted scalings at small q closely match the
theory (q−1.03 for dh = 4 and ln0.49(Λ/q) for dh = 2).
For dh = 0 we observe scaling with the combination
(Y∆2Λ2/κ)0.48, which further supports that the asymp-
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totic behavior for all three cases can be described with

κR(q)

κ
∼

√

Y h2
eff(q)

κ
, (38)

where h2
eff(q) is defined in Eq. (25). Figure 7 also shows

that the first two terms of the perturbation series fail well
before the asymptotic regime is reached.

E. Linear response to external forces and torques

Finally, we discuss the mechanical response in the pres-
ence of external forces and torques. External forces pro-
duce some average stress σ0

ij and it is common to separate
out that part from the Airy stress function

χ(x, y) =
1

2
ǫikǫjlσ

0
ijxkxl + χr(x, y), (39)

χ(x, y) =
1

2

(

y2σ0
xx + x2σ0

yy − 2xyσ0
xy

)

+ χr(x, y).

For simplicity we assume that the residual Airy stress
function χr is still a periodic function. Shallow shell
equations in the Fourier space then become

0 = q4χr(q) + Y
∑

q1 6=0

(q× q1)
2h(q− q1)f(q1)

−σ0
ijqiqjh(q) = κq4f(q)−

∑

q1 6=0

(q × q1)
2h(q− q1)χr(q1).

(40)

From the first equation above we can solve the Airy stress
function χr(q) to derive the self-consistent equation for
out-of-plane displacement f(q), which can then be used
to calculate the average in-plane strain tensor u0

ij created

by the stress σ0
ij . Upon combining the result above with

the strain tensor in Eq. (9) and the stress-strain relation
in Eq. (12) we derive the system of equations

u0
ij ≡ 1

A

∫

dA∂iuj =

(

σ0
ij − δijσ

0
kk/2

)

2µ
+

δijσ
0
kk

4(µ+ λ)
−

∑

q 6=0

qiqjh(−q)f(q),

f(q) = −
σ0
ijqiqjh(q)

κq4
− Y

κ

∑

q1,q2 6=0

(q× q1)
2(q1 × q2)

2

q4q41
h(q− q1)h(q1 − q2)f(q2). (41)

The system of equations above can be described di-
agrammatically, just as in our treatment of a spatially
modulated pressure (see Fig. 8). Upon expanding the
system of equations above in a perturbation series, aver-
aging over all possible realizations of the quenched ran-
dom membrane profiles h(q) and then summing up only
the non-crossing diagrams leads to

〈u0
ij〉 =

(

σ0
ij − δijσ

0
kk/2

)

2µ
+

δijσ
0
kk

4(µ+ λ)

+
∑

q 6=0

qiqjσ
0
klqkql

κR(q)q4
〈|h(q)|2〉, (42)

where κR(q) is the renormalized bending rigidity that we
calculated above for the response to external pressure p.
For uniaxial stretching σ0

xx (σ0
yy = σ0

xy = 0) we define
the renormalized Young’s modulus YR and the renormal-
ized Poisson’s ratio νR by

〈u0
xx〉 ≡

σ0
xx

YR
, 〈u0

yy〉 ≡ −νRσ
0
xx

YR
, (43)

while for a simple shear σ0
xy (σ0

xx = σ0
yy = 0) we define

the renormalized shear modulus µR by

〈u0
xy〉 ≡

σ0
xy

2µR
. (44)

a)

= +

= +

= +

b)
+

〈 〉= + +

c)

+ + · · ·+

+ + · · ·

FIG. 8: (Color online) Diagrammatic representation of a) the
system of Equations (41), b) the associated perturbation ex-
pansion, and c) the perturbation expansion averaged over all
realizations of quenched random warped membranes. Single
blue wavy lines represent the propagators 1/µ and 1/(µ+λ),
double blue wavy lines represent the average in-plane-strain
u0
ij , single solid lines represent propagators 1/κq4, double

solid lines represent the out-of-plane displacements f , red
dashed line represent the frozen shape profile h, and the
squares represent the external stress tensor σ0

ij . Because they
carry zero external wavevector, diagrams like the first one in
the last row evaluate exactly to 0.



12

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

L
√

Y ∆2/κ

dh = 4

 

 

YR/Y
µR/µ
κR/κ
κGR/κG

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ν
R

L
√

Y ∆2/κ

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

(Y ∆2/κ) ln(LΛ)

dh = 2

 

 

YR/Y
µR/µ
κR/κ
κGR/κG

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(Y ∆2/κ) ln(LΛ)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Y ∆2Λ2/κ

dh = 0

 

 

YR/Y
µR/µ
κR/κ
κGR/κG

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Y ∆2Λ2/κ

FIG. 9: (Color online) Numerical results for the renormalized elastic constants and Poisson ratio in the presence of external
forces and torques for warped membranes characterized with dh = 4, 2, and 0. Note that the Poisson ratio νR approaches its
microscopic value ν = 0.5 for large κ or small L in all cases. Errorbars correspond to the standard deviation for membrane
samples with different realizations of the quenched random disorder.

We find that the renormalized elastic constants scale
as

YR

Y
,
µR

µ
∼

√

κ

Y h2
v

, (45)

where we introduced the height profile variance

h2
v = 〈h2(x)〉 =

∑

k<Λ

〈|h(k)|2〉 ∼







∆2Ldh−2, dh > 2
∆2 ln(LΛ), dh = 2
∆2Λ2−dh, dh < 2

.

(46)
The renormalized Young and shear modulii are thus re-
duced and again show power law scaling (dh = 4), loga-
rithmic scaling (dh = 2) or no scaling (dh = 0) with the
system size L. Since both renormalized elastic modulii
scale in the same way with the system size for membranes
characterized by dh ≥ 2, their ratio approaches constant
value and thus a fixed universal Poisson’s ratio, which
is independent of microscopic material properties and is
predicted to be νR = −1/3.
Numerical results in Fig. 9 using the same set of param-

eters as above show good agreement with the predicted
scaling of elastic constants (YR ∼ L−1.01, µR ∼ L−1.02

for dh = 4 and YR ∼ ln−0.49(L), µR ∼ ln−0.52(L) for

dh = 2). However, the asymptotic value for the Poisson’s
ratio is quite different. This discrepancy suggests that
the omitted crossing diagrams do affect the numerical
prefactors of renormalized elastic constants, while they
seem to have only a small effect on the scaling exponents.
Numerical results also show large sample to sample vari-
ations for dh = 4, where it might not be meaningful to
define a fixed universal Poisson’s ratio.
External torques produce some average bending strain

tensor K0
ij , which describes mean curvatures. We sepa-

rate out that part from the out-of-plane displacements

f(x, y) =
1

2
K0

ijxixj + fr(x, y), (47)

f(x, y) =
1

2

(

x2K0
xx + y2K0

yy + 2xyK0
xy

)

+ fr(x, y),

and again assume that the residual function fr is peri-
odic. The shallow shell equations in this case become

0 = q4χ(q) − Y h(q)ǫikǫjlK
0
ijqkql

+Y
∑

q1

(q× q1)
2h(q− q1)fr(q1),

0 = κq4fr(q)−
∑

q1

(q× q1)
2h(q− q1)χ(q1). (48)
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FIG. 10: (Color online) Diagrammatic representation of the
perturbation series for the free energy cost of bending from
Eq. (49), in a) unaveraged and b) averaged form. Single green
wavy lines represent the propagators κ and κG, double green
wavy lines represent the free energy cost F , single solid lines
represent propagators 1/κq4, red dashed lines represent shape
profile h, and squares represent the average bending strain
tensor K0

ij . Note that diagrams like the first one in the last
row evaluate exactly to 0.

Calculating the average bending stress tensor M0
ij , which

is related to external torques at boundaries (see Eq. (13)),
is the easiest by evaluating the free energy cost of macro-
scopically bending the membrane in Eq. (3). We evaluate
the free energy cost associated with bending, namely

F/A =
1

2
κ(K0

ii)
2 − κG det(K0

ij) (49)

+
∑

q 6=0

q4

2

(

1

Y
χ(q)χ(−q) + κf(q)f(−q)

)

.

Upon expanding the Airy stress function χ(q) and the
out-of-plane displacements fr(q) in a perturbation series
and inserting them in the equation above, we arrive at a
perturbation series for the free energy F , which can be
described diagrammatically (see Fig. 10) After averag-
ing over all possible realizations of the quenched random
membrane profiles h(q) and then summing up only the
non-crossing diagrams, we obtain

〈F/A〉 =
1

2
κ(K0

ii)
2 − κG det(K0

ij) (50)

+
∑

q 6=0

Y κ

2κR(q)q4
(

ǫikǫjlK
0
ijqkql

)2 〈|h(q)|2〉,

where the renormalized bending rigidity κR(q) is the
renormalized bending rigidity introduced before. The av-
erage bending stress tensor 〈M0

ij〉 is then

〈M0
ij〉 ≡ ∂〈F/A〉

∂K0
ij

,

〈M0
ij〉 = (κ− κG)δijK

0
kk + κGK

0
ij (51)

+
∑

q 6=0

Y κqkqlqpqr
κR(q)q4

K0
mnǫikǫjlǫmpǫnr〈|h(q)|2〉.

We define the renormalized bending rigidity κR from

〈M0
xx〉 ≡ κRK

0
xx (52)

for bending in the direction x and the renormalized Gauss
bending rigidity κGR

〈M0
xy〉 ≡ κGRK

0
xy (53)

for bending in two directions x and y. We find that the
renormalied constants scale as

κR

κ
,
κGR

κG
∼

√

Y h2
v

κ
, (54)

where the height profile variance h2
v is defined in Eq. (46).

Bending rigidities are thus increased and also scale with
the system size for dh > 2. Numerical results in Fig. 9
show good agreement with the predicted scaling (κR ∼
L1.01, κGR ∼ L1.11 for dh = 4 and κR ∼ ln0.50(L), κGR ∼
ln0.55(L) for dh = 2).
Note that, as a consistency check, the free energy cost

of deformations could also be used to calculate the renor-
malized constants YR and µR in the presence of external
forces and a renormalized bending rigidity κR(q) in the
presence of external pressure. The results are identical
to the ones obtained earlier.

V. CONCLUSIONS

We have studied mechanical properties of nearly flat
random shaped warped membranes (objects with a
unique ground state in the absence of external stresses) in
the linear response regime and demonstrated that when
the typical height of the membrane profile is much larger
than the membrane thickness hv ≫ t the elastic con-
stants are significantly renormalized. Using the SCSA
method we found that the bending rigidities increase as
κR, κGR ∼

√

Y h2
v/κ, while the Young’s modulus and

shear modulus decrease as YR, µR ∼
√

κ/Y h2
v. For

membranes characterized with a random height profile
〈|h(q)|〉 ∼ q−dh we showed that the typical height hv

scales with the system size L for dh = 4, with the log-
arithm of the system size (lnL) for dh = 2 and has no
system size dependence for dh = 0. This leads to an
anomalous system size dependence of elastic properties
for membranes characterized by dh ≥ 2.
It has been shown before [11, 13, 14, 28, 29] that ther-

mal fluctuations of flat membranes also produce size-
dependent renormalized elastic constants κR, κGR ∼ Lη

and YR, µR ∼ 1/L2−2η, where η ≈ 0.85. How thermal
fluctuations affect the zero temperature scaling of elastic
constants for the warped membranes discussed here will
be treated in a future publication [32]. Intuitively we
expect that thermal fluctuations for membranes charac-
terized with dh = 0 and dh = 2 lead to elastic constants
that depend more strongly on system size. On the other
hand, we expect that the geometric effects discussed here
dominate over thermal fluctuations for membranes char-
acterized by dh = 4.
Engineers are often interested in the stability of struc-

tures to compression. Since the critical stress in Eu-



14

ler buckling instability scales with the bending rigid-
ity [8, 10], we expect that the critical stress is increased
for randomly warped membranes. The question remains
weather the critical stress scales in the same way as
the renormalized bending rigidity obtained in the linear
response regime, since the non-linear terms ignored in
Eq. (15) drive the buckling transition. This observation
suggests it would be valuable to explore the non-linear
response regime as well.
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