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Abstract

We investigate the relaxation time of magnetization or the lifetime of the metastable state

for a spin S = 1 square-lattice ferromagnetic Blume-Capel model with distribution of magnetic

anisotropy (with small variances), using two different dynamics such Glauber and phonon-assisted

dynamics. At each lattice site, the Blume-Capel model allows three spin projections (+1, 0, -1)

and a site-dependent magnetic anisotropy parameter. For each dynamic, we examine the low-

temperature lifetime in two dynamic regions with different sizes of the critical droplet and at the

boundary between the regions, within the single-droplet regime. We compute the average lifetime

of the metastable state for a fixed lattice size, using both kinetic Monte Carlo simulations and the

absorbing Markov chains method in the zero-temperature limit. We find that for both dynamics

the lifetime obeys a modified Arrhenius-like law, where the energy barrier of the metastable state

depends on temperature and standard deviation of the distribution of magnetic anisotropy for a

given field and magnetic anisotropy, and that an explicit form of this dependence differs in differ-

ent dynamic regions for different dynamics. Interestingly, the phonon-assisted dynamic prevents

transitions between degenerate states, which results in a large increase of the energy barrier at the

region boundary compared to that for the Glauber dynamic. However, an introduction of a small

distribution of magnetic anisotropy, allows the spin system to relax via lower-energy pathways such

that the energy barrier greatly decreases. In addition, for the phonon-assisted dynamic, even the

prefactor of the lifetime is substantially reduced for a broad distribution of magnetic anisotropy in

both regions considered, in contrast to the Glauber dynamic. Our findings show that overall the

phonon-assisted dynamic is more significantly affected by distribution of magnetic anisotropy than

the Glauber dynamic.

PACS numbers: 05.50.+q, 64.60.Q-, 75.60.Jk, 02.50.Ga
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I. INTRODUCTION

Metastability is ubiquitous in many physical, chemical, and biolological systems. One

of the common examples is metastability occurring in relaxation of magnetization of a fer-

romagnetic material in the presence of an external magnetic field. Suppose that a ferro-

magnetic material is initially prepared with magnetization saturated with a strong magnetic

field, and that the magnetic field direction is rapidly reversed. Then the state with the

reversed magnetization is now the ground state or the stable state. If a thermal energy is

much lower than the energy barrier against nucleation of the stable phase, the initial state

can have a long lifetime and it becomes a metastable state.

Magnetic nanoparticles, clusters, and molecules are interesting due to their utilization as

a tool to explore quantum properties at the nanometer scale by themselves or when they are

embedded into different types of substrates or solutions. They also have various applications

including information storage devices [1, 2], sensors, and contrast agents in magnetic reso-

nance imaging [3–5]. Synthesized magnetic nanoparticles have typically large distributions

of size and shape which influence their equilibrium and nonequilibrium properties [6–13].

For example, the size and shape distributions induce distributions in magnetic anisotropy

barrier, magnetization switching or relaxation, and blocking temperature.

For understanding of nonequilibrium properties of collections of magnetic nanoparticles

with size and shape distributions, one needs to go beyond the ferromagnetic Ising model

in order to include a non-trivial effect of magnetic anisotropy. The minimal model for this

purpose is a spin S = 1 ferromagnetic Blume-Capel (BC) model [14, 15], which was originally

introduced to understand features of the phase diagram of He3-He4 mixtures and a phase

transition in UO2. In the BC model, each lattice site can take three possible spin projections

(+1, 0, or -1) and magnetic anisotropy favors spin projections of ±1. A spin S > 1 BC model

can be applied to arrays of weakly-interacting magnetic nanoparticles [16, 17], of nanoscale

single-molecule magnets such as Mn12 and Fe8 [18–20], and of a Mn(III)2Ni(II) single-chain

magnet [21, 22]. Distributions of size and shape of magnetic nanoparticles can be modeled

as distributions of magnetic anisotropy at different lattice sites with a magnetic moment at

each site fixed [23].

Another crucial factor in investigation of nonequilibrium properties or magnetization re-

laxation for magnetic nanoparticles is to select a transition rate or dynamic relevant to the
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system of interest. In many cases, relaxation of magnetization for magnetic nanoparticles or

clusters was studied using the Glauber dynamic [24] without its justification or derivation

from a microscopic model, except for a few cases [25, 26]. Other commonly used dynam-

ics are Metropolis [27] and soft stochastic dynamics [28]. It has been shown that different

dynamics demand even different interpretation of the Arrhenius law [29] as well as different

nonequilibrium properties [30] in the Ising model and nanostructures of field-driven solid-

on-solid interfaces. One of us derived a transition rate or dynamic from a microscopic model

where a spin system (S ≥ 1 generalized BC model) is weakly coupled to a d-dimensional

phonon bath [31]. A similar transition rate to this was used to estimate the spin-lattice

relaxation time in quantum dots [32]. Henceforth, we refer to this dynamic as d-dimensional

phonon-assisted (PA) dynamic. Different dynamics may be affected differently by distri-

bution of magnetic anisotropy, which could be used to determine an underlying dynamic

of the system of interest. So far, an effect of dynamic on magnetization relaxation with

distribution of size (or on the lifetime of the metastable state with distribution of magnetic

anisotropy), has not been studied.

In this work, we focus on two aspects of the average lifetime of the metastable state with

distribution of magnetic anisotropy within the single-droplet regime in the zero-temperature

limit: (i) an effect of transition rate or dynamic and (ii) an effect of dynamic region (with a

different size of the critical droplet) and of the boundaries between the regions. We consider

the spin S = 1 ferromagnetic BC model on a square lattice with distribution of magnetic

anisotropy. (In this case, we assume that the magnetic anisotropy parameter has a small

variance compared to its mean value.) We apply both the Glauber and the three-dimensional

PA dynamics to the BC model in two dynamic regions and at the boundary between the

regions. We perform kinetic Monte Carlo simulations (KMCS) and use the absorbing Markov

chains (AMC) method for a fixed lattice size, and determine the average lifetime in the zero-

temperature limit, 〈τ〉 (= AeβΓ), where β = 1/(kBT ), kB is the Boltzmann constant, and T is

temperature. We find that for both dynamics, the energy barrier Γ depends on temperature

and standard deviation of distribution of magnetic anisotropy for a given field and magnetic

anisotropy, and that for the PA dynamic, even the prefactor A depends on standard deviation

of distribution of magnetic anisotropy as well as field and magnetic anisotropy for a given

region. At the region boundary, without distribution of magnetic anisotropy, the energy

barrier Γ for the PA dynamic is much higher than that for the Glauber dynamic due to
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forbidden transitions between degenerate states. However, with distribution of magnetic

anisotropy, the metastable state can relax via low-energy pathways induced by the lowest

magnetic anisotropy within the distribution, and the barrier for the PA dynamic is greatly

reduced. Overall, the PA dynamic is more susceptible to distribution of magnetic anisotropy

than the Glauber dynamic in the regions and at the boundary considered.

This work is organized as follows. In Sec.II, we discuss the BC model and metastability,

and specify two dynamic regions of interest within the single-droplet regime. In Sec.III, we

briefly introduce the Glauber and PA dynamics and discuss our implementation of advanced

algorithms (such as the n-fold way algorithm and the s = 2 Monte Carlo algorithm with

absorbing Markov chains (MCAMC) [33–35]) in KMCS with constant magnetic anisotropy

and distribution of magnetic anisotropy. We also describe the AMC method to calculate the

lifetime analytically. In Sec.IV, we show our results from KMCS and the AMC method using

the two dynamics for constant magnetic anisotropy and distribution of magnetic anisotropy

in the two regions and at the boundary. In Sec.V, we make a conclusion.

II. MODEL

A. Blume-Capel model

We consider the spin S = 1 BC model on a square lattice L× L with periodic boundary

conditions [14, 15]:

H = −2J
∑

〈i,j〉

SizSjz −H
∑

i

Siz −D
∑

i

S2
iz, (1)

where Siz is projection of spin at lattice site i onto the magnetic easy axis (z axis). Siz can

take three possible eigenvalues Miz = +1, 0 and −1. The first term in the model describes

exchange interactions between the nearest-neighbor spins at sites i and j with exchange

coupling constant J . The second term is the Zeeman energy with external magnetic field

H . The last term corresponds to magnetic anisotropy energy, where D(> 0) is a uniaxial

magnetic anisotropy parameter. The magnetic anisotropy energy arises from perturbative

treatment of spin-orbit coupling [36], and the magnetic anisotropy barrier for the BC model

is DS2. The S = 1 BC model is the simplest case where the magnetic anisotropy energy

nontrivially contributes to the total energy. Equilibrium ground-state spin configurations

for the BC model (with constant D) at zero temperature was shown in Ref. [23]. For
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(−D − 4) < H and H > 0, the configuration of all sites with Mz = 1 is the ground state.

The critical temperature Tc of the BC model increases with increasing D/J at H = 0 [37].

The value of Tc for D = 0 was calculated using various methods [38–40]. To simulate the

size distribution, we consider a distribution of D over the lattice sites (Di) with a fixed spin

or magnetic moment per site. Henceforth, we use J as units of energy.

B. Decay of the metastable state for Blume-Capel model

For the Ising model on a square lattice, decays of the metastable state and nucleation

of droplets of the stable phase have been extensively studied as a function of |H|, T , and
L [35, 41–44]. For the BC model on a square lattice, nucleation and metastability were

studied at low fields in the multi-droplet regime using the Metropolis transition rate [45],

and nonequilibrium short-time dynamics at Tc were investigated using the Glauber transition

rate [37]. Here we are interested in low-temperature decays of the metastable state using

both the Glauber and PA transition rates, within the single-droplet regime, for the BC

model for a fixed lattice size L, where the size of the critical droplet of the stable phase is

much smaller than the lattice size. The lifetime of the metastable state is defined to be the

time that the magnetization of the BC model becomes zero. For a fixed lattice size and

constant D, when we take a zero-temperature limit, the single-droplet regime falls on the

region defined by |H| < (D + 4) [23]. We divide the single-droplet regime into different

regions according to critical droplet size. For example, for 0 < D < 1, at not too low fields,

three regions labeled as I, II, and III are identified as a function of |H| and D (Fig. 1).

(Regions I-A, I-B, and I-C are considered as region I.) The critical droplet for the region

I is a single site of spin projection Mz = 0. The region I has three sub-regions where the

prefactor A in 〈τ〉 for the Glauber dynamic (for constant D) changes: A = 9/8 for region

I-A (3 + D < |H| < 4 − D for D > 0), A = 10/9 for region I-B (4 − D < |H| < 4 + D

for 0 < D < 0.5 and 3 + D < |H| < 4 + D for D > 0.5), and A = 2 for region I-C

(4−D < |H| < 3+D forD > 0.5). The critical droplet for the region II (3−D < |H| < 3+D

for D < 0.5) consists of two nearest neighbor sites with each spin projection Mz = 0. The

critical droplet for the region III (2 +D < |H| < 4−D for D > 0.5) is a single site of spin

projection Mz = −1. For the regions II and III, there are no such sub-regions as in the

region I. Previously, we investigated the case with H = −4 and D = 0.25 (marked as a in
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the region I-B in Fig. 1), using the Glauber dynamic [23]. In the current work, we focus on

metastability in the regions I-A and II and at the boundary (|H| = D+3 and 0 < D < 0.5)

between those regions. More specifically, we vary D with H fixed as −3.25: D = 0.125 for

the region I-A, D = 0.375 for the region II, and D = 0.25 for the boundary as marked as

b, c, d in Fig. 1. We do not further consider regions with lower magnetic fields because

(i) the similar rationale to our current study can be applied to those regions, and that (ii)

a larger number of transient states are required to apply the AMC method and MCAMC

to those regions, which brings complexity to analytical forms and KMCS data and obscures

our main findings. For interested readers, see Appendix where an analytical form of 〈τ〉 is
provided in region IV-A [(2 +D) < |H| < (3 −D) and D > 0] using the Glauber dynamic

for constant D and distribution of D.

III. METHODS AND ALGORITHMS

We use KMCS and the AMC method to compute the average lifetime of the metastable

state. In our KMCS, we use L = 40 and update a spin configuration via a single spin-flip

at randomly selected site i with ∆Mz = ±1, using either the Glauber or PA dynamic. The

spin-flip probability using the Glauber dynamic pg is given by

pg =
1

1 + eβ∆E
, (2)

where ∆E = Enew − Eold. Here Eold (Enew) is the total energy of the spin system before

(after) a single spin-flip at site i. The PA transition rate [31] is given by

Wpa = α

∣

∣

∣

∣

(∆E)3

1− e−β∆E

∣

∣

∣

∣

, (3)

where α is a material-dependent parameter which does not depend on ∆E. For example,

for the single-molecule magnet Mn12, α = 0.00041 s−1 [31]. In our KMCS, we set α = 1,

and the spin-flip probability for the PA dynamic is identical to Wpa.

In the standard dynamic Monte Carlo algorithm, a simulated physical time in units of

Monte Carlo step per spin is proportional to a CPU time for a fixed lattice size. For the

parameters of our interest, a decay of the metastable state would take an extremely long

CPU time if the standard algorithm were used, due to a long time to exit from the initial

state at low temperatures. To circumvent this problem, we use the following advanced
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FIG. 1: (Online color) Cross-over dynamic “phase” diagram for metastable decay for the square-

lattice ferromagnetic BC model with 0 < D < 1 in the zero-temperature limit (for constant D).

Three regions or dynamic phases within the single-droplet regime I, II, and III are specified. The

thick solid lines divide different regions, and the dashed lines divide sub-regions in the region I

such as I-A, I-B, and I-C. For each region, critical droplets are illustrated. Exceptions are the

boundaries between different regions for the PA dynamic. The three points marked as b-d are

investigated in this work, while the point a was studied in Ref.[23].

algorithms where an exit time from the current spin configuration is calculated and the

simulation time (in units of Monte Carlo step) is set to this time. For constant D, we first

use the s = 2 (two transient states) MCAMC [35] until the system exits from the transient

subspace, and then use the n-fold way algorithm [33, 34] for discrete time. In the s = 2

MCAMC algorithm, the first transient state is the initial state, and the second transient

state is all N spin configurations of spin projection Mz = 0 at a single site from the initial

state. With distributions of D, we first use the n-fold way algorithm (a modified version to

accommodate different values of D at different lattice sites) until the system exits from the

initial state, and then use the standard Monte Carlo algorithm in our KMCS. For analytic
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calculations of the average lifetime, we apply the s = 3 AMC method (three transient states)

and take the zero-temperature limit.

A. n-fold way algorithm for three-state systems with constant D

The n-fold way algorithm proposed by Refs.[33, 34] was successfully used for the Ising

model on a square lattice. In the algorithm, all spins on the lattice are classified into 10

different classes according to the spin orientation (up or down) and the sum of the four

nearest-neighbor spin orientations. To apply this algorithm to the BC model, modifications

are needed. For the BC model, all spins are now classified into 27 different classes based on

the spin projection (+1, 0, or −1) and the sum of the four nearest-neighbor spin projections

(0, ±1, ±2, ±3, or ±4). The 27 classes are listed with ∆E in Table I. Another subtlety

is that each of classes 19-27 (a lattice site with Mz = 0) has two possibilities for a single

spin-flip such as either Mz = +1 or Mz = −1, each of which has a different energy change

∆E. Thus, for the classes 19-27, we introduce the probability of flipping a spin in class i as

pi = (p+i + p−i )/2, where p+i = pi(Mz = 0 → 1) and p−i = pi(Mz = 0 → −1). Similarly to

the case of the Ising model [35], a quantity Qi is defined to calculate a discrete time to exit

from the current spin configuration.

Qi =
1

N

i
∑

j=1

njpj, 1 ≤ i ≤ 27, (4)

where Q0 = 0, nj is the number of spins or lattice sites in class j, and N = L2. Following

the scheme used in the standard n-fold way algorithm, the exit time m from the current

spin configuration is given by

m =

⌊

ln(r̄)

ln(1−Q27)

⌋

+ 1 (5)

where r̄ is a random number and ⌊x⌋ is the integer part of x.

B. n-fold way algorithm for distributions of D

With distributions of D, one must treat every lattice site individually to reflect random-

ness of D. Hence, we classify all spins into N different classes according to the lattice site
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TABLE I: The 27 spin classes for the BC model on a square lattice. For classes 19-27 two different

values of ∆E are given: the first is for Mz = 0 → +1 and the second for Mz = 0 → −1.

Class Spin Sum of Nearest-Neighbor ∆E = Enew − Eold

Number Projection Spin Projections

1 +1 +4 4− |H|+D

2 +1 +3 3− |H|+D

3 +1 +2 2− |H|+D

4 +1 +1 1− |H|+D

5 +1 0 −|H|+D

6 +1 −1 −1− |H|+D

7 +1 −2 −2− |H|+D

8 +1 −3 −3− |H|+D

9 +1 −4 −4− |H|+D

10 −1 +4 −4 + |H|+D

11 −1 +3 −3 + |H|+D

12 −1 +2 −2 + |H|+D

13 −1 +1 −1 + |H|+D

14 −1 0 |H|+D

15 −1 −1 1 + |H|+D

16 −1 −2 2 + |H|+D

17 −1 −3 3 + |H|+D

18 −1 −4 4 + |H|+D

19 0 +4 −4 + |H| −D or 4− |H| −D

20 0 +3 −3 + |H| −D or 3− |H| −D

21 0 +2 −2 + |H| −D or 2− |H| −D

22 0 +1 −1 + |H| −D or 1− |H| −D

23 0 0 |H| −D or −|H| −D

24 0 −1 1 + |H| −D or −1− |H| −D

25 0 −2 2 + |H| −D or −2− |H| −D

26 0 −3 3 + |H| −D or −3− |H| −D

27 0 −4 4 + |H| −D or −4− |H| −D
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rather than the 27 spin classes. Then we define a quantity Qi as follows:

Qi =
1

N

i
∑

j=1

pj 1 ≤ i ≤ N, (6)

where Q0 = 0. The exit time m from the current spin configuration is now

m =

⌊

ln(r̄)

ln(1−QN)

⌋

+ 1. (7)

In this case, one needs to update pj due to randomness of D in order to calculate the exit

time m rather than updating nj for constant D in Eq. (4). This algorithm is not efficient

because a memory allocation time depends on the system size N . Therefore, we switch to

the standard Monte Carlo algorithm once the spin system exits from the initial state.

C. AMC method

To analytically calculate the average lifetime for constant D, we use the s = 3 AMC

method with three transient states. For the region I-A, the s = 2 AMC method can be

also used, but for the region II, we must use the s = 3 AMC method. The magnetization

of the spin system reaches to zero shortly after a critical droplet is formed in the single-

droplet regime. Hence, the average lifetime is approximately the exit time from the transient

subspace in the AMC. Using the transient states and several absorbing states, we create a

transition matrix for the AMC and find an analytic form for the exit time. For details of the

AMC method, see Ref. [35]. In the T → 0 limit, we expect that the analytic form should be

a good approximation to the average lifetime from our KMCS. For Gaussian distributions

of D, we first calculate an average of each relevant spin-flip probability by integrating the

probability over D, and use the averages in the analytic form of the exit time for constant

D [23]. In this case, we assume that N is so large that a summation over the lattice sites

approximates an integral. Thus, we expect that the finite size effect is more prominent for

larger σD [23].

IV. RESULTS: CONSTANT MAGNETIC ANISOTROPY PARAMETER

We present analytic and simulated average lifetimes 〈τ〉 in the regions I-A and II and at

the boundary for constant D (specifically the parameter values marked as b-d in Fig. 1),
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using the Glauber dynamic. Then similar analysis is carried out for the PA dynamic. In our

KMCS, 2000 escapes are simulated for a thermal average at a given value of β.

The highlights of our results in this section are as follows. The energy barrier Γ in 〈τ〉
increases with increasing D for a fixed |H|. The increase in the region II is greater than

in the region I-A for both dynamics. At the boundary, the barrier Γ for the PA dynamic

greatly increases compared to the Glauber dynamic due to forbidden transitions under the

PA dynamic. The prefactor A in 〈τ〉 for the Glauber dynamic is constant for a given region,

but it is different at the boundary. The prefactor A for the PA dynamic, however, depends

on D and |H| even for a given region.

To calculate the analytic form of the lifetime, we use the s = 3 AMC method with the

following three transient states (and five absorbing states): (i) the initial state, (ii) the state

of a single site with Mz = 0 from the initial state (N possible configurations), and (iii) the

state of two nearest-neighbor sites with each spin Mz = 0 from the initial state (2N possible

configurations). The exit time from the transient subspace or 〈τ〉 as a function of |H|, D,

T , and N is given by

〈τ〉 =
F1(p1) + F2(p1) + F0 + p+19(6p2 + p+20 + p−20)

p1[F3(p1) + F4(p1) + F0]
, (8)

F0 = 48p22 + p−19(p
+
20 + p−20) + p2(6p

−
19 + 8p−20)

F1(p1) = p21(80− 42N + 4N2),

F2(p1) = p1[(40N − 124)p2 + (N − 8)(p+19 + p−19) + (4N − 10)(p+20 + p−20)],

F3(p1) = 2p21(40− 13N +N2),

F4(p1) = p1[(20N − 124)p2 + (N − 8)p−19 + (2N − 10)(p+20 + p−20)],

where pi is a spin-flip probability in spin class i listed in Table I. Equation (8) is valid in

the regions I-A and II and the region boundary for the Glauber dynamic and in the regions

I-A and II for the PA dynamic, because the critical droplets for the regions I-A and II are

included in the transient subspace for both dynamics. However, Eq. (8) is not valid at the

boundary for the PA dynamic. Further discussion is followed.
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A. Glauber dynamic

For the Glauber dynamic, pi’s in Eq. (8) are written as

p1 =
1

1 + eβ(4+D−|H|)
, p2 =

1

1 + eβ(3+D−|H|)
, (9)

p+19 =
1

1 + eβ(−4−D+|H|)
, p+20 =

1

1 + eβ(−3−D+|H|)
, (10)

p−19 =
1

1 + eβ(4−D−|H|)
, p−20 =

1

1 + eβ(3−D−|H|)
. (11)

Let us first present our result for the region I-A (3 + D < |H| < 4 − D and D > 0).

In the T → 0 limit, p1 becomes exp[−β(4 +D − |H|)], while p2, p
+
19, and p−20 approximate

unity. In addition, p−19 and p+20 approximate exp[−β(4−D− |H|)] and exp[β(3 +D− |H|)],
respectively, and so they vanish in the zero-temperature limit. Thus, the average lifetime,

Eq. (8), in the zero-temperature limit becomes

〈τ〉 = 8p2 + p+19
8p1p2

=
A

p1
= AeβΓ(D,H), (12)

where Γ(D,H) = 4 +D − |H| and A = 9/8 is independent of D and |H| in the region I-A.

Simulations are performed using the s = 2 MCAMC for L = 40, D = 0.125, and |H| = 3.25

in the range of β = 50−690 (Fig. 2). We use two methods to fit the KMCS data to Eq. (12):

(i) to use A and Γ as fitting parameters, and (ii) to use only A as a fitting parameter with

Γ fixed as the value from the s = 3 AMC method (Γ = 0.875). The first method provides

that Γ = 0.8750 ± 1.53 × 10−5 and A = 1.1246 ± 0.0071, while the second method gives

A = 1.1221 ± 0.0032. The fitted values agree with the analytic values, Γ = 0.875 and

A = 1.125, within the uncertainties.

We now present our result for the region II (3 − D < |H| < 3 + D and D < 0.5).

In the T → 0 limit, p1 and p2 become exp[−β(4 + D − |H|)] and exp[−β(3 + D − |H|)],
respectively. p+19, p

+
20, and p−20 approximate to unity. p−19 approximates exp[−β(4−D−|H|)],

which vanishes as T → 0. The lifetime, Eq. (8), in the zero-temperature limit becomes

〈τ〉 = p+19(p
+
20 + p−20)

8p1p2p
−
20

=
A

p1p2
= AeβΓ(D,H), (13)

where Γ(D,H) = 7 + 2D − 2|H| and A = 1/4. The barrier Γ increases with increasing

D more rapidly than in the region I-A for a given value of |H|. We perform KMCS at

|H| = 3.25 and D = 0.375 in the range of β = 50 − 560 (Fig. 2). Fitting of our simulation

data to Eq. (13) shows that A = 0.2486 ± 0.0015 and Γ = 1.2500 ± 1.81 × 10−5 from the
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FIG. 2: (Color online) The simulated 〈τ〉 vs β using the Glauber dynamic for three constant values

of D at |H| = 3.25 for L = 40.

first method, and that A = 0.2497 ± 0.0007 from the second method. These values agree

with those from the s = 3 AMC method (Γ = 1.25, A = 0.25) within the uncertainties.

Finally, we show our result for the boundary between the regions I-A and II (|H| = 3+D

and 0 < D < 0.5). In the T → 0 limit, p1 → exp[−β(4 + D − |H|)], p+19, p
−
20 → 1,

p−19 → exp[−β(4−D − |H|)], and p2, p
+
20 → 1/2. At the boundary, the lifetime is

〈τ〉 = (8p2 + p+19)(6p2 + p−20) + p+19p
+
20

8p1p2(6p2 + p−20)
= AeβΓ(D,H), (14)

where Γ = 1 and A = 41/32. In this case, the barrier Γ does not depend on D or |H|. The
prefactor A differs from that for the region I-A or II, because in the zero-temperature limit,

p2 and p+20 differ from those for the region I-A or II. Fitting of our simulation data in the range

of β = 50−690 (Fig. 2) provides that Γ = 1.0000±1.73×10−5 and A = 1.2885±0.0092 from

the first method, and that A = 1.2873±0.0041 from the second method. These values agree

with those from the AMC method within the uncertainties. See Table II for the summary.
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TABLE II: Fitting of our KMCS data using the Glauber dynamic for constant D at |H| = 3.25.

In the first method Γ and A are parameters, and in the second method only A is fitted.

Region I-A (D = 0.125) Boundary (D = 0.25) Region II (D = 0.375)

First method Γ = 0.8750 ± 1.53 × 10−5 Γ = 1.0000 ± 1.73 × 10−5 Γ = 1.2500 ± 1.81× 10−5

A = 1.1246 ± 0.0071 A = 1.2885 ± 0.0092 A = 0.2486 ± 0.0015

Second method Γ = 0.875 (fixed) Γ = 1 (fixed) Γ = 1.25 (fixed)

A = 1.1221 ± 0.0032 A = 1.2873 ± 0.0041 A = 0.2497 ± 0.0007

AMC method Γ = 0.875 Γ = 1 Γ = 1.25

A = 1.125 A = 1.28125 A = 0.25

B. Phonon-assisted dynamic

For the PA dynamic, pi’s in Eq. (8) are given as

p1 =
(4 +D − |H|)3
eβ(4+D−|H|) − 1

, p2 =
(3 +D − |H|)3
eβ(3+D−|H|) − 1

, (15)

p+19 =
(−4 −D + |H|)3
eβ(−4−D+|H|) − 1

, p+20 =
(−3 −D + |H|)3
eβ(−3−D+|H|) − 1

, (16)

p−19 =
(4−D − |H|)3
eβ(4−D−|H|) − 1

, p−20 =
(3−D − |H|)3
eβ(3−D−|H|) − 1

. (17)

We first present our result for the region I-A. In the T → 0 limit, p1 approximates (4+D−
|H|)3 exp[−β(4+D−|H|)]. p2, p+19, and p−20 approximate (−3−D+|H|)3, (4+D−|H|)3, and
(−3+D+ |H|)3, respectively. p−19 and p+20 approximate (4−D−|H|)3 exp[−β(4−D−|H|)]
and (−3 − D + |H|)3 exp[−β(−3 − D + |H|)], respectively, and they vanish in the zero-

temperature limit. Hence, the prefactor and the barrier in Eq. (8) or Eq. (12) are given

by

A =
8(−3−D + |H|)3 + (4 +D − |H|)3
8(4 +D − |H|)3(−3 −D + |H|)3 , Γ = 4 +D − |H|. (18)

The energy barrier Γ is the same for both dynamics, but the prefactor A is now a function

of D and |H| for the region I-A, which is not the case for the Glauber dynamic. As |H|
becomes close to 3 + D, the prefactor A dramatically increases. We carry out KMCS at

|H| = 3.25 and D = 0.125 in the range of β = 50−690 (Fig. 3). Fitting of the data provides

that Γ = 0.8750 ± 1.63 × 10−5 and A = 65.0899 ± 0.4396 from the first method, and that

14
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FIG. 3: (Color online) The simulated 〈τ〉 vs β using the PA dynamic for the three values of D at

|H| = 3.25 for L = 40.

A = 65.6062± 0.2015 from the second method. Within the uncertainties, these values agree

with those from Eq. (18), Γ = 0.875 and A = 65.4927.

We now examine analytic and simulated lifetimes for the region II. In the limit of T → 0,

p1 → (4 +D− |H|)3 exp[−β(4 +D− |H|)], and p2 → (3 +D− |H|)3 exp[−β(3 +D− |H|)].
p−19 → 0, and p+19, p

+
20, and p−20 approximate (4+D−|H|)3, (3+D−|H|)3, and (−3+D+|H|)3,

respectively. Thus, the prefactor and the barrier in Eq. (8) or Eq. (13) are given by

A =
(3 +D − |H|)3 + (−3 +D + |H|)3
8(3 +D − |H|)3(−3 +D + |H|)3 , Γ = 7 + 2D − 2|H|, (19)

where as |H| becomes close to 3 − D or 3 + D (boundaries of the region II), A greatly

increases. For |H| = 3.25 and D = 0.375, Eq. (19) reveals that Γ = 1.25 and A = 64.512.

Fitting our data in the range of β = 50− 550 (Fig. 3) shows that Γ = 1.2500± 2.01× 10−5

and A = 64.2807± 0.4325 from the first method, and that A = 64.4455 ± 0.1894 from the

second method.

Lastly, we discuss the average lifetime at the boundary. In this case, interestingly, the

transitions marked as (a) and (b) in Fig. 4 are forbidden (p2 = 0, p+20 = 0) because the states

involved with the transitions are degenerate. Thus, at the boundary, the critical droplet is

15



FIG. 4: (Color online) Schematic diagram of relaxation pathways at the region boundary. Each

spin configuration shows only flipped spin projections from the initial state. The rightmost upper

configuration indicates a state of two non-nearest-neighbor spin projections with each Mz = 0.

The transitions (a) and (b) are not permitted under the PA dynamic. The numbers right next to

or above the arrows represent ∆E between the states for |H| = 3.25 and D = 0.25.

now a single site with spin projection Mz = −1. This change necessitates usage of a different

set of transient states in the s = 3 AMC method. The new set of three transient states are

the first two transient states (i) and (ii) discussed earlier and a state of a single site with

spin projection Mz = −1 from the initial state (N possible configurations). Using this new

set in the s = 3 AMC method, we find the average lifetime as a function of D, |H|, T , and
N , as follows.

〈τ〉 =
G1(p1) +G2(p1) +G0 + p+19(4p3 + p10)

p1(G3(p1) +G0)
(20)

G0 = 4{2p10p2 + (8p2 + p−19)p3}

G1(p1) = p21(50− 30N + 4N2)

G2(p1) = p1[(4N − 10)p10 + (N − 5)(8p2 + p+19) + (2N − 5)(8p3 + p−19)]

G3(p1) = 2p21(N − 5)2 + p1(N − 5)(8p2 + 8p3 + 2p10 + p−19),
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TABLE III: Fitting of our KMCS data using the PA dynamic for constant D at |H| = 3.25.

Region I-A (D = 0.125) Boundary (D = 0.25) Region II (D = 0.375)

First method Γ = 0.8750 ± 1.63 × 10−5 Γ = 1.5000 ± 2.74× 10−5 Γ = 1.2500 ± 2.01 × 10−5

A = 65.0899 ± 0.4396 A = 8.2407 ± 0.0682 A = 64.2807 ± 0.4325

Second method Γ = 0.875 (fixed) Γ = 1.5 (fixed) Γ = 1.25 (fixed)

A = 65.6062 ± 0.2015 A = 8.2400 ± 0.0271 A = 64.4455 ± 0.1894

AMC method Γ = 0.875 Γ = 1.5 Γ = 1.25

A = 65.4927 A = 8.25 A = 64.512

where p3 and p10 are given by

p3 =
(2 +D − |H|)3
1− e−β(2+D−|H|)

, p10 =
(−4 +D + |H|)3
1− e−β(−4+D+|H|)

. (21)

In the zero-temperature limit, p1 and p−19 are approximately (4+D− |H|)3 exp[−β(4+D−
|H|)] and (4 − D − |H|)3 exp[−β(4 − D − |H|)], respectively. p3, p10, and p+19 are close to

(−2−D+ |H|)3, (4−D− |H|)3, and (4 +D− |H|)3, respectively. Note that p2,p
+
20 → 0 as

T → 0. Then the lifetime, Eq. (20), in the zero-temperature limit becomes

〈τ〉 =
p+19(4p3 + p10)

4p1p3p
−
19

= AeβΓ, (22)

A =
4(−2−D + |H|)3 + (4−D − |H|)3
4(−2−D + |H|)3(4−D − |H|)3 , Γ = 8− 2|H|. (23)

Fitting of our KMCS data for |H| = 3.25 and D = 0.25 in the range of β = 50−460 (Fig. 3),

shows that Γ = 1.5000 ± 2.74 × 10−5 and A = 8.2407 ± 0.0682 from the first method, and

that A = 8.2400± 0.0271 from the second method. The AMC method gives rise to Γ = 1.5

and A = 8.25. The simulated and analytic results agree within the uncertainties. For the

summary, see Table III. At the boundary, the energy barrier for the PA dynamic is much

higher than that for the Glauber dynamic, due to the forbidden transitions. The similar

increase of the barrier for the PA dynamic (due to forbidden transitions) was discussed for

the boundary between the region I-C and the region III, such as |H| = 4−D (0.5 < D < 1)

in Ref. [31].
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V. RESULTS: DISTRIBUTIONS OF MAGNETIC ANISOTROPY PARAMETER

We consider Gaussian distributions of D centered at three values of D0 (0.125, 0.25, 0.375

shown in Fig. 1) with two values of standard deviation σD = 0.0125 and 0.025. To generate

random numbers with Gaussian distributions, the Box-Muller transformation [46] is used.

At a given β and σD, 2000 escapes are simulated for a thermal average, and 10 Gaussian

distributions are generated for an average over distribution. The same sets of distributions

are used for our studies in the regions I-A and II and at the boundary for both the Glauber

and PA dynamics. Our results are valid in the case of σ/D ≪ 1. Large variances might

strongly influence the low-temperature behavior of relaxation time [47].

We first discuss our results for the Glauber dynamic and compare them with those for

constant D. Then we similarly analyze our data for the PA dynamic. The highlights of our

results are as follows. For both dynamics, compared to the case for constant D, the average

lifetime decreases with Gaussian distributions of D in the two regions and at the boundary,

because the barrier Γ decreases with increasing σD for a fixed value of β. For a given β and

σD, both dynamics show that the decrease of the barrier or the lifetime is more apparent

in the region II than in the region I-A. At the boundary, with distributions of D, the PA

dynamic now finds lower-energy relaxation pathways so that the lifetime decreases about

ten orders of magnitude at low temperatures considered compared to that for constant

D (a much greater decrease than for the Glauber dynamic). For the Glauber dynamic,

the prefactor A does not change with distribution of D compared to that for constant D.

However, for the PA dynamic, the prefactor A depends on even σD, and it significantly

decreases compared to that for constant D except for the boundary. The decrease is more

prominent in the region II than in the region I-A. For the PA dynamic, at the boundary,

the prefactor A greatly increases compared to that for constant D.

A. Glauber dynamic

We present our result for the region I-A. To find an analytic form of 〈τ〉 with a distribution

of D, we first take the zero-temperature limit of the spin-flip probability p1 in Eq. (9), and

then compute the average of the probability over Gaussian distribution of D, f(D), such

as p1 =
∫

f(D) exp[−β(4 + D − |H|)]dD. Applying this average to Eq. (12), we find the

18



average lifetime as follows.

〈τ〉 = A exp[βΓ(β,H,D0, σD)], Γ(β,H,D0, σD) = Γ0(H,D0)−
βσD

2

2
, (24)

where Γ0(H,D0) = 4 + D0 − |H| and A = 9/8. The prefactor A is not affected by f(D).

However, due to the correction term in Γ, −βσ2
D/2, the energy barrier Γ decreases with the

distribution of D. We perform KMCS in the range of β = 50 − 100 with D0 = 0.125 at

|H| = 3.25, and fit the data to Eq. (24) with fitting parameters Γ0 and A with σD fixed

(Table IV). For σD = 0.0125, the fitted values of Γ0 and A agree with Eq. (24) within σD.

For σD = 0.025, the agreement between the fitting and the AMC result is not as good as

the case of σD = 0.0125 (still agreement within 2σD). This is because the finite size effect is

more pronounced for larger σD [23].

The calculated average lifetime, Eq. (24), is valid only for Γ > 0, that is, β < 2Γ0/σ
2
D. For

example, for the point b in region I-A, β must be less than 2800 for D0 = 0.125, Γ0 = 0.375,

and σD = 0.025. (This value of β is too large to be realized numerically or experimentally.)

Otherwise, Γ becomes negative and 〈τ〉 becomes very short at an extremely low temperature,

in contrast to common sense. This contradiction occurs due to approximation taken in

order to obtain the analytical expression, Eq. (24). The approximation is that we replace

a summation by an integral in calculation of the average of the spin-flip probability over

the Gaussian distribution, p1. Using the Glauber dynamic, the expression of p1 before the

approximation (and before taking the T → 0 limit) is

p1 =
1

N

N
∑

i=1

1

1 + exp [β(4 +Di − |H|)] , (25)

where Di is taken from the Gaussian distribution. In the region I-A, Eq. (25) suggests

that as β → ∞, p1 → 0 and so 〈τ〉 → ∞. Thus, there is no contradiction even at zero

temperature. Another way to view the contradiction is that the Gaussian integral in p1 =
∫

f(D) exp[−β(4 + D − |H|)]dD is not well-defined for β → ∞. In other words, when we

rewrite p1 as

p1 =

[
∫ ∞

−∞

dD

σD

√
2π

exp

(

−{D − (D0 − σ2
Dβ)}2

2σ2
D

)]

[

exp (−βΓ0 + β2σ2
D/2)

]

, (26)

the first bracket in the above expression equals zero at β = ∞, but it equals unity otherwise.

This subtlety in the analytic expression of 〈τ〉 is applied to all the regions and dynamics
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considered in Sec.V. Henceforth, all the analytic forms of 〈τ〉 shown in this paper are valid

only for Γ > 0.

We now present our result for the region II. A spin flip at site i represented by p1 is

independent of a spin flip at site j associated with p2. Thus, as T → 0, similarly to the case

of the region I-A, we can rewrite p1p2 as

p1p2 =

∫ +∞

−∞

f(D)e−β(4+D−|H|) dD

∫ +∞

−∞

f(D′)e−β(3+D′−|H|) dD′ (27)

= exp
(

−βΓ0 + β2σ2
D

)

. (28)

Hence, using Eq. (13), the lifetime is given by

〈τ〉 = A exp[βΓ(β,H,D0, σD)], Γ(β,H,D0, σD) = Γ0(H,D0)− βσD
2, (29)

where Γ0(H,D0) = 7 + 2D0 − 2|H| and A = 1/4. We fit our KMCS data for D0 = 0.375

at |H| = 3.25 (Fig. 5) to Eq. (29) with σD fixed. We find that Γ0 = 1.2503 ± 1.33 × 10−4

and A = 0.2490 ± 0.0021 for σD = 0.0125, and that Γ0 = 1.2513 ± 2.92 × 10−4 and A =

0.2300 ± 0.0043 for σD = 0.025. For σD = 0.0125, the fitted values are in good agreement

with those using the AMC method, while for σD = 0.025, there is discrepancy between the

fitted values and the AMC result due to the finite size effect. The discrepancy for σD = 0.025

in this region is greater than that in the region I-A, because the finite size effect is enhanced

in this region due to the two integrals in Eq. (27) instead of one integral used in the region

I-A.

Finally, we show our result for the boundary. In the T → 0 limit, p2 →
∫ +∞

−∞
f(D)Θ(D−

|H| + 3))dD and p+20 →
∫ +∞

−∞
f(D)Θ(|H| − 3 −D)dD, where Θ(x) is a Heaviside function.

Applying them and p1 discussed earlier to Eq. (14), we find the lifetime as

〈τ〉 = A exp [βΓ(β, σD)], Γ = Γ0 −
βσ2

D

2
, (30)

where Γ0 = 1 andA = 41/32. Fitting of our KMCS data (Fig. 6) provides that Γ0 = 1.0002±
6.54×10−5 and A = 1.2794±0.0064 for σD = 0.0125 and that Γ0 = 0.9996±9.32×10−5 and

A = 1.2688 ± 0.0090 for σD = 0.025. The numerical uncertainties are consistently greater

for σD = 0.025. For the summary, see Table IV.
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FIG. 5: (Color online) The simulated 〈τ〉 vs β using the Glauber dynamic for the distributions of

D centered at D0 = 0.375 (region II) with σD = 0.0125, 0.025 for L = 40. The symbols indicate

our data and the solid curves are from the fitting. The lifetime for constant D is included.

TABLE IV: Fitted values from our KMCS data and calculated values from the AMC method,

using the Glauber dynamic with distributions of D centered at D0 with σD at |H| = 3.25. For the

region I-A and the boundary, Γ = Γ0 − βσ2
D/2, and for the region II, Γ = Γ0 − βσ2

D. Note that Γ0

differs from Γ.

Region I-A (D0 = 0.125) Boundary (D0 = 0.25) Region II (D0 = 0.375)

σD = 0.0125 Γ0 = 0.8751 ± 6.47 × 10−5 Γ0 = 1.0002 ± 6.54 × 10−5 Γ0 = 1.2503 ± 1.33 × 10−4

A = 1.1225 ± 0.0055 A = 1.2794 ± 0.0064 A = 0.2490 ± 0.0021

σD = 0.025 Γ0 = 0.8746 ± 9.15 × 10−5 Γ0 = 0.9996 ± 9.32 × 10−5 Γ0 = 1.2513 ± 2.92 × 10−4

A = 1.1119 ± 0.0078 A = 1.2688 ± 0.0090 A = 0.2300 ± 0.0043

AMC method Γ0 = 0.875 Γ0 = 1 Γ0 = 1.25

A = 1.125 A = 1.28125 A = 0.25
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FIG. 6: (Color online) The simulated 〈τ〉 vs β using the Glauber dynamic for the distributions

of D centered at D0 = 0.25 (at the region boundary) with σD = 0.0125, 0.025 for L = 40. The

notations are the same as those in Fig. 5.

B. Phonon-assisted dynamic

We discuss our result for the region I-A. In the region, we rewrite Eq. (12) as

〈τ〉 = 1

p1
+

p+19
8p1p2

. (31)

A spin flip at site i associated with p+19 always occurs after a spin flip related to p1 at the

same site. A spin flip at site j associated with p2 is independent of the spin slip at site i.

Thus, taking into account the energy-dependent prefactor in the PA dynamic, we rewrite

p1, p2, and p1/p
+
19 as follows.

p1 =

∫ ∞

−∞

f(D)(4 +D − |H|)3 exp[−β(4 +D − |H|)]dD (32)

p2 =

∫ ∞

−∞

f(D′)(−3−D′ + |H|)3dD′ (33)

p1
p+19

=

∫ ∞

−∞

f(D) exp[−β(4 +D − |H|)]dD (34)
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Using the above and keeping only leading terms, Eq. (31) becomes

〈τ〉 = exp[β(∆E0
1 −

1

2
σ2
Dβ)]

[

1

(∆E0
1)

3 − 3(∆E0
1)

2σ2
Dβ

+
1

8[(∆E0
2)

3 + 3∆E0
2σ

2
D]

]

, (35)

where ∆E0
1 = 4 +D0 − |H| and ∆E0

2 = −3 −D0 + |H|. Then, expanding the terms in the

bracket up to σ2
D terms, we find

〈τ〉 = A(σD) exp[βΓ(β,H,D0, σD)] = A(σD) exp

(

βΓ0 −
1

2
β2σ2

D

)

, (36)

A(σD) = A0 −
3σ2

D

8(∆E0
2)

5
+O(σ4

D), (37)

Γ0 = ∆E0
1 +

3σ2
D

A(∆E0
1)

4
+O(σ4

D) ≈ ∆E0
1 , (38)

where A0 is the prefactor for constant D, Eq. (18), where D is replaced by D0. Interestingly,

both the prefactor A and Γ0 (not Γ) now depend on σD, in contrast to the Glauber dynamic.

Considering that 0 < ∆E2 < ∆E1 < 1 and A0 ≫ 1, we expect that the prefactor A has

a more significant dependence on σD than Γ0. Fitting of our KMCS data (not shown) to

Eq. (36) shows that Γ0 = 0.8752 ± 5.83 × 10−5 and A = 62.988 ± 0.281 for σD = 0.0125,

and that Γ0 = 0.8747± 8.72× 10−5 and 57.293± 0.382 for σD = 0.025. Our fitting implies

that the fitted value of A is indeed lower than A0 (=65.4927), and that Γ0 is close to that

for constant D and for the Glauber dynamic. The fitted values of Γ0 and A are close to the

AMC result (Table V), but the agreement is not as good as that for the Glauber dynamic.

In the region II, application of the similar method discussed earlier to Eq. (13), does not

provide an analytic form of 〈τ〉, due to the energy-dependent prefactor in the PA dynamic.

However, one can predict leading terms of Γ from p1 and p2. They are the same as those for

the Glauber dynamic, Eq. (29). However, it is not possible to find an approximate analytic

form for the prefactor A in this case. Our fitting of the KMCS data (Fig. 7) to Eq. (29)

shows that Γ0 = 1.2547 ± 1.73 × 10−4 and A = 42.843 ± 0.477 for σD = 0.0125, and that

Γ0 = 1.2700 ± 0.0002 and A = 33.862 ± 0.426 for σD = 0.025. We also fit the data using

three fitting parameters such as Γ0, A, and σD (not listed). This fitting also consistently

gives a much lower value of A than the value for constant D, A = 64.512. For σD = 0.025,

the fitted value of A is almost half of that for constant D. It is apparent that the value of

A substantially decreases with increasing σD.

At the boundary, our KMCS data with distributions of D (Fig. 8) shows about ten orders

of magnitude shorter lifetime at low temperatures considered than that for constant D. This
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FIG. 7: (Color online) The simulated 〈τ〉 vs β using the PA dynamic for Gaussian distributions of

D centered at D0 = 0.375 (region II). The notations are the same as Fig. 5.

is due to the absence of forbidden transitions. The metastable state can now relax through

spin flips at sites with smaller values of D than D0, where spin flips represented by p2 are

allowed or ∆E2 6= 0, where ∆E2 = 3 + D − |H|. Note that ∆E2 = 0 at D = D0. Since

the energy barrier Γ is determined by the smallest magnetic anisotropy parameter within a

distribution ofD [23], we predict that the lifetime in this case obeys a similar form to that for

the region I-A with a distribution of D. At the boundary (|H| = D0 +3 and 0 < D0 < 0.5),

the first term in Eq. (31) is negligible and only the second term significantly contributes

to the lifetime. Across the boundary (varying D with fixed |H|), ∆E2 changes its sign.

Thus, in the T → 0 limit, p2 defined to be
∫ +∞

−∞
f(D)(∆E2)

3/(eβ∆E2 − 1)dD, approximates
∫ |H|−3

−∞
f(D)(3 +D − |H|)3dD =

√

2/πσ3
D. Using this and Eq. (34), we find that

〈τ〉 = A(σD) exp

(

βΓ0 −
1

2
σ2
Dβ

2

)

(39)

A(σD) =

√
π

8
√
2σ3

D

, Γ0 = ∆E0
1 = 1, (40)

where the prefactor A also depends on σD. Fitting of our data in the range of β = 50− 100

to Eq. (39) shows that Γ0 = 1.0098±2.12×10−4 and A = 23825±386 for σD = 0.0125, and

that Γ0 = 1.0063 ± 8.28 × 10−5 and A = 5318.3 ± 33.6 for σD = 0.025. Our fitted value of
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FIG. 8: (Color online) The simulated 〈τ〉 vs β using the PA dynamic for Gaussian distributions at

the boundary D0 = 0.25. The notations are the same as Fig. 5.

Γ0 is close to that from the AMC method, Eq. (39), and the fitted value of A decreases with

increasing σD as predicted (Table V). However, the fitted value of A is much smaller than

that from the AMC method for a given σD value. Strictly speaking, the prefactor A(σD) in

Eq. (40) is exact at T = 0. The temperature range in our KMCS may not be low enough to

agree with A(σD) in Eq. (40).

VI. CONCLUSION

We have investigated the relaxation of magnetization or the decay of the metastable

state in the zero-temperature limit for the spin S = 1 square-lattice ferromagnetic BC

model with distribution of magnetic anisotropy, using the Glauber and PA dynamics in two

different regions with different sizes of the critical droplet and at the boundary between

the regions, within the single-droplet regime. Using the AMC method, we were able to

predict the average relaxation time of magnetization or the average lifetime of the metastable

state for both dynamics in most cases that we considered. The predicted lifetimes agree

with those obtained from our KMCS. We found that the average lifetime is governed by a
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TABLE V: Fitting of our KMCS data and the AMC result using the PA dynamic with distributions

of D at |H| = 3.25. Γ0 and A are fitted with fixed σD.

Region I-A (D0 = 0.125) Boundary (D0 = 0.25) Region II (D0 = 0.375)

σD = 0.0125 Γ0 = 0.8752 ± 5.83 × 10−5 Γ0 = 1.0098 ± 2.12 × 10−4 Γ0 = 1.2547 ± 1.73 × 10−4

A = 62.988 ± 0.281 A = 23825 ± 386 A = 42.843 ± 0.477

σD = 0.025 Γ0 = 0.8747 ± 8.72 × 10−5 Γ0 = 1.0063 ± 8.28 × 10−5 Γ0 = 1.2700 ± 0.0002

A = 57.293 ± 0.382 A = 5318.3 ± 33.6 A = 33.862 ± 0.426

AMC method Γ0 = 0.875 Γ0 = 1.00 Γ0 ≈ 1.25

A = 63.629(σD = 0.0125) A = 80212(σD = 0.0125)

A = 58.636(σD = 0.025) A = 10027(σD = 0.025)

modified Arrhenius law, where the energy barrier depends on temperature and it decreases

with increasing standard deviation of distribution of magnetic anisotropy. The amount

of the decrease as a function of the standard deviation differs in different regions. At

the boundary between the different regions, for the PA dynamic, the long lifetime of the

metastable state caused by forbidden transitions (for constant magnetic anisotropy), can be

dramatically lowered by introducing a small distribution of magnetic anisotropy. In addition,

for the PA dynamic, a significant change of the prefactor A was found as a function of the

standard deviation, in contrast to the Glauber dynamic. Since the two dynamics are affected

differently by distribution of magnetic anisotropy, studies of metastability with distribution

of magnetic anisotropy can be used a way to determine an underlying dynamic relevant to

the system of interest.
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Appendix: Average metastable lifetime at a lower magnetic field

We calculate an analytic form of the average lifetime in region IV-A confined by (2+D) <

|H| < (3−D) andD > 0 in Fig. 9, with the Glauber dynamic for constantD and distribution
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FIG. 9: (Color online) Cross-over dynamic “phase” diagram for metastable decay for the square-

lattice ferromagnetic BC model with 0 < D < 1 in the zero-temperature limit (for constant D).

Four regions I, II, III, and IV within the single-droplet regime are specified with illustrated critical

droplets. The notations are the same as Fig. 1.

of D. We use the s = 4 AMC method with the following four transient states (and eight

absorbing states): the three transient states in the s = 3 AMC method (discussed in Sec.IV)

and the state of two nearest-neighboring sites with Mz = 0 and Mz = −1 [Fig. 10(d)]. The

most probable relaxation pathway in this region is marked as the bold arrows in Fig. 10.

The exit time from the transient subspace or 〈τ〉 as a function of |H|, D, T , and N is given
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by

〈τ〉 =
A1 +B1 + C1 +D1

p1(A2 + B2 + C2 +D2)
, (A.1)

A1(p
3
1) = 4p31(N − 8)2(2N − 5),

A2(p
3
1) = 4p31(N − 8)2(N − 5),

B1(p
2
1) = 2p21(N − 8)[2p2(13N − 77) + (2N − 5){2(3p3 + p11 + p+20 + p−20) + p+21 + p−21}

+(N − 8)(p+19 + p−19) + 26Np2],

B2(p
2
1) = 2p21(N − 8)[2p2(13N − 77) + (N − 5){2(3p3 + p11 + p+20 + p−20) + p+21 + p−21}

+(N − 8)p−19],

C1(p1) = p1[168p
2
2(2N − 9) + 2(2N − 5){2p+20(p11 + 3p2) + (p+20 + p−20)(6p3 + p+21 + p−21)}

+(p+19 + p−19)(N − 8){6(3p2 + p3) + 2(p11 + p+20 + p−20) + p+21 + p−21}

+4p2{(10N − 31)(6p3 + 2p11 + p+21 + p−21) + p−20(14N − 47)}],

C2(p1) = p1[216p
2
2(N − 7) + 2(N − 5){2p+20(p11 + 3p2) + (p+20 + p−20)(6p3 + p+21 + p−21)}

+p−19(N − 8){6(3p2 + p3) + 2(p11 + p+20 + p−20) + p+21 + p−21}

+4p2{(5N − 31)(6p3 + 2p11 + p+21 + p−21) + p−20(7N − 47)}],

D1 = 2p11{48p22 + (p+19 + p−19)(6p2 + p+20)}

+{48p22 + 8p2p
−
20 + (p+19 + p−19)(6p2 + p+20 + p−20)}(6p2 + 6p3 + p+21 + p−21),

D2 = 2p11{48p22 + 2p−19(6p2 + p+20)}

+{48p22 + 8p2p
−
20 + p−19(6p2 + p+20 + p−20)}(6p2 + 6p3 + p+21 + p−21).

1. Constant magnetic anisotropy parameter

In the T → 0 limit, p+21 approaches zero, and p3, p10, p11, p
+
19, p

+
20, and p−21 approach unity.

p1 approaches exp[−(4 +D− |H|)] and p2 approaches exp[−(3 +D− |H|)]. p−19 approaches

exp[−(4−D − |H|)] and p−20 approaches exp[−(3−D − |H|)]. In addition, in region IV-A,

p1 ≪ p−19 ≪ p2p
−
20, and so A1, A2, B1, B2, C1, and C2 approach zero as T → 0. Thus, Eq. A.1

is reduced to

〈τ〉 = D1

p1D2

, (A.2)

and it can be further approximated to

〈τ〉 = 9

56
(p1p2p

−
20)

−1 =
9

56
exp[β(10−D + 3|H|)]. (A.3)
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FIG. 10: Schematic diagram of relaxation pathways for region IV-A shown in Fig. 9. Each spin

configuration shows only flipped spin projections from the initial state (all spins with Mz = +1).

The bold arrows represent the most probable relaxation pathway. The numbers right next to or

above the arrows represent ∆E between the corresponding states for |H| = 2.5 and D = 0.25.

2. Distribution of magnetic anisotropy parameter

With a Gaussian distribution f(D) of D, using the same analogy as before (Sec.V.A),

for T → 0, we can compute the average of the probability p1p2p
−
20 over f(D), such as

p1p
−
20p2 =

∫ +∞

−∞

f(D)e−β(4+D−|H|) e−β(3−D−|H|) dD

∫ +∞

−∞

f(D′)e−β(3+D′−|H|) dD′, (A.4)

where p1p
−
20 does not give a dependence on σD. We can rewrite p1p

−
20p2 as

p1p
−
20p2 = exp

(

−βΓ0 +
β2σ2

D

2

)

. (A.5)

Hence, using the above equation, we find that the average lifetime is

〈τ〉 = A exp[βΓ(β,H,D0, σD)], Γ(β,H,D0, σD) = Γ0(H,D0)−
βσD

2

2
, (A.6)

where Γ0(H,D0) = 10 + D0 − 3|H| and A = 9/56. The expression of Γ is valid only for

β < 2Γ0/σ
2
D, as discussed earlier. The prefactor is the same as that for the constant D

case, and the dependence of σD on Γ is the same as that for the region I and the boundary

discussed in the main text.
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[38] Y. Tanaka and N. Uryû, J. Phys. Soc. Japan 50, 1140 (1981).
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