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Abstract 
 
The dynamic equilibrium model suggests that surface nanobubbles can be stable due to an influx 

of gas in the vicinity of the bubble contact line, driven by substrate hydrophobicity, that balances 

the outflux of gas from the bubble apex. Here, we develop a new formulation of this mechanism 

that predicts rich behavior in agreement with recent experimental measurements. Namely, we 

find that stable nanobubbles exist in narrow temperature and dissolved gas concentration ranges, 

that there is a maximum and minimum possible bubble size, and that nanobubble radii decrease 

with temperature. 

 
Body 
 
Interfacial nanobubbles form on solid hydrophobic substrates when immersed in water with 

dissolved gas (e.g. nitrogen, oxygen, argon, etc.), and are spherical-cap-shaped gaseous domains 

with heights of ~20 nm and widths of ~100 nm [1–18]. Due to the small radius of curvature, a 

typical nanobubble has extremely high internal capillary pressure (~2-10 atm), which provides a 

substantial driving force for dissolution. Simple diffusion arguments therefore suggest 

microsecond dissolution times, yet nanobubbles have been observed to persist for days [16]. This 

mysterious stability represents a fundamental problem in nano-scale interfacial phenomena, even 

though nanobubbles have become important for increasing slip along surfaces [19–22], removing 

biological fouling [23], and in a host of other technologies [24,25]. 



Why are nanobubbles stable? A dynamic equilibrium mechanism proposed by Brenner 

and Lohse [26] has received increasing attention, and it offers an alternative to earlier ideas like 

contamination that now appear insufficient as a complete explanation [27–29]. This model (Fig. 

1a) suggests that the outflux of gas from the top of the bubble is recirculated and re-absorbed 

near the three-phase contact line due to the attraction and enrichment of dissolved gas at the 

hydrophobic substrate. It was later suggested that the recirculation currents are induced by shear 

stresses imposed on the liquid-gas interface due to Knudsen diffusion of the gas inside the 

bubble [30]. While the ultimate driving force for recirculation is unknown at present, one 

possibility is subtle temperature gradients due to evaporation [25]. It is worthwhile to note that 

another transport-based explanation recently proposed that nanobubble lifetimes are due to slow 

gas diffusion (a ‘traffic jam’ effect) across the liquid film [31]; however, it is yet unclear whether 

this provides the full picture, since convective currents would dramatically expedite mass 

transfer in real experiments. Other recent work suggests nanobubbles may exist in a 

thermodynamically metastable state due to contact line pinning [32], although bubbles have been 

observed to adjust their lateral size [33] and may be moved along the substrate using the tip of an 

atomic force microscopy apparatus [7,34].  

In this Rapid Communication, we develop a new formulation of the dynamic equilibrium 

mechanism and show that a stability analysis explains many unexpected experimental 

observations regarding the influence of temperature and gas saturation on nanobubbles. In 

particular, there is remarkable qualitative agreement with the results of Seddon et al. [35], who 

reported that nanobubbles nucleate in a narrow temperature range, and that the total volume of 

nanobubbles decreases with temperature. Moreover, by using a realistic, empirical potential for 



the hydrophobic attraction, we find that the dynamic equilibrium mechanism does not require 

unphysical parameters for a contact angle correction, as in the original model. 

Our model treats the influx and outflux components of the dynamic mechanism 

independently by assuming that the relevant length scale for the outflux (which is O(R), where R 

is bubble radius) is much larger than that for the influx (which is on the order of the thickness of 

the gas-enrichment layer, around a nanometer). Moreover, this approach focuses on the region 

immediately surrounding the bubble, where mass transfer is diffusion-limited, rather than the full 

convective recirculation problem. Given the observed small contact angles of 

nanobubbles [7,12,18,34,36], we first approximate the steady-state diffusive gas outflux using a 

completely flat bubble, which is readily solved using oblate spheroids [37,38], 

   

 ( ) [ ]4 ( )outJ R DR C R C∞= −  (1) 

 

Here, D is the diffusion constant for the gas in the liquid, R is the bubble radius, C(R) is the 

liquid-side gas concentration at the bubble surface, and C∞  is its concentration infinitely far 

away. C∞  can be related to the ambient pressure P0 if the bulk liquid is open to the atmosphere 

and saturated, with 0HC k P∞ = , where kH is a temperature-dependent Henry’s law constant. 

Similarly, ( ) ( )02 sin /H cC R k R Pγ θ= +  through the Young-Laplace equation, where cθ  is the 

bubble contact angle. γ  gives the surface tension, here described by the Eötvös relation with 

parameters for an air-water interface. Because experiments [7,12,18,34,36] suggest the contact 

angle of small bubbles deviates from the macroscopic value (e.g., due to surface inhomogeneities 

or line-tension effects [36,39–44]), we introduce an R-dependent cθ   [26,36]:  
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In this expression, θ∞  is the macroscopic gas-side contact angle, which we take to be 40°. 0θ  is 

the contact angle as 0R → , and equals zero. δ  sets the length scale for the onset of microscopic 

corrections; we pick 3.2δ =  nm to yield realistic predictions, in agreement with experimental 

fits to this parameter [36]. Because we use a more realistic hydrophobic interaction (described 

shortly), we avoid the unrealistically high values of δ  previously required for the dynamic 

equilibrium model [26]. 

The influx is determined by inJ D C dS= − ∇ ⋅∫ n , where the integral is over the bubble 

surface. Gas molecules experience an attractive interaction with the hydrophobic substrate 

according to a potential ( )zΦ ; therefore, using /D C C ζ∇ = − ∇Φ  for diffusion in a field, we 

obtain 
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where /Bk T Dζ =  is the solute mobility and h is the shape function for the bubble in the vicinity 

of the contact line, which we approximate as ( ) ( ) tan ch r R r θ= − . Unlike previous work [26], 

we choose a continuous, decaying exponential potential proposed from experiments to describe 



the hydrophobic attraction [45], ( ) Bzz Ae−Φ = − . Eq. 3 can be evaluated analytically by assuming 

that ( )zΦ  decays rapidly to yield 
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It is worthwhile to note that for  very small values of R and cθ , Jin becomes positive and 

inaccurate since the separation of length scales and the linear shape approximation fail when the 

bubble radius or height approach the potential decay length, which is known from experiment to 

be B-1 = 1 nm [45]. The magnitude of the attractive potential at the solid-liquid interface (set by 

A) is treated as approximately constant, and a value of A ≈ 0.40 kcal/mol was found to yield 

realistic results. This value is on the order of magnitude of the hydrophobic interaction between 

two methane molecules in water [46], and similar to the values used by Brenner and Lohse [26]. 

Fig. 1b shows that the net flux of gas into the bubble, normalized by C(R), can have a 

non-monotonic dependence on bubble radius that is quite sensitive to temperature. These results 

are shown for the fully saturated case. Stable bubbles of radius R* occur when 

( ) ( ) ( )* * * 0out in netj R j R j R+ = =  and ( )* / 0netdj R dR > . The derivative condition must be 

satisfied so that a bubble will return to its original size in response to small perturbations to 

radius (i.e., perturbations to smaller R cause a net influx, 0netj < , and vice versa). Fig. 1b 

illustrates that there is only one unstable point at T = 26 °C, but at T = 36 °C, a stable point 

occurs at R* = 40 nm in addition to two unstable ones. As temperature is raised, the stable point 

shifts towards smaller bubble radii, and ultimately vanishes at T = 56 °C. Therefore, this 



formulation of the dynamic equilibrium model suggests that, for fully saturated liquid in contact 

with a hydrophobic substrate, stable nanobubbles exist in a narrow range of temperatures, with a 

minimum and maximum possible bubble size associated with the maximum and minimum 

temperatures, respectively. The exact breadth of the temperature range depends on the specific 

parameters used. 

Surprisingly, the temperature dependence of gas solubility does not affect nanobubbles in 

this model, since both influx and outflux scale linearly with kH . Surface tension only weakly 

influences nanobubbles since it does not vary dramatically over the considered temperature 

ranges. The temperature dependence of R* (Fig. 2a) is primarily introduced through the influx, 

which scales as ~1/T due to the solute mobility. With rising temperature, solute mobility 

increases and dissolved gas molecules more readily overcome the attractive influence of the 

hydrophobic potential, which shrinks the gas-rich region (as evidenced by the solute 

concentration profile in the absence of a bubble, given by ( ) ( )exp / BC z C z k T∞ ⎡ ⎤= −Φ⎣ ⎦ ). This 

lowers the influx and the outflux shrinks bubbles until the fluxes balance again. Above some 

temperature (Tmax ≈ 48 °C), the effect of the potential falls to levels where the influx is too small 

to ever balance the outflux. Bubbles above this temperature will thus shrink and dissolve. 

Similarly, below some temperature (Tmin ≈ 35 °C), the action of the attractive field dominates and 

bubbles grow without bound until the gas is locally depleted or the thermodynamic work 

required to sustain the influx becomes too great. If a bubble becomes sufficiently large, it may 

also detach from the substrate due to buoyancy. 

The result in Fig. 2a qualitatively agrees with the observations of Seddon et al [35] for 

the case of a saturated liquid in thermal equilibrium with the substrate. The model presented in 

this Rapid Communication accounts for the sudden appearance of a high density of nanobubbles 



at a minimum critical temperature, the finite temperature range where bubbles were observed, 

and why bubbles at lower temperatures appear coarser. The decrease in bubble size (Fig. 2a), 

coupled to an experimentally observed increase in bubble number density with 

temperature [8,12], might also explain the observed maximum in the total nanobubble volume 

versus temperature [33,36]. Furthermore, the prediction of larger bubbles at lower temperatures 

possibly accounts for the increase in average nanobubble separation with decreasing 

temperature [33], since larger bubbles require a greater surrounding unperturbed gas-rich region.  

We do note that other studies have reported more complicated behavior. Recent work 

finds non-monotonic changes in the average nanobubble radius with decreasing 

temperature [33,47]. Differences between the model predictions and these observations are 

possibly due to the complicated temperature dependence of the hydrophobic attractive potential, 

which we ignore here. The complex nature of this potential may explain the sensitivity of bubble 

morphology to the hydrophobicity parameter A (Fig 2a) in our simple model. This sensitivity 

may also be partly responsible for the earlier difficulty in reproducibility among nanobubble 

experiments [35]. 

 Beyond temperature, a second important control parameter is the dissolved gas 

concentration (C∞ ), and Fig. 2b shows how it affects the stable radius R*. There exist large 

regions in the space of temperature and saturation where stable bubbles cannot exist, which may 

provide further interpretation for reproducibility problems. Where they do exist, lowering C∞  

reduces bubble size since this elevates the driving force for outflux but has no effect on the 

influx (the concentration immediately next to the bubble at the surface is unaffected), as also 

described by Ref. [26]. As previously, perturbing bubbles to a state outside of the viable region 

will lead to bubbles either dissolving or growing until the influx expires. The result in Fig. 2b is 



in agreement with experiments indicating that bubbles in supersaturated fluid are larger than 

those in undersaturated conditions [12]. Interestingly, this model also suggests that there may be 

middle-range temperatures (e.g., 45 °C in Fig. 2b) at which the stable bubble radius is quite 

insensitive to saturation, as reported by Ref. [34], while near the lower temperature limit it can 

be rather pronounced.  

  In the model described thus far, we constrained the contact angle such that it depends 

explicitly on the bubble radius. We now relax the ad hoc constraint imposed by Eq. 2 and 

examine the stability of bubbles to perturbation in cθ . Fig. 3 shows the net flux versus both 

contact angle and radius, where the two are treated as independent. The solid black curve 

corresponds to the points where the fluxes balance ( 0netj = ). For a fixed contact angle, it is not 

possible to generate stable bubbles with respect to perturbation in R; a bubble perturbed to the 

left of the stable curve at constant angle enters a region where the sum of fluxes is positive and 

the outflux dominates, and thus will shrink and disappear.  

Bubbles are stable, however, to perturbations in cθ  at fixed R. If a bubble pinned at the 

contact line begins to dissolve and lose vertical height, the contact angle decreases, which leads 

to an increase in the bubble surface area that is situated within the gas-rich region (which has 

fixed width). Ultimately, this increases the influx and stabilizes the bubble. The size of a pinned 

bubble exhibits the same qualitative behavior as described previously, with increases in T leading 

to smaller *
cθ , and increases in saturation leading to a taller bubble with larger *

cθ , as observed 

by Ref. [48]. Without the constraint posed by Eq. 2, however, the model no longer predicts 

physical limits on the temperature and saturation ranges where bubbles can exist.  

Note that the stable contact angle *
cθ  is less than 30° for a wide range of bubble radii in 

Fig. 3, as reported in numerous experimental nanobubble studies. Furthermore, a bubble 



perturbed in any arbitrary direction from the black curve in Fig. 3 may be stable if the bubble’s 

response to perturbation in cθ  is more rapid than its response to perturbation in R. This is likely 

to be the case since surface roughness and inhomogeneities will inevitably lead to at least partial 

contact line pinning. With this in mind, the predicted curve indicating possible combinations of 

cθ  and R that yield stable bubbles (solid black curve) looks remarkably similar to the ad hoc R-

dependent contact angle constraint that we applied previously, which is shown for comparison as 

the dashed curve. Therefore, this model suggests that a possible dynamic phenomenon may also 

explain deviations from macroscopic contact angles in nanobubbles. 

 Even if the dynamic equilibrium model cannot ultimately describe long-term stability, it 

may still be relevant to the nucleation process since it poses a means by which bubbles may 

grow. As indicated by the stability analysis, a bubble will tend towards a preferred radius 

determined by the solution conditions, and may begin as a fluctuation in gas density that inflates 

via the dynamic equilibrium mechanism until it reaches this size. At this point, the influx may 

expire and the bubble might be stabilized by different means, such as the diffusive traffic jam 

effect described by Weijs and Lohse [31], contact line pinning [32], or some other hitherto 

undiscovered means. This would also explain why our predictions agree with experimental data 

where bubbles were explicitly nucleated for every data point.  

While the dynamic equilibrium model predicts rich behavior, it may also have 

limitations. First, the source of energy for recirculation remains an unresolved issue. Also, the 

model cannot explain the presence of nanoscopic bubbles along hydrophilic substrates. A 

transient localized gas-rich layer, similar to those in systems with hydrophobic substrates, can 

develop along a hydrophilic interface during solvent exchange [10], but it is unclear what 

mechanism might draw gas solute molecules from this gas-rich region into the bubble. 



Furthermore, a recent study [49] using tracer particles in the vicinity of nanobubbles reported no 

evidence for an influx near the contact line. However, the particles used are comparable in 

diameter to the actual nanobubbles, and it is not clear whether velocities localized to a region just 

a few nanometers over the substrate can be resolved with this technique. Lastly, a study using 

optical interference-enhanced reflection microscopy [50] reports that nanobubble sizes remained 

constant over a broad temperature range, in conflict with other experimental studies and our 

predictions. Ultimately, a more consistent experimental picture is needed under varying 

conditions, but expounding the detailed behaviors and implications of models like the dynamic 

equilibrium one remains an essential step in guiding such efforts and in building a deeper 

understanding of the phenomena at play, even if eventually they are not the full picture. 

 In summary, we demonstrated through a stability analysis that the dynamic equilibrium 

hypothesis for nanobubble stability indicates that nanobubbles should only be observed in a 

narrow range of temperatures and that their radii should decrease monotonically with 

temperature. Both predictions have been observed in experiment. Interestingly, the model also 

predicts large regions of temperature-gas saturation state space where nanobubbles cannot be 

observed. We believe a thorough understanding of the consequences of this hypothesis may 

finally settle whether it is a valid picture of nanobubble stability or nucleation through future 

experimental work. 

 The authors gratefully acknowledge the support of the National Science Foundation 

(Award Number CBET-1256838). 

 
 
 
 
 
 



References 
 

[1]  P. Ball, Nature 423, 25 (n.d.). 
[2]  O. I. Vinogradova, N. F. Bunkin, N. V. Churaev, O. A. Kiseleva, A. V. Lobeyev, and B. 

W. Ninham, Journal of Colloid and Interface Science 173, 443 (1995). 
[3]  J. W. G. Tyrrell and P. Attard, Phys. Rev. Lett. 87, 176104 (2001). 
[4]  P. Attard, Advances in Colloid and Interface Science 104, 75 (2003). 
[5]  J. L. Parker, P. M. Claesson, and P. Attard, J. Phys. Chem. 98, 8468 (1994). 
[6]  M. Holmberg, A. Kühle, K. A. Mørch, and A. Boisen, Langmuir 19, 10510 (2003). 
[7]  A. C. Simonsen, P. L. Hansen, and B. Klösgen, Journal of Colloid and Interface Science 

273, 291 (2004). 
[8]  X. H. Zhang, X. D. Zhang, S. T. Lou, Z. Zhang, J. L. Sun, and J. Hu, CAS OpenIR 20, 

(2004). 
[9]  A. Agrawal, J. Park, D. Y. Ryu, P. T. Hammond, T. P. Russell, and G. H. McKinley, Nano 

Lett. 5, 1751 (2005). 
[10]  X. H. Zhang, N. Maeda, and V. S. J. Craig, Langmuir 22, 5025 (2006). 
[11]  L. Zhang, Y. Zhang, X. Zhang, Z. Li, G. Shen, M. Ye, C. Fan, H. Fang, and J. Hu, 

Langmuir 22, 8109 (2006). 
[12]  S. Yang, S. M. Dammer, N. Bremond, H. J. W. Zandvliet, E. S. Kooij, and D. Lohse, 

Langmuir 23, 7072 (2007). 
[13]  B. M. Borkent, S. M. Dammer, H. Schönherr, G. J. Vancso, and D. Lohse, Phys. Rev. Lett. 

98, 204502 (2007). 
[14]  X. H. Zhang, A. Khan, and W. A. Ducker, Phys. Rev. Lett. 98, 136101 (2007). 
[15]  S. Yang, E. S. Kooij, B. Poelsema, D. Lohse, and H. J. W. Zandvliet, EPL (Europhysics 

Letters) 81, 64006 (2008). 
[16]  X. H. Zhang, A. Quinn, and W. A. Ducker, Langmuir 24, 4756 (2008). 
[17]  S.-T. Lou, Z.-Q. Ouyang, Y. Zhang, X. Li, J. Hu, M. Li, and F.-J. Yang, Journal of 

Vacuum Science Technology B: Microelectronics and Nanometer Structures 18, 2573 
(2000). 

[18]  N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Langmuir 16, 6377 (2000). 
[19]  Y. Wang and B. Bhushan, Soft Matter 6, 29 (2009). 
[20]  Y. Wang, B. Bhushan, and X. Zhao, Langmuir 25, 9328 (2009). 
[21]  D. C. Tretheway and C. D. Meinhart, Physics of Fluids 16, 1509 (2004). 
[22]  E. Lauga and M. P. Brenner, Phys. Rev. E 70, 026311 (2004). 
[23]  Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, V. S. J. Craig, and J. Hu, Journal of 

Colloid and Interface Science 328, 10 (2008). 
[24]  W. B. Zimmerman, V. Tesař, and H. C. H. Bandulasena, Current Opinion in Colloid & 

Interface Science 16, 350 (2011). 
[25]  J. R. T. Seddon, D. Lohse, W. A. Ducker, and V. S. J. Craig, ChemPhysChem 13, 2179 

(2012). 
[26]  M. P. Brenner and D. Lohse, Phys. Rev. Lett. 101, 214505 (2008). 
[27]  W. A. Ducker, Langmuir 25, 8907 (2009). 
[28]  S. Das, J. H. Snoeijer, and D. Lohse, Phys. Rev. E 82, 056310 (2010). 
[29]  X. Zhang, M. H. Uddin, H. Yang, G. Toikka, W. Ducker, and N. Maeda, Langmuir 28, 

10471 (2012). 
[30]  J. R. T. Seddon, H. J. W. Zandvliet, and D. Lohse, Phys. Rev. Lett. 107, 116101 (2011). 



[31]  J. H. Weijs and D. Lohse, Phys. Rev. Lett. 110, 054501 (2013). 
[32]  Y. Liu and X. Zhang, The Journal of Chemical Physics 138, 014706 (2013). 
[33]  R. P. Berkelaar, J. R. T. Seddon, H. J. W. Zandvliet, and D. Lohse, ChemPhysChem 13, 

2213 (2012). 
[34]  X. H. Zhang, G. Li, N. Maeda, and J. Hu, Langmuir 22, 9238 (2006). 
[35]  J. R. T. Seddon, E. S. Kooij, B. Poelsema, H. J. W. Zandvliet, and D. Lohse, Phys. Rev. 

Lett. 106, 056101 (2011). 
[36]  M. A. J. van Limbeek and J. R. T. Seddon, Langmuir 27, 8694 (2011). 
[37]  P. A. Bobbert, M. M. Wind, and J. Vlieger, Physica A: Statistical Mechanics and Its 

Applications 141, 58 (1987). 
[38] See Supplemental Material at [] for a detailed derivation of Eq. 1, as well as a sensitivity 

analysis of the described model. 
[39]  A. Checco, P. Guenoun, and J. Daillant, Phys. Rev. Lett. 91, 186101 (2003). 
[40]  A. Checco, H. Schollmeyer, J. Daillant, P. Guenoun, and R. Boukherroub, Langmuir 22, 

116 (2006). 
[41]  P. Jakubczyk and M. Napiórkowski, Journal of Physics: Condensed Matter 16, 6917 

(2004). 
[42]  D. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects 116, 1 (1996). 
[43]  N. Kameda and S. Nakabayashi, Chemical Physics Letters 461, 122 (2008). 
[44]  N. Kameda, N. Sogoshi, and S. Nakabayashi, Surface Science 602, 1579 (2008). 
[45]  J. N. Israelachvili, Intermolecular and Surface Forces, Third Edition, 3rd ed. (Academic 

Press, 2010). 
[46]  S. Shimizu and H. S. Chan, The Journal of Chemical Physics 113, 4683 (2000). 
[47]  Z. Xue-Hua, L. Gang, W. Zhi-Hua, Z. Xiao-Dong, and H. Jun, Chinese Physics 14, 1774 

(2005). 
[48]  X. Zhang, D. Y. C. Chan, D. Wang, and N. Maeda, Langmuir 29, 1017 (2013). 
[49]  C. U. Chan and C.-D. Ohl, Phys. Rev. Lett. 109, 174501 (2012). 
[50]  S. Karpitschka, E. Dietrich, J. R. T. Seddon, H. J. W. Zandvliet, D. Lohse, and H. Riegler, 

Phys. Rev. Lett. 109, 066102 (2012). 
 
 
 
 
 
 
 
 
 
 
 
 
  



Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1 (color online). (a) Schematic of the dynamic equilibrium mechanism for nanobubble 

stability. (b) Sum of influx and outflux, scaled by the concentration at the bubble surface (

( )/out outj J C R= , ( )/in inj J C R= ), versus bubble radius for several different temperatures. The 

blue (solid) curves denote temperatures at which stable points are found. 

 
  



  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2 (color online). (a) Stable bubble radius versus temperature according to dynamic 

equilibrium model, shown for different values of A (dashed curves). (b) Stable bubble radius 

versus solute concentration for several different temperatures. Arrow indicates direction of 

increasing T. 

  



 
 

 

 

 

 

 

 

 

 

 

FIG. 3 (color online). Sum of influx and outflux versus both radius and contact angle for T = 27 

°C. Points where the fluxes balance are shown by the solid curve. The dashed curve is Eq. 2, with 

θ∞  = 30° and δ  = 10 nm. 
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