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We propose a new lattice Boltzmann (LB) model for the convection-diffusion equation 

(CDE) and show that the CDE can be recovered correctly from the model by the 

Chapman-Enskog analysis. The most striking feature of the present LB model is that it 

enables the collision process to be implemented locally, making it possible to retain the 

advantage of the lattice Boltzmann method in the study of the heat and mass transfer in 

complex geometries. A local scheme for computing the heat and mass fluxes is then 

proposed to replace conventional nonlocal finite-difference schemes. We further validate 

the present model and the local scheme for computing the flux against analytical 

solutions to several classical problems, and show that both the model for the CDE and the 

computational scheme for the flux have a second-order convergence rate in space. It is 

also demonstrated the present model is more accurate than existing LB models for the 

CDE.  
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I. Introduction 

The convection-diffusion or advection-diffusion equation is widely used to describe 

transport phenomena where heat, mass and other physical quantities are transferred due 

to the diffusion and advection processes [1]. The equation is given by: 

                                                    ( ) ( )φφφ ∇⋅∇=⋅∇+
∂
∂ D

t
u ,                                              (1) 

where φ  represents a scalar variable and is a function of both time and space, D  is the 

diffusion coefficient. u  is the velocity, and governed by the incompressible Navier-

Stokes (N-S) equations: 

                                                              0=⋅∇ u ,                                                               (2) 

                                                  auuuu +∇+∇−=∇⋅+
∂
∂ 21 ν

ρ
P

t
,                                    (3) 

where P  is the pressure, ρ  is the fluid density, ν  is the kinematic viscosity, and a  is the 

acceleration due to external force.  

To reveal transport phenomena governed by the CDE, the best way is to obtain an 

exact solution with a suitable analytical method, but it has proven very difficult as the 

velocity in the CDE is coupled with the N-S equations (2) and (3). For this reason, many 

numerical approaches, including the finite-difference, finite-volume and finite-element 

methods, have been developed [2-4]. However, these methods are challenging in the 

study of the mass or heat transfer in a complex geometry (e.g., porous media).  

The lattice Boltzmann method (LBM), as a kinetic based numerical method, has made 

a great progress in the study of fluid flows for its advantage in dealing with complex 

boundaries [5-9], and has also been extended to solve the CDE [10-22]. Dawson et al. [10] 

first applied the LBM to the study of solvent flow where an LB model was used to solve 
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the N-S equations for fluid flow, while another was adopted to solve the CDE for the 

concentration field; the method has also been extended to investigate thermal flows [11]. 

To improve the efficiency of the LBM for CDE, van der Sman and Ernst [12] developed 

an LB model with irregular lattices, which may be more efficient for some special 

physical problems. In addition, they also compared the LBM with some traditional 

methods (finite-difference and finite-element methods), and found that the LBM had a 

comparable performance with these traditional approaches. Shi and co-workers [13, 14] 

proposed a new LB model for the CDE with a source term; unlike some previous models, 

an additional term is included in this model such that the CDE with a source term can be 

recovered. Zhang et al. [15] constructed an LB model for the anisotropic CDE in which 

the Bhatnagar-Gross-Krook (BGK) collision operator and a directionally dependent 

relaxation time for each pair distribution function with opposite discrete velocities are 

used. However, as pointed out by Ginzburg [16], this BGK-typed LB model cannot have 

a mass conserving equilibrium distribution function once the relaxation times differ with 

each other. To overcome this problem inherent in the BGK-typed LB model, the two-

relaxation-time and multiple-relaxation-time LB models have also been proposed in a 

more general way to solve the anisotropic CDE [16-19]. Although many LB models have 

been proposed for the CDE, the Chapman-Enskog analysis shows that the CDE can only 

be recovered exactly from these models under some unrealistic assumptions (e.g., the 

velocity must be a constant). However, these assumptions adopted in these previous 

works may not be satisfied in practice and also influence the accuracy of the lattice 

Boltzmann model [20].  Generally speaking, there are two possible ways that can be used 

to eliminate constrains of the assumptions adopted in these available LB models. The first 
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is to add a source term in the evolution equation of the LB model such that the CDE can 

be recovered correctly [20]. Chopard et al. [20] used this method to construct an LB 

model for CDE, in which a time-derivative or space-derivative term is added in the 

evolution equation, and found that the model with the space-derivative term is more 

accurate. However, the collision process of the model with the space-derivative term 

cannot be implemented locally (here the word ‘local’ means that the computation of a 

physical variable at one point only depends on the information of this point) since a 

finite-difference scheme is needed to compute the space-derivative term, which not only 

affects the computational efficiency of the lattice Boltzmann method, but also gives rise 

to some difficulties in adopting a local scheme to treat the boundary condition of the 

CDE.  The other is to construct an LB model with a modified evolution equation (without 

adding a source term in the evolution equation) to ensure that the unwanted terms in the 

previous models can be eliminated completely [21, 22]. However, the collision process 

cannot yet be performed locally, and thus the problems mentioned above still remain.  

To address the above mentioned problems in previous LB models for the CDE, this 

work reports a new LB model that makes use of a modified equilibrium distribution 

function and the evolution equation with a source term. The Chapman-Enskog analysis 

shows that the CDE can be recovered exactly from the new model. More importantly, the 

model enables the collision process to be implemented locally. In the following, we 

present the model first, followed by the Chapman-Enskog analysis to recover the CDE. 

With this model, we then present a local scheme, instead of the traditionally nonlocal 

finite-difference schemes, to compute the heat and mass fluxes. Finally, some numerical 

examples are carried out to test the present model and the scheme in computing the flux. 
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The numerical results show that both the present model for CDE and the local scheme in 

computing the flux have a second-order convergence rate in space.      

 

II. Model Development 

The lattice Boltzmann method can be viewed as a mesoscopic numerical approach for 

computational fluid dynamics [7] and a general solver to some special partial differential 

equations [23-26]. Based on the collision operator, the models of LBM can be classified 

into three groups: the single-relaxation-time model (or so called BGK model) [27], the 

two-relaxation-time model [28], and the multiple-relaxation-time model [29, 30]. In this 

work, the BGK model is considered for its simplicity and high computational efficiency. 

The evolution equation of the BGK model for the CDE, given by Eq. (1), can be written 

as [20]: 

                    ( ) ( ) ( ) ( ) ( )[ ] ( )tRtttttt i
eq

iiiii ,,,1,, xxxxcx +−−=−++ φφ
τ

φδδφ
φ

,                 (4) 

which includes the two separate steps, i.e., collision and propagation,  

                    Collision: ( ) ( ) ( ) ( ) ( )[ ] ( )tRtttt i
eq

iiii ,,,1,, xxxxx +−−=+ φφ
τ

φφ
φ

,                   (5)     

                    Propagation: ( ) ( )tttt iii ,, xcx +=++ φδδφ ,                                                    (6)                

where ( )ti ,xφ  and ( )ti ,x+φ  are the distribution function and post-collision distribution 

function associated with velocity ic  at position x and time t , φτ  is the dimensionless 

relaxation time. ( ) ( )teq
i ,xφ  is local equilibrium distribution function, and defined by: 

                           ( ) ( )
2

0
24

2

2 22
1

s
i

ss

i

s

i
i

eq
i c

P
ccc

w
ρ
φλφφ +⎥

⎦

⎤
⎢
⎣

⎡ ⋅−⋅+⋅+= uuucuc ,                                 (7) 
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where 0ρ  is the average value of the fluid density ρ , iw  and iλ  are weight coefficients, 

and satisfy the following conditions: 
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                  (8)           

where βγαθβθαγγθαβαβγθ δδδδδδ ++=Δ , αβδ  is the Kronecker delta with two indices. For 

simplicity but without the loss of generality, the weight coefficient iλ  is set as 

∑ ≠
−=

00 i iλλ , ( )0≠= iwiiλ . ic  is the discrete velocity, and can be found in some 

published works (e.g., [27]). iR  is the source term, and given by: 

                                   ( ) ( )
2

0

2
11,

s

i
ii c

PtwtR acx φρφδ
τφ

+∇⋅
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= .                                 (9) 

Based on mass conservation and Eq. (8), iφ  and ( )eq
iφ  should satisfy the following 

equations: 

                                                        ( )∑∑ ==
i

eq
i

i
i φφφ ,                                                  (10)          

                                                           ( )∑=
i

eq
iiφφ cu .                                                     (11)  

It should be noted that a linear equilibrium distribution function has also been widely 

used in previous LB models for CDE [11, 15 ,16, 20], which, however, leads to a 

numerical diffusion coefficient in the recovered CDE [16, 20]. As the numerical diffusion 
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coefficient is proportional to the square of the velocity, the LB model with the linear 

equilibrium distribution function will result in lager errors in solving the CDE [20]. 

We now perform the Chapman-Enskog analysis to derive the CDE from the 

present model. To this end, we first expand the distribution function iφ , the derivatives of 

time and space, and the acceleration a  as [6, 32]: 

                                                        ( ) ( ) ( ) ...2210 +++= iiii φεεφφφ ,                                  (12a) 

                                                              
2

2

1 ttt ∂
∂+

∂
∂=

∂
∂ εε ,                                          (12b) 

                                                                     1∇=∇ ε ,                                                    (12c) 

                                                                      1aa ε= .                                                     (12d) 

Appling the Taylor expansion to Eq. (4), we obtain: 

                              ( )[ ] i
eq

iiiiii R
t

t
t

t +−−=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ φφ

τ
φδφδ

φ

1
2

22

cc .            (13) 

Substituting Eqs. (12) into Eq. (13), one can derive the zero, first, and second-order 

equations in ε  as: 

    ( ) ( )eq
ii φφε =00 : ,                                                                                                 (14a) 

    ( ) ( ) ( )
2

10110
1

1

1

2
111:

s

i
iiii c

Pw
tt

acc φρφ
τ

φ
δτ

φε
φφ

+∇⋅
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂
∂ ,        (14b)  

( )
( ) ( ) ( )20

2

1
1

1
1

12

0
2 1

2
: iiiii

i

tt
t

tt
φ

δτ
φδφφε

φ

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂
∂+

∂
∂ cc .               (14c) 

From Eqs. (14a) and (14b) one can easily obtain: 

                                                      ( ) 1,0 ≥=∑ k
i

k
iφ ,                                                (15) 
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  ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⋅∇+

∂
∂−=∑ 101

0

2
1

1

1

2
11 aIuuIuc φρφ
τ

φ
ρ

φφφδτφ
φ

φ PPc
t

t s
i

ii ,    (16) 

where Eqs. (8) and (10) have been used.  

Multiplying the operator 11 ∇⋅+∂∂ it c  on the both sides of Eq. (14b), and substituting 

the result into Eq. (14c), we have: 

( )
( ) ( ) ( )2

2
1011

1
12

0
2 1

22
11: i

s

i
iii

i

tc
Ptw

tt
φ

δτ
φρφδφ

τ
φε

φφ

−=⎥
⎦

⎤
⎢
⎣

⎡ +∇⋅+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂
∂+

∂
∂ acc .    (17) 

Summing Eqs. (14b) and (17) over i , and utilizing Eqs. (15) and (16), one can obtain the 

first and second-order recovered equations in ε  as: 

       ( ) 0: 1
1

1 =∇+
∂
∂ uφφε
t

,                                                                                          (18a)         
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⎧
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⎡
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⎠

⎞
⎜⎜
⎝

⎛
++⋅∇+

∂
∂−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅∇+

∂
∂

aa

IuuIu

φρφ
τ

δφρφ
τ

φ
ρ

φφφδτ
τ

φε

φφ

φ
φ

PtP

Pc
t

t
t s

.   (18b) 

Based on the first-order incompressible Navier-Stokes equations in ε  [31], 

                                         11
0

1
1

1 1: auuu +∇−=∇⋅+
∂
∂ P
t ρ

ε ,                                       (19)  

Eq. (18b) can be rewritten as: 

                                                 ( ) 0: 11
2

2 =∇⋅∇−
∂
∂ φφε D
t

,                                            (20) 

where Eq. (18a) has been used. By combining the results at 1t  and 2t  scales, i.e., Eq. (18a) 

and Eq. (20), we recover the CDE as: 

                                                 ( ) [ ]φφφ ∇⋅∇=⋅∇+
∂
∂ D

t
u ,                                               (21) 
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where D  is the diffusion coefficient, and given by 

                                                       tcD s δτφ ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
12 .                                                     (22)                             

The above Chapman-Enskog analysis clearly shows that the CDE can be recovered 

correctly from the present model, in which a modified equilibrium distribution function 

and an additional source term are used. We note that the models proposed by Chopard et 

al. [20] and Zheng et al. [22] can also be used to recover the CDE, but a problem within 

the previous models is that the collision processes cannot be implemented locally. To 

ensure the collision process, Eq. (5), of the present model to be performed locally, a local 

scheme, given by Eq. (31), is proposed to compute the gradient term φ∇  appearing in the 

source term iR  [see Eq. (9)].  

In addition to the lattice Boltzmann model for the CDE, we also need another lattice 

Boltzmann model to solve the N-S equations (2) and (3). In the present work, the model 

proposed by He and Luo [31] is adopted since it is more accurate in the study of 

incompressible flows. Similar to Eq. (4), the evolution of the model reads  

                 ( ) ( ) ( ) ( ) ( )[ ] ( )tFtftftftttf i
eq

ii
f

iii ,,,1,, xxxxcx +−−=−++
τ

δδ ,                 (23) 

where ( )tf i ,x  is the distribution function, ( ) ( )tf eq
i ,x  is the equilibrium distribution 

function, and defined as 

                                    ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ ⋅−⋅+⋅+= 24

2

20 22 ss

i

s

i
i

eq
i ccc

wf uuucucρρ .                              (24) 

where the average fluid density 0ρ  is set to be 1.0 for simplicity. iF  is the forcing term, 

and given by [32] 
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                             ( ) ( ) ( )acucucx 0222
11, ρδ
τφ

⋅⎥
⎦

⎤
⎢
⎣

⎡ ⋅+−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= i

s

i

s

i
ii cc

twtF .                           (25) 

The macroscopic density and velocity can be obtained from: 

                                                              ∑=
i

ifρ ,                                                           (26)          

                                                     acu
2

1

0

tf
i

ii
δ

ρ
+= ∑ .                                                  (27)  

Through the Chapman-Enskog expansion, we can obtain the incompressible N-S 

equations (2) and (3) with the kinematic viscosity ( ) tc fs δτν 212 −= .            

 

III. A local scheme for the heat and mass fluxes  

As discussed in Section I, in developing LB models for the CDE, many previous 

investigators focused on the accuracy and convergence rate of the model in describing the 

scalar variable φ  [12-21]. More recently, the heat or mass flux, as another important 

physical variable, has also received increasing attention in predicting effective physical 

properties of porous media [33]. However, to our knowledge, there is no a special 

discussion on this topic in the framework of LBM. To fill the gap, we provide a local 

scheme, instead of the traditionally nonlocal finite-difference schemes, to compute the 

heat and mass fluxes, and perform a numerical study on the convergence rate of the 

scheme.  

A general mathematical definition of the heat or mass flux ( J ) can be given as 

                                                      uJ φφ +∇−= D .                                                         (28) 

Based on the results reported elsewhere [6, 7, 34], both the scalar variable φ  and velocity 

u  have a second-order accuracy in space, and thus the flux should have a first-order 
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convergence rate according to Eq. (28). However, as shown below, the flux can be 

computed from the non-equilibrium part of the distribution function with a second-order 

convergence rate, which is similar to the computation of the strain rate tensor or shear 

stress in the LBM [35, 36]. 

Substituting Eq. (19) into Eq. (16), one can obtain:  

                                          ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=∑

φφ
φ τ

φφ
ρτ

δτφ
22

1
1

2

0

1 ac s
i

ii cPt ,                        (29) 

from which we can further derive the expression of φ1∇  

                                                   

( )

( )2
0

1
1

1 2

2

s

i
ii

cPt

t

φτρδ

φδφ
φ

+

+
−=∇
∑ ac

.                                           (30) 

Multiplying ε  on both sides of Eq. (30) and utilizing the relation ( ) ( )eq
iii φφεφ −≈1  (we 

note that this approximation has been widely used to calculate the strain rate tensor or 

shear stress in the LBM [35, 36]), we can obtain the following scheme to compute the 

gradient term φ∇ , 

                                               

( )[ ]
( )2

0 2

2

s

i

eq
iii

cPt

t

φτρδ

φδφφ
φ

+

+−
−=∇
∑ ac

.                                       (31) 

It is clear that Eq. (31) is a local scheme in the computation of the gradient term φ∇  

without adopting any finite-difference schemes. Substituting Eq. (31) into Eq. (9), we can 

also give a local scheme to compute the source term iR  so that the collision process of 

the present LB model can be implemented locally. In addition, substituting Eq. (31) into 

Eq. (28), one can derive a local scheme to compute the flux: 
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( )[ ]
( ) u

ac
J φ

τρδ

φδφφ

φ

+
+

+−
=

∑
2

0 2

2

s

i

eq
iii

cPt

t
D .                                           (32) 

Here we would like to point out that, in the same way as the computation of the shear 

stress and strain rate tensor [35, 36], the flux can also be calculated by the non-

equilibrium part of the distribution function. Certain remarks on some schemes for 

computing the flux are given below:  

Remark I: In the standard LB model for the CDE [10, 34], we can also use the non-

equilibrium part of the distribution function to derive the computational scheme for the 

flux,  

                               

( )[ ] ( )
u

ac
J φ

τδ

ρφτδφφ

φ

φ

+
∇−+−

=
∑

2

0

s

i

eq
iii

ct

Pt
D ,                                (33) 

which, however, cannot be computed locally. This is because, in the framework of LBM, 

only the pressure, rather than the pressure gradient term P∇ , can be computed directly 

based on the relationship between the density and pressure. For this reason, an additional 

finite-difference scheme is needed to compute the pressure gradient term P∇ . 

Remark II: In the corrected model proposed by Chopard et al. [20], one can also obtain a 

similar scheme for computing the flux, 

                                   

( )[ ] ( )
u

ac
J φ

τδ

ρφδφφ

φ

+
∇−+−

=
∑

2

0

2

2

s

i

eq
iii

ct

Pt
D .                             (34) 

Like Eq. (33), Eq. (34) is also a nonlocal scheme for computing the flux, as an additional 

finite-difference scheme to compute pressure gradient term P∇  is also needed. 

Remark III: For a pure diffusion process, i.e., the velocity u  is zero, there is no flow 

field effect on the scalar variable φ . For this reason, the physical variables related to flow 
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field, including the pressure P  and acceleration a , can be chosen arbitrarily, and set to 

be zero for simplicity. Thus we can obtain a simple local scheme for the flux,  

                                                 ( )[ ]∑ −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

i

eq
iii φφ

τφ

cJ
2
11 ,                                          (35) 

which can also be derived from Eqs. (33) and (34).  

 

IV. Results and discussion 

To test the accuracies of the present model for CDE and the local scheme for 

computing the flux, this section presents some benchmark examples, including a one-

dimensional periodic problem, the problem of diffusion in the Couette flow with wall 

injection, and the problem of diffusion in the Poiseuille flow. In simulations, the 

following convergent criterion was used for a steady problem to ensure that the numerical 

results reach steady state, 

                                       
( ) ( )

( )
8100.1

,
100,, −×<

×−−

∑
∑

x

x

x
xx

t
ttt

φ
δφφ

.                               (36) 

To test the convergence rate of the present model for CDE and the local scheme for the 

flux, the relative error ( E ) is used, 

                                                  
( ) ( )

( )∑
∑ −

=
x

x

x
xx

t
tt

E
a

na

,
,,

θ
θθ

θ ,                                           (37) 

where θ  represents the scalar variable φ  or one of elements of the flux J , the subscripts 

a  and n  denote the analytical and numerical solutions. Unless otherwise stated, the half-

way anti-bounce-back and bounce-back schemes are used to treat the boundary 

conditions of CDE and N-S equations since they are both local schemes, and have a 
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second-order convergence rate in space [34, 37]. In addition, it is also known that the 

lattice Boltzmann method is a second-order accurate approach in the study of fluid flows 

[6, 7, 37], and thus we only focus on the results of present model for CDE and the 

scheme in computing the flux, and do not present any results of LB model for fluid flows.  

A. Numerical validations 

To validate present model for the CDE and the scheme for computing flux, we 

performed simulations of a one-dimensional periodic problem, diffusion in the Couette 

flow with wall injection, and diffusion in the Poiseuille flow, and compared the 

numerical results with the corresponding analytical solutions.  

1. A one-dimensional periodic problem 

We first use a one-dimensional problem with a periodic geometry size L  to validate 

the present model for CDE and the local scheme in computing the flux. For this simple 

problem, one can derive its analytical solution under some suitable initial and boundary 

conditions [20], 

              ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡+⎥
⎦

⎤
⎢
⎣

⎡+= − tkuktkuket tkD ζ
ζ

ζ
ζ

φφφ sinsinsinsincoscos, 00
10

2

xxx ,       (38)  

                                                         ( ) ( )tut ζcos0=u ,                                                      (39)     

where πζ 2= , Lk π2= , 0u , 0φ  and 1φ  are some constants; the acceleration a  and the 

pressure gradient P∇  are given by 

                                                    ( ) 0,sin0 =∇−= Ptu ζζa .                                         (40)       

From the above Eqs. (38) and (39) we can also obtain the exact solution of the flux, 
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             ( ) ( ) ( ) ( )[ ] ( )
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⎩
⎨
⎧

⎥⎦
⎤
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−
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tkuktukkDetu
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ζ
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ζφζφ
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sinsincossincos
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0
0

0
0100

2

xx

xx

uJ

.       (41) 

In simulations, the D1Q3 model (a one-dimensional model with there discrete 

velocities) in the lattice Boltzmann method is used. The simulations are suspended after 

running one period πδζ 211 === tNT t  with tN  representing the time steps in one 

period. The parameters L , 0u , and 1φ  are fixed to be 1.0, while 0φ is set to be 0. The 

numerical results at different Peléct numbers (Pe, DLu0Pe = ) and relaxation times are 

presented in Figs. 1 and 2. The results were obtained with a lattice size 64, which is fine 

enough to derive the accurate results. As seen from these two figures, the numerical 

results of scalar variable φ  and the flux J  are in good agreement with the corresponding 

analytical solutions. 
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Fig. 1: The distributions of scalar variable φ  (a) and the flux J  (b) (Pe=1). 

 

 

Fig. 2: The distributions of scalar variable φ  (a) and the flux J  (b) (Pe=10). 
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To quantitatively evaluate the difference between numerical results and the analytical 

solution, we compute the relative errors [Eq. (37)] at different Peléct numbers and 

relaxation times, and present the results in Tables I. As seen from this table, the results 

with a smaller relaxation time ( 51.0=φτ ) are comparable to those with the relaxation 

time near unity, which is similar to the results on shear stress [35]. However, a larger 

error will be obtained if the relaxation time is much larger than unity ( 0.3=φτ ). Based 

on these results, we can conclude that, to derive more accurate results, the relaxation time 

used in simulation cannot be much larger than unity. 

TABLE I. Relative errors of the scalar variable φ  and flux J  with different relaxation 
times and Peléct numbers. 

 

φτ  
φE   JE  

Pe=1 Pe=10  Pe=1 Pe=10 
51.0  310727.1 −×  310736.1 −×   310019.1 −×  310190.1 −×  
8.0  310570.1 −×  310819.1 −×   410659.8 −×  310404.1 −×  
2.1  410247.8 −×  310425.1 −×   510814.9 −×  310867.1 −×  
0.3  210175.1 −×  310850.8 −×   210222.1 −×  210226.1 −×  

 

In addition, we note that this problem is time-dependent, and thus it is necessary to test 

the error variation with the increase of time. To this end, the relative errors of scalar 

variable φ  and flux J  at different times ( t ) are calculated and presented in Fig. 3 where 

Pe=1. As seen from this figure, the relative errors of the case with a larger relaxation time 

( 0.3=φτ ) increase faster in time, while there are no apparent increases for other cases. 

The similar results are also observed for the case of Pe=10.  
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Fig. 3: The relative errors of scalar variable φ  and flux J  at different times. 

2. The diffusion in the Couette flow with wall injection 

The second tested problem is diffusion in the Couette flow with wall injection, the 

schematic of the problem is shown in Fig. 4, where the top and bottom walls move at 

different velocities 0u  and 0 in x  direction, and simultaneously, a vertical velocity 0v  is 

injected at both walls. 
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Fig. 4: Schematic of diffusion in the Couette flow with wall injection. 

This problem has the following analytical solutions of velocity ( )yx uu ,=u  and φ  [34]: 
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where 0φ  and 1φ  are values of the scalar variable φ  on the bottom and top walls, H  is 

the height of the two-dimensional channel. Re  and Pe  represent the Reynolds and Peléct 

numbers, and defined by 

                                                        
ν

0Re Hv= , 
D

Hv0Pe = .                                             (45) 

Based on Eqs. (42)-(45), we can also derive the analytical solution of the flux 

( )yx JJ ,=J , 
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Several numerical experiments were performed with the D2Q9 model (a two-

dimensional model with nine discrete velocities), and the parameters 0u , 0v , 0φ , 1φ , and 

H used in simulations were set as 01.000 == vu , 00 =φ , 11 =φ , and 1=H . We present 

the simulation results at different Peléct numbers in Figs. 5 and 6, in which the periodic 

boundary condition is applied in the horizontal direction and the lattice size is 6464 × . 

As shown in these figures, the numerical results agree well with analytical ones, which 

indicates that the present model and scheme are accurate in solving CDE and computing 

the flux. However, we also find that, similar to the lattice BGK model for fluid flows [37], 

the relaxation time also influences the numerical results of this problem. Although the 

maximum relative error is rather small, and the value is less than 2%, an obvious 

deviation between the numerical and analytical results can be observed, as shown in Fig. 

6(c). We also present a quantitative comparison between the numerical results and 

analytical solution in Table II, where the relative errors [Eq. (37)] at different Peléct 

numbers and relaxation times are computed. As shown in this table, the results with 

different relaxation times are comparable to each other. It is also found that the relative 

errors increase with the increase of the Peléct number, this may be due to the fact that the 

convection effect is more predominant at a larger Pe, which usually brings larger errors in 

simulations.  
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Fig. 5: The distributions of scalar variable φ  (a) and the flux J  (b, c) along y  direction 

(Re=10, Pe=1). 
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Fig. 6: The distributions of scalar variable φ  (a) and the flux J  (b, c) along y  direction 

(Re=10, Pe=10). 
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TABLE II. Relative errors of the scalar variable φ  and flux J  with different relaxation 
times and Peléct numbers. 

 φE  
xJE  yJE  

φτ  Re=10, 
Pe=1 

Re=10, 
Pe=10 

Re=10, 
Pe=1 

Re=10, 
Pe=10 

Re=10, 
Pe=1 

Re=10, 
Pe=10 

8.0
 

510771.6 −×
 

310859.1 −×
 

 310861.1 −×
 

310793.3 −×
 

 510559.2 −×
 

210585.1 −×
 

0.1
 

510891.6 −×
 

310071.2 −×
 

 310930.2 −×
 

310686.6 −×
 

 510560.1 −×
 

310689.9 −×
 

2.1
 

510070.7 −×
 

310923.2 −×
 

 310134.4 −×
 

310640.9 −×
 

 710239.6 −×
 

410984.2 −×
 

5.1
 

510452.7 −×
 

310928.4 −×
 

 310252.6 −×
 

210470.1 −×
 

 510120.3 −×
 

210998.1 −×
 

 

3. The diffusion in the Poiseuille flow 

At last, the problem of the diffusion in the Poiseuille flow is also used to test the 

present model for CDE and the local scheme for the flux. For this problem, the flow in 

the two-dimensional channel is driven by an external force ( )0,xaρρ == aF  with 

constant density ρ  and acceleration a , and assumed to be periodic in horizontal 

direction. H  is the height of the channel, 0φ  and 1φ  are the scalar variable φ  at the top 

and bottom walls. Based on these boundary conditions, we can obtain theoretical 

solutions of the problem: 

                                                           ⎟
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                                                   ( )
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Similar to the Problem 2, the Reynolds number and Peléct number are used, and defined 

as 

                                                         
ν

0Re Hu= , 
D

Hu0Pe = ,                                            (53) 

where 0u  is the maximum velocity, and given by ν82
0 Hau x= . After several algebraic 

manipulations, one can find that the Peléct number does not affect the solutions of scalar 

variable φ  and flux xJ  [Eqs. (50) and (51)], but it influences the solution of flux yJ .  

We also used the D2Q9 model to carry out several simulations at different Peléct 

numbers and relaxation times; the numerical results are shown in Figs. 7 and 8. From 

these figures we can find that the numerical results agree well with analytical solutions. A 

quantitative study on the deviation between the numerical results and analytical solutions 

was also performed, the relative errors at different Peléct numbers and relaxation times 

were calculated and presented in Tables III and IV. As seen from these tables, it is found 

that the numerical results of scalar variable φ  and the flux yJ almost match 

corresponding analytical solutions exactly, which is consistent with the theoretical 

analysis on this problem [34]. In addition, we also find that the relative errors of scalar 

variable φ  and flux yJ  decrease with the increase of relaxation time gτ , but an opposite 

trend is observed for the flux xJ  when the relaxation time gτ  is no less that unity. This 

may be because the velocity xu  in the computation of flux xJ  is related to the relaxation 

time fτ  [37], and as a consequence depends on the relaxation time gτ  based on the 

relationship ( ) ( )1212PeRe −−= fg ττ .  
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From the above discussion one can conclude that the relaxation time gτ  cannot be 

much larger in order to derive more accurate results of scalar variable φ  and flux J . In 

addition, we also would like to point out that, as the present lattice Boltzmann model and 

scheme are both second-order methods for scalar variable φ  and flux J , the numerical 

results should be convergent to the linear φ  and constant flux yJ  exactly. However, with 

an increase of Pe, the larger errors are observed, which may be caused by the fact that the 

convection effect predominates at a larger Pe. We also note that the errors of scalar 

variable φ  and flux yJ  increase dramatically when Pe is in the range from 1 to 10, while 

slowly as Pe is changed from 10 to 100. 
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Fig. 7: The distributions of scalar variable φ  (a) and the flux J  (b, c) along y  direction 

(Re=10, Pe=1). 
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Fig. 8: The distributions of scalar variable φ  (a) and the flux J  (b, c) along y  direction 

(Re=10, Pe=10). 

TABLE III. Relative errors of the scalar variable φ  and flux J  with different relaxation 
times and Peléct numbers. 

 φE   
xJE  yJE  

φτ  Re=10, 
Pe=1 

Re=10, 
Pe=6 

Re=10, 
Pe=1 

Re=10, 
Pe=6 

Re=10, 
Pe=1 

Re=10, 
Pe=6 

8.0
 

1310732.4 −×  1110643.4 −×
 

 410445.4 −×
 

410665.3 −×
 

 1210753.1 −×  
1110276.7 −×

 
0.1
 

1310337.2 −×  1110975.1 −×
 

 410937.5 −×
 

410998.3 −×
 

 1210179.1 −×
 

1110107.3 −×
 

2.1
 

1310341.1 −×  1110119.1 −×
 

 410919.7 −×
 

410838.4 −×
 

 1210253.1 −×  
1110757.1 −×

 
5.1
 

1410988.6 −×  1210144.6 −×
 

 310269.1 −× 410074.8 −×
 

 1310620.3 −×
 

1210654.9 −×
 

0.3
 

1510913.9 −×  1210174.1 −×
 

 310502.5 −×
 

310680.5 −×
 

 1410259.2 −×
 

1210847.1 −×
 

5.0 1510584.6 −×  1310653.2 −×
 

 210407.1 −×
 

210920.1 −×  
 1410610.1 −×  1310168.4 −×

 

TABLE IV. Relative errors of the scalar variable φ  and flux J  with different relaxation 
times and Peléct numbers. 

 φE   
xJE  yJE  

φτ  Re=10, 
Pe=10 

Re=10, 
Pe=100 

Re=10, 
Pe=10 

Re=10, 
Pe=100 

Re=10, 
Pe=10 

Re=10, 
Pe=100 
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8.0
 

710448.3 −×  710157.4 −×   410525.2 −× 210711.1 −×
 

 710416.5 −×  
710529.6 −×

 
0.1
 

710063.2 −×  710507.2 −×
 

 410473.2 −× 210816.4 −×
 

 710240.2 −×  
710936.3 −×

 
2.1
 

710453.1 −×  710711.1 −×
 

 410043.8 −× 210473.9 −×
 

 710282.2 −×  
710688.2 −×

 
5.1
 

810471.9 −×  710196.1 −×
 

 310011.2 −× 110937.1 −×
 

 710487.1 −×  
710879.1 −×

 
0.3
 

810952.2 −×  810357.4 −×
 

 210444.1 −× 010213.1 ×
 

 810636.4 −×  
810843.6 −×

 
5.0 810419.1 −×  810015.2 −×

 
 210757.4 −×

 
010929.3 ×

 
 810229.2 −×  810614.3 −×

 
 

B. The convergence rates of the present model for the convection-

diffusion equation and local scheme for computing flux 

To investigate the convergence rates of the present model for CDE and the local 

scheme for computing the flux, the one-dimensional periodic problem described above is 

first used here since the boundary effect on numerical results can be excluded. We 

computed the relative errors with different lattice sizes, and show the results in Figs. 9 

and 10. As seen from these figures, the present model for CDE is second-order accurate, 

as expected; more interestingly, the scheme for computing the flux also has a second-

order convergence rate in space. Besides, we can also find that the relaxation time has an 

influence on the accuracy of the present model and the scheme for flux, but it does not 

affect the second-order convergence rate in space. 
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Fig. 9: The relative errors of scalar variable φ  (a) and the flux J  (b) at different lattice 

sizes ( 161=xδ , 321 , 641 , 961 , 1281 , 1921 , and 2561 ) (Pe=1). The slope of the 

inserted line is 2.0, which indicates the model for CDE and the scheme in computing flux 

have a second-order convergence rate. 
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Fig. 10: The relative errors of scalar variable φ  (a) and the flux J  (b) at different lattice 

sizes ( 161=xδ , 321 , 641 , 961 , 1281 , 1921 , and 2561 ) (Pe=10). The slope of the 

inserted line is 2.0, which indicates the model for CDE and the scheme in computing flux 

have a second-order convergence rate. 

Although the results presented above clearly show that the present model for CDE and 

the scheme in computing mass or heat flux have a second-order convergence rate, the 

boundary effect, which may affect the convergence rate of LBM, is not included since the 

periodic problem is considered. To test the boundary effect on convergence rates of the 

present model for CDE and the scheme for flux, we studied the problem of diffusion in 
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the Couette flow with wall injection at different lattice sizes, and presented the results in 

Figs. 11 and 12.  As shown in these figures, the appearance of the boundary does not 

influence the second-order convergence rate of present model for CDE in that the half-

way anti-bounce-back scheme is a second-order method for the boundary condition of 

CDE, but it affects the convergence rate of the scheme for flux [see Figs. 11(b) and 

12(b)]. To see the boundary effect more clearly, the local errors of the scalar variable φ  

( naLE φφφ −= ) and flux xJ ( nxaxJ JJLE
x ,, −= ) were also computed and presented in 

Fig. 13 where the lattice size and Peléct number are fixed at 64 and 10. As seen from this 

figure, the larger local errors are observed near the top boundary where the scalar 

variable φ  is not zero.  
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Fig. 11: The relative errors of scalar variable φ  (a) and the flux xJ  (b) at different lattice 

sizes ( 321=xδ , 641 , 961 , 1281 , 1921 , 2561 , and 3201 ) (Re=10, Pe=1). The slope 

of the inserted line is used to indicate convergence rates of the model for CDE and the 

scheme in computing flux xJ . 
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Fig. 12: The relative errors of scalar variable φ  (a) and the flux xJ  (b) at different lattice 

sizes ( 321=xδ , 641 , 961 , 1281 , 1921 , 2561 , and 3201 ) (Re=10, Pe=10). The 

slope of the inserted line is used to indicate convergence rates of the model for CDE and 

the scheme in computing flux xJ . 
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Fig. 13: The distributions of local errors of scalar variable φ  (a) and the flux xJ  (b) at 

different relaxation times.  

C. A comparison between the present model and previous models 

The Chapman-Enskog analysis presented in Section II shows that the present model 

can recover the CDE correctly, which can be used to conclude that the present model 

should be more accurate than the popular model adopted in some previous works [10, 34]. 

To confirm above statement, a comparison between present model and the popular one 

used in Ref. [34] was conducted, and the one-dimensional periodic problem with the 

same parameters as those mentioned above is used in simulations. In order to give a 

quantitative comparison on the accuracies of these two models, the following relative 

difference (RD) between errors of the present model and the existing model is used,  

                                                     
φ

φφ

E
EE

RD
−

= ,                                                        (54) 

where φE and φE  represent the relative errors of present model and previous model. We 

present the relative differences at different relaxation times and lattice sizes in Fig. 14 

where the Reynolds number and Peléct number are fixed to be 10 and 1. From this figure 
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one can find that present model is more accurate than the popular model used in Ref. [34] 

since the relative differences are larger than zero.  

 

Fig. 14: The relative differences between errors of present and the previous models. 

We also would like to compare the present model with the one proposed in Ref. [20] in 

Fig. 15. From this figure, one can find that, similar to the results shown in Fig. 14, the 

present model is also more accurate that the previous one [20]. And additionally, it is also 

found that there is no apparent difference between the results derived by the model 

proposed by Chopard et al. [20] and those obtained by the popular model in Ref. [34].  

 

Fig. 15: The relative differences between errors of the present model and previous models. 
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D. An application of the present LB model: Natural convection in a 

square enclosure with a heated circular cylinder 

A major advantage of the present model over previous models [20-22] is that the 

collision process can be conducted locally, and consequently, a local scheme can be 

constructed for the boundary conditions of CDE. To show the potential of present model 

in the study of the heat and mass transfer in complex geometries, the natural convection 

in a square enclosure with a heated circular cylinder [38, 39] was studied. A schematic of 

the problem is shown in Fig. 16, where a circular cylinder with a radius (R, LR 2.0= ) 

and a high temperature hT  is located in the central of square enclosure with length L and 

a low temperature cT , a detailed description on this problem can be found elsewhere [38, 

39].  

 

Fig. 16: Schematic of natural convection in a square enclosure with a heated circular 

cylinder. 
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In our simulations, the local boundary schemes, anti-bounce-back and bounce-back 

schemes, are adopted to treat the boundary conditions of temperature and flow fields; the 

grid number is fixed to be 512512 × , which is fine enough to give grid-independence 

results. The Prandtl number (Pr, Dν=Pr ) is set to be 0.71 corresponding to that of air, 

and the Rayleigh number (Ra), defined by ( ) DTTLg ch νβ −= 3Ra  where g  and β  are 

the gravitational acceleration and volume expansion coefficient, is varied from 310  to 

610 . We present isothermals and streamlines in Figs. 17 and 18, and found that these 

results agree well with those reported in the literature [38, 39].  
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Fig. 17: Isothermals at different Rayleigh numbers; (a): Ra=103, (b): Ra=104, (c): 

Ra=105, (d): Ra=106. 
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Fig. 18: Streamlines at different Rayleigh numbers; (a): Ra=103, (b): Ra=104, (c): 

Ra=105, (d): Ra=106. 

 

V. Conclusion 

A problem within previous LB models for the CDE is that the collision process cannot 

be implemented locally, which not only influences the computational efficiency of the 

lattice Boltzmann method, but also causes a difficulty in adopting a local scheme to treat 

the boundary condition of the CDE. This problem is solved by the new LB model 

proposed in this work. Furthermore, the present LB model enables the construction of a 

local scheme, instead of the traditionally nonlocal finite-difference schemes, to compute 

the heat and mass fluxes. The numerical validation exercises demonstrate that both the 

present model for the CDE and the local scheme for the flux have a second-order 

convergence rate in space. We also compared the present model with previous models, 

and found that the model proposed in this work is more accurate in solving CDE. The 

present work is expected to play an important role in studying heat or mass transfer 

processes with complex geometries.   
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