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Abstract

Finding the densest sphere packing in d-dimensional Euclidean space Rd is an outstanding funda-

mental problem with relevance in many fields, including the ground states of molecular systems, col-

loidal crystal structures, coding theory, discrete geometry, number theory, and biological systems.

Numerically generating the densest sphere packings becomes very challenging in high dimensions

due to an exponentially increasing number of possible sphere contacts and sphere configurations,

even for the restricted problem of finding the densest lattice sphere packings. In this paper, we

apply the Torquato-Jiao packing algorithm, which is a method based on solving a sequence of

linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2

through 19. We show that the TJ algorithm is appreciably more efficient at solving these problems

than previously published methods. Indeed, in some dimensions, the former procedure can be as

much as three orders of magnitude faster at finding the optimal solutions than earlier ones. We also

study the suboptimal local density-maxima solutions (inherent structures or “extreme” lattices) to

gain insight about the nature of the topography of the “density” landscape.
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I. INTRODUCTION

There has been great interest in understanding the packings of hard (i.e. nonoverlapping)

particles because they serve as useful models for a variety of many-particle systems arising

in the physical and biological systems, such as liquids [1, 2], glasses [3–5], crystals [6–8],

granular media [9–12], and living cells [13]. One outstanding problem is to find the densest

packing of identical spheres in d-dimensional Euclidean space R
d. This seemingly simple

problem has proved to be a challenge for all but the most simple systems; it was not until

2005 that a proof was successfully presented to confirm the centuries-old Kepler conjecture

[14], which states that the densest packing of spheres in three dimensions is the face-centered

cubic lattice. For d ≥ 4, there are no proofs for the densest sphere packings, although for

d = 8 and d = 24 they are almost surely the E8 and Leech lattices, respectively [15].

Interestingly, these two lattices have also been used to construct 10- and 26-dimensional

string theories, respectively [16, 17].

In recent years, high-dimensional dense sphere packings have attracted the attention

of physicists because of the insights they offer about condensed-phase systems in lower

dimensions [5, 12, 18–20]. It is noteworthy that the general problem of finding the densest

sphere packings in R
d (and other spaces) is directly relevant to making data transmission

over communication channels resistant to noise [21, 22] and of intense interest in discrete

geometry and number theory [22, 23]. The densest sphere packing problem is also deeply

linked to the covering, quantizer, number variance, and kissing number problems, with which

it shares the best known solutions in a variety of dimensions [22, 24, 25]. Clever analytical

methods have been used to discover dense packings in high dimensions (i.e., d ≥ 4) but this

approach becomes less efficient as d increases, especially because lessons learned in lower

dimensions cannot be used to construct packings in higher dimensions [22, 26].

Numerical methods have only recently emerged to discover the densest packings in high-

dimensional spaces. One such method devised by Kallus, Elser, and Gravel [19], is based

on the “divide and concur” framework in which a dense arrangement of overlapping spheres

is gradually relaxed until none of the spheres overlap. Another method formulated by

Andreanov and Scardicchio [20] takes advantage of the fact that all densest lattice packings

are also perfect lattices (defined precisely in Sec. IV), which are finite in number [22]. The

densest lattice packings can therefore be obtained by randomly exploring the space of perfect
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lattices. The efficiency of both algorithms plummets as d grows larger, preventing them from

being effectively used in very high dimensions [27].

In the past twenty years, the Lubachevsky-Stillinger (LS) algorithm [28] has served as

a standard for generating dense packing of various shaped hard particles in two and three

dimensions [29–31]. However, since the LS algorithm is based on a particle-growth molecular

dynamics simulation, it is extremely computationally costly to use it to generate jammed

dense packings with high numerical accuracy, especially as d grows beyond three dimen-

sions. A recent improvement on the LS algorithm is the Torquato-Jiao (TJ) algorithm [32],

which replaces the molecular dynamics with an optimization problem that is solved using

sequential linear programming. In particular, the density φ of a sphere packing (fraction

of space covered by the spheres) within an adaptive fundamental cell subject to periodic

boundary conditions is maximized. The design variables are the sphere positions (subject

to nonoverlap), and the shape and size of the fundamental cell. The linear programming

solution of this optimization problem becomes exact as the packing approaches the jamming

point [12]. The TJ algorithm has been found to be a very powerful packing protocol to

generate both maximally-dense packings (global maxima) and disordered jammed packings

(local maxima) with a large number of identical spheres (per fundamental cell) across space

dimensions [12] as well as maximally dense binary sphere packings [33, 34].

In this paper, we specialize the TJ algorithm to the restricted problem of finding the

densest lattice sphere packings in high dimensions. In a lattice packing, there is only one

sphere per fundamental cell [35]. Even this limited problem for d ≥ 4 brings considerable

challenges; its solution has been proven only for d ≤ 8 [49] and d = 24 [15], and it is closely

related to the shortest-vector problem, which is of NP-hard complexity [36]. Additionally,

most of the densest known sphere packings for d ≤ 48 are lattice packings [22, 26]. Tackling

the lattice problem is thus a necessary first step prior to attempting to solve the much more

complicated general problem of finding the densest periodic packings. A periodic packing of

congruent particles is obtained by placing a fixed configuration of N particles where N > 1

with in one fundamental cell of a lattice, which is then periodically replicated without

overlaps.

The outline of the rest of the paper is as follows: Sec. II describes the implementation of

the TJ algorithm for the special case of lattice sphere packings. In Sec. III we motivate the

choices that we make for the initial conditions and relevant parameters in order the various
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problems across dimensions. In Sec. IV, we apply the TJ algorithm for 2 ≤ d ≤ 19, and show

that it is able to rapidly and reliably discover the densest known lattice packings without a

priori knowledge of their existence. The TJ algorithm is found to be appreciably faster than

previously published algorithms [19, 20]. We also demonstrate that the suboptimal-lattice

solutions (i.e., the local maxima “inherent structures”) are particularly interesting because

they reveal features of the “density” landscape. In Sec. V, we close with some concluding

remarks and a discussion about possible improvements and other applications of the TJ

algorithm.

II. APPLICATION OF THE TJ ALGORITHM TO FINDING THE DENSEST

LATTICE SPHERE PACKINGS

The basic principle behind the TJ algorithm [32] resides in the fact that finding the

densest sphere packing can be posed as an optimization problem with a large number of

nonlinear constraints (such as nonoverlap conditions between pairs of particles) which can

be solved by solving a series of linear approximations of the original problem. Its solution

eventually converges toward a local or global optimum. While global optimality cannot

be guaranteed, it has been shown that the TJ algorithm frequently reaches the globally

densest packings [32]. The TJ algorithm was formulated for the general problem of finding

dense periodic sphere packings. Here we describe its implementation for the special case of

determining the densest lattice sphere packings, which reduces the problem to optimizing

the shape and size of the fundamental cell, since no sphere translations are involved. It is

interesting to note that the TJ algorithm can be viewed as a hard-core analog of a gradient

descent in the space of lattices for energy minimizations for systems of particles interacting

with soft potentials as described by Cohn, Kumar, and Schürmann [38].

Before explaining the numerical details of the TJ algorithm, we need to define some

mathematical quantities. A d-dimensional lattice Λ is composed of all vectors that are

integer linear combinations of a set of d basis vectors m1, ..., md,

P = n1m1 + n2m2 + · · ·+ ndmd, (1)

where nj are the integers (j = 1, 2, . . . , d) and we denote by n the corresponding column

vector with such components. Using the generator matrix MΛ, whose columns are the basis
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vectors, allows us to explicitly write the lattice set:

Λ =
{

MΛn : n ∈ Z
d
}

. (2)

One useful property of MΛ is that its determinant is equal (up to a sign) to the volume of

the lattice fundamental cell. We can then write the lattice packing density φ as the ratio of

the volume occupied by spheres of diameter D to the volume of the fundamental cell:

φ(Λ) =
v(D/2)

|detMΛ|
, (3)

where

v(R) =
πd/2Rd

Γ(1 + d/2)
(4)

is the d-dimensional volume of a sphere of radius R and Γ(n) is the Euler gamma function.

The problem of finding the densest lattice packing of spheres in d dimensions can be

expressed as: Find the d × d generator matrix MΛ with minimal determinant | detMΛ|,

under the constraint that all non-zero lattice vectors MΛn, n ∈ Z
d \ {0}, are at least as long

as D.

For this problem, the Torquato-Jiao algorithm consists of the following four steps:

1. Randomly create a generator matrix MΛ according to some stochastic process.

2. For a given influence sphere radius RI > D, find all of the non-zero lattice vectors it

contains, i.e., compute
{

v = MΛn : n ∈ Z
d \ {0} ∧ |v| ≤ RI

}

.

3. Solve a linearized version of a problem, for which the objective is to maximize φ

(equivalent to minimizing | detMΛ|) and the constraints are that none of the vectors

calculated in step 2 become shorter than D.

4. Consider whether the algorithm has converged to a lattice that is a stable maximum

in φ (either the densest lattice packing or a local maximum inherent structure [37]).

If it is the former, repeat the procedure starting from step 2. If it is the latter, the

solution has converged to a local or global optimum and the procedure is terminated.

In what follows, we provide a more detailed explanation of these four steps.

A. Initialization

There are many possible methods to initialize the generator matrix MΛ. Any candidate

procedure must both satisfy the minimal length constraint and adequately sample the space
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of all lattices. The former is trivially satisfied by rescaling the matrix if the minimal length

constraint is violated. In order to satisfy the latter condition, we mainly use Gaussian initial

lattices, in which each coefficient of their generator matrix MΛ is an independent normal

variable N(0, σ2) with a variance σ2. These matrices have the property that each of their

lattice vectors (columns of MΛ) have independent orientations with no given preference for

any particular direction. To compare this against a different initialization method, we also

consider initial lattices for which MΛ is the sum of the generator matrix of a specific lattice

packing (such as the d-dimensional checkerboard lattice Dd or the hypercubic lattice Zd, see

Appendix A for the definitions of these lattices) and one of a Gaussian initial lattice.

B. Finding short vectors

Finding all of the vectors for an arbitrary lattice that are within a small given radius RI

from the origin is a complex problem in high dimensions. Indeed, the problem of finding

the shortest lattice vector for a given lattice Λ grows superexponentially with d and is in

the class of NP-hard (nondeterministic polynomial-time hard) problems [36]. One efficient

method to solve this problem can be found in Ref. 39. The influence sphere radius RI can be

any value larger than the sphere diameter D, and may vary from one iteration to the next.

It is found that the algorithm is largely insensitive to the value chosen for RI , which is to

be contrasted to the results for periodic packings, where larger RI values favor the densest

packings over inherent structures [32]. Since the computational cost of this and the following

steps quickly increases with RI , we opt to use the nearly minimal value RI = 1.1D.

C. Solving the linearized problem

The only linearized problem variables in the case of the implementation of the TJ algo-

rithm in the case of a lattice packing are the coefficients of the d×d symmetric strain tensor

ε [40]. The modified generator matrix is then

MΛ → MΛ + εMΛ. (5)
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The constraint that a vector originally at position v = MΛn remains at least as large as D

can then be written as

n⊤M⊤

ΛMΛn+ 2n⊤M⊤

ΛεMΛn+ n⊤M⊤

Λε
⊤
εMΛn ≥ D2,

v⊤v + 2v⊤
εv + v⊤

ε
⊤
εv ≥ D2. (6)

This constraint is linearized by dropping the term that is quadratic in ε:

2v⊤
εv ≥ D2 − v⊤v. (7)

It should be noted that the term (v⊤
ε
⊤
εv) that has been dropped is non-negative, which

means that every set of variables that satisfies inequality (7) also satisfies inequality (6). This

is different from the equivalent constraints for periodic packings, for which the quadratic

term may be negative due to the interaction between the lattice deformation and the particle

displacements. This avoids the necessity of either adding a constant term to the constraint

or rescaling the system if spheres are found to overlap, which is the case for the general

periodic packing problem [32].

Additionally, extra constraints must be added to prevent vectors that could be outside

the influence sphere from becoming shorter than D:

2v⊤
εv ≥ D2 − R2

I

v⊤
εv

v⊤v
≥

D2/R2
I − 1

2
≡ −λ, (8)

where the length of the vector has been chosen as its smallest possible value (RI). A

simple yet robust method to ensure that inequality (8) is satisfied for all vectors outside of

the influence sphere is to bound the lowest eigenvalue of ε from below by −λ. There are

multiple ways to write linear constraints on ε such that its eigenvalues are all larger than

−λ. One such way is given by

−
λ

2
≤ Diagonal element of ε < ∞, (9)

−
λ

2(d− 1)
≤ Off-diagonal element of ε ≤

λ

2(d− 1)
. (10)

Finally, the determinant of the modified generator matrix (assuming that detMΛ > 0) is

detMΛ det (I+ ε) = detMΛ

(

1 + tr ε+O(ε2)
)

, (11)
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where I is the d-dimensional identity matrix. The linearized density φ is thus

φ ≃ φ0 [1− tr ε] , (12)

where φ0 is the density for the initial generator matrix MΛ and we used the fact that the

density is inversely proportional to the fundamental cell volume. We can see from the above

relation that maximizing the lattice density is equivalent to minimizing the trace of the

strain tensor ε. Unlike the linearized constraints (7), (9) and (10), which are conservative

in that as long as they are satisfied the nonlinearized constraints will always be satisfied,

the objective function (12) may have the wrong sign due to the nonlinear term having an

unknown sign. In the situation where the updated lattice has a larger determinant than

the original matrix, we halve ε (multiple times if necessary) to ensure a lower updated

determinant. This prevents the algorithm from oscillating between multiple lattices and

forces it to eventually converge.

D. Convergence criterion

The algorithm is considered to have converged if the sum of the squared coefficients of

ε is below a small threshold value (10−12 for this paper). This is numerically equivalent

to saying that all lattices in the neighborhood of the current lattice are less dense. This

resulting lattice is therefore a local density maximum (“inherent structure” or “extreme”

lattice, as elaborated in Sec. IVB). Such a lattice is also strictly jammed, since any possible

deformation requires an increase in the volume of its fundamental cell [11, 41, 42].

III. STUDY OF PARAMETERS AND INITIAL CONDITIONS

The ability of TJ algorithm to discover the densest lattice packings can potentially be

affected by the influence sphere radius RI , the lowest eigenvalue of the strain matrix λ, and

by the choice of the initial lattice. This section is dedicated to the study of their impact on

the algorithm and to explain our choices for them in the following sections.

The TJ algorithm is deterministic [43], and therefore the initial lattice fully controls

the resulting final lattice for given parameters RI and λ. For example, employing initial

lattices that are very close to the known densest lattice, not surprisingly, results in a very
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high success rate in obtaining that lattice. On the flip side, it would almost certainly never

be able to discover a hypothetical denser lattice. It would therefore be misguided to use

configurations that are near the known densest lattice as the initial conditions. However,

allowing initial lattices that are very bad packers could result in a low success rate or a

large convergence time for success. Thus, good choices for initial lattices involve a delicate

balance between their diversity and an ability to relax quickly to dense lattices.

TABLE I: Frequency at which the densest known lattice packing in 13 dimensions, the K13 lattice

[22, 26], is obtained for various parameters using the TJ algorithm. For all sets of influence sphere

radii and initial conditions, 10000 lattice packings have been generated, excepted for RI = 2.0

where only 3000 packings were generated. The calculations were performed on a single thread on a

2.40 GHz processor using the Gurobi linear programming library [44]. Since the run time strongly

depends on the computer running the program and how well the code is optimized, it should only

be used as a rough indication of the program efficiency.

Sphere of influence radius Initial conditions Success rate (%) Average time per trial (sec)

RI = 1.1D Gaussian 8.61 5.0

RI = 1.1D D13 + noise 8.21 5.5

RI = 1.1D Z
13 + noise 8.58 5.2

RI = 1.1D Invariant distribution 8.08 29.2

RI = 1.02D Gaussian 8.53 12.0

RI = 1.5D Gaussian 7.61 69.9

RI = 2.0D Gaussian 6.87 1938.5

variable RI , ∼ 200 constraints Gaussian 7.97 6.3

variable RI , ∼ 2000 constraints Gaussian 7.95 17.6

variable RI , ∼ 2000 constraints, reduced λ Gaussian 8.58 108.7

Table I shows numerical results in 13 dimensions. The initial lattices are taken from

four different distributions, using six different influence sphere radii. The TJ algorithm

typically succeeds at generating the densest known lattice packing with a high probability.

However, it has a relatively lower success rates for the cases d = 13 and d ≥ 17. We thus

purposely choose the 13-dimensional case to probe the best choices for the initial conditions

and algorithmic parameters because of its abnormally low success rate in comparison to cases
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d ≤ 16. Its low success rate results in better sensitivity to algorithm parameters compared

with dimensions that have naturally higher success rates. Similar parameter dependence

has been observed for other dimensions.

The Gaussian initial condition, as previously explained in Sec. IIA, selects each coef-

ficient of MΛ from independent normal distributions with variances σ2 = D2. The initial

conditions referred to as Dd + noise and Z
d + noise starts with the generator matrices for

the checkerboard Dd and hypercubic Z
d lattices (these lattices are defined in Appendix A),

respectively, with nearest-neighbor distance equal to D plus some noise. Specifically, we

add normal noise to each coefficient of MΛ with a variance σ2 = D2/100. The final initial

condition type that we attempt to employ, which we call an invariant distribution, generates

the lattice from an approximation of the invariant lattice distribution, using the algorithm

described in Ref. 45 with p = 10007. For all of these initial conditions, the nearest neighbor

distance is calculated and the lattice is rescaled to avoid any sphere overlap.

As can be seen in Table I, the different initial conditions that we have used result in

similar success rates. We therefore use the Gaussian initial condition to generate the initial

lattices for all subsequent calculations, since it lacks both the potential bias that the Dd

+ noise and Z
d + noise initial conditions share, and it does converge much faster than the

invariant distribution.

The main parameter influencing the efficiency of the TJ algorithm is the influence sphere

radius RI , which can either be fixed or vary from one iteration to the next. A radius that

is too large leads to a large number of extra constraints for the linear program, greatly

increasing its complexity. By contrast, if RI is too close to D, then the constraints on the

shear matrix ε will be too restrictive [see Eqs. (8), (9) and (10)]. This, in turn, only allows

the lattice to deform very slowly, thereby requiring many iterations before convergence. A

compromise between both is to use a variable RI , such that the number of vectors inside

the sphere of influence stays relatively constant, thus initially allowing a fast convergence

when φ is small, without needing numerous constraints when φ gets close to its maximum.

We use the following rough approximation to select RI :

Number of constraints ∼
1

2

v(RI)

| detMΛ|
, (13)

where the factor of one-half comes from the observation that for every vector v in a lattice,

there is another one of identical length −v which does not need to be explicitly constrained.
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A final parameter that can be modified is how much the lattice is allowed to deform at every

iteration. As a test case, we divide the value of λ by 10 to check whether an increased value

of RI provides benefits other than allowing larger strain matrices.

From Table I, we can see that increasing RI does not increase the success rate (it actually

negatively affects it), while it significantly increases the run time. Therefore, the following

calculations will be done using a small influence sphere radius of RI = 1.1D. We attempted

to adjust RI as a function of dimension d to improve success rates for large d, but this

proved to be fruitless. The radius RI only weakly impacts the success rate, but its value has

a dramatic influence on the time per trial, which gets multiplied by 400 when RI is increased

from 1.1D to 2.0D. Therefore, one should decide on a choice of RI so as to prioritize a faster

execution speed over an increased probability of reaching the densest lattice packing.

IV. RESULTS

Here we describe the results we obtain by applying the TJ algorithm to find the densest

lattice packings in dimensions 2 through 19. We compare our results with those obtained in

previous investigations [19, 20]. We also provide the frequency of time that the TJ algorithm

finds local versus the densest known global maxima.

A. Finding the densest lattice packings

We have applied the TJ algorithm for dimensions d = 2 through d = 19, and found

the densest currently known lattice packing for each of them. The algorithm is robust in

that it converges rapidly to the optimal solutions in most dimensions. Not surprisingly,

except for the trivial d = 2 and d = 3 cases, it does not reach the optimal solution for all

initial conditions. Therefore, even though the probabilities of finding the densest packing

on the first attempt was high (greater than 19% for d ≤ 12 and 14 ≤ d ≤ 16), we typically

needed multiple trials (i.e., different random initial conditions) to guarantee that the densest

lattice packings were among these. Consequently, the quality of such a global optimization

algorithm is preferably measured using the time required per successful trial instead of simply

the time per trial or the success rate. Table II describes the rate at which the TJ algorithm

produced the densest known lattice packings for dimensions d = 2 through d = 19 and the
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TABLE II: Frequency at which the densest known lattice packing is obtained using the TJ algorithm

for d = 2 through d = 19 together with the lattices packing fraction φ and kissing number Z. The

number of lattice packings generated is 10000 for d ≤ 18 and 100000 for d = 19. The influence

sphere radius RI = 1.1D and the initial lattices are generated using the Gaussian initial condition.

See Appendix A for the definitions of the various lattices. The comments in Table I concerning

computational times also apply here.

d
Densest

lattice packing
φ Z

Success rate

(%)

Time per trial

(sec)

Time per successful

trial (sec)

2 A2 0.9069 6 100 1.7× 10−5 1.7× 10−5

3 D3 0.7405 12 100 8.0× 10−5 8.0× 10−5

4 D4 0.6169 24 74.31 5.6× 10−4 7.5× 10−4

5 D5 0.4653 40 97.41 8.0× 10−3 8.2× 10−3

6 E6 0.3729 72 89.72 0.019 0.022

7 E7 0.2953 126 91.91 0.046 0.050

8 E8 0.2537 240 84.16 0.33 0.40

9 Λ9 0.1458 272 43.82 0.21 0.49

10 Λ10 0.09202 336 22.74 0.49 2.1

11 K11 0.06043 432 19.39 1.1 5.7

12 K12 0.04945 756 33.30 2.7 8.2

13 K13 0.02921 918 8.61 5.0 58

14 Λ14 0.02162 1422 20.69 10 51

15 Λ15 0.01686 2340 23.78 16 65

16 Λ16 0.01471 4320 22.50 51 227

17 Λ17 0.008811 5346 1.65 55 3.4× 103

18 Λ18 0.005928 7398 0.10 79 7.9× 104

19 Λ19 0.004121 10668 0.009 162 1.8× 106

average time required per successful trial. We determine whether we achieved the densest

known packings primarily by comparing the packing density φ and the kissing number Z (the

number of spheres that are in contact with any given sphere) with published data [22, 26].

Additionally, we calculate theta series (the generating functions for the number of vectors
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with specific lengths in the lattices [22]) up through the first few coordination shells.

The time required by the TJ algorithm to generate the densest known lattice packings

is appreciably smaller than the times reported in Ref. 19: approximately 4000 and 25000

seconds per successful packing for d = 13 and d = 14, respectively. The times required by

the TJ algorithm of 58 and 51 seconds are orders of magnitude lower, indicating a genuine

algorithmic improvement that cannot be attributed to the type of computer employed nor

to implementation details.

The authors in Ref. 20 do not state precise run times for all dimensions, but report

that, after generating more than 105 lattices, their algorithm is unable to discover the

densest known lattices for d = 14 through d = 19. Since generating 105 lattices using their

algorithm takes at least several hours, the TJ algorithm’s ability to successfully generate

the densest lattice packings in minutes for d ≤ 16 is a tremendous speed-up improvement.

Using more computing power, the authors in Ref. 20 are able to reliably obtain the densest

known lattice for d ≤ 17 using their algorithm [46]. For example, their calculations took

four days (∼ 3× 105 seconds) for d = 14, which is three to four orders of magnitude longer

than our own calculations (see Table II).

The fact that the TJ algorithm was unable to find any denser lattice packings than the

densest known lattice packings reinforces the evidence that these are indeed the densest

lattice packings for d = 2 through d = 19. Although this evidence is not as strong for d = 18

and d = 19, due to the rare occurrences of the densest lattice packings, the evidence is quite

strong for d ≤ 17.

One particular aspect of the success rates shown in Table II is that they do not decrease

monotonically with increasing dimension. Dimensions that are notably difficult are d = 4

and d = 13, and neither case can be explained by lattice packings with unusual properties,

since d = 5 and d = 12, respectively, share similar packings, but not the relatively low

success rates. We will attempt to explain this phenomenon, along with the sharp decrease

in success rates at d = 17, in the following section.

B. Inherent structures

The TJ algorithm is intrinsically a local density maximization algorithm. As such, it can,

and often does, converge locally to the densest lattice packing associated with a given initial
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configuration, i.e., an inherent structure [32], that are not necessarily the global maxima.

These local maxima are analogous to the inherent structures of a continuous potential. The

study of these inherent structures are of fundamental interest in their own right because they

offer insight about the nature of topography of the “density” landscape and understanding

the frequency of their occurrence could potentially lead to improvements on the algorithm.

One interesting property of the density landscape associated with the lattice packing

problem is that all of its inherent structures are extreme lattices, i.e., they are both perfect

and eutactic [47]. Only a finite number of distinct extreme lattices exists for any dimension,

which explains how the TJ algorithm is able to always reach the ground state for d = 2 and

d = 3, for each of which only a single extreme lattice exists. However, as d increases, the

number of extreme lattices grows quickly, possibly exponentially fast. It is thus remarkable

that the TJ algorithm can reliably yield the densest lattice packing from the large set of

possible end states. This indicates that the “basin of attraction” of the ground state is much

larger than the basins of attraction of the local-maxima inherent structures. The relatively

lower success rates for some dimensions (d = 4, d = 11, d = 13, and d ≥ 17) can then be

understood as being due to smaller than usual basins for the corresponding ground states.

The cause of this reduction and whether the symmetry of the inherent structure is lower

than that of the ground state or some other effect is still unknown and warrants further

investigation.

As seen in Table III, some inherent structures are degenerate in the sense that multiple

lattices share the same packing density. A peculiar property that these degeneracies share

is that their appearance rate is far from constant. For example, it goes from 9.24% for the

Λmin
12 to a mere 0.03% for the Λmax

12 . Since both of these are laminated lattices, why does one

occurs more frequently than the other? One possible reason is that for all these degeneracies

but one, the lattices with smaller kissing number are more likely to be generated. In the case

of Λmin
12 and Λmax

12 , their kissing numbers are respectively 624 and 648. This is consistent

with previous work which has shown that for packings with many particles per fundamental

cell, the TJ algorithm has a propensity to generate isostatic packings from random initial

conditions, where the number of interparticle contacts is equal to the number of degrees of

freedom of the problem [32].

Figure 1 shows that as the dimensionality increases, the inherent-structure densities tend

to become concentrated around a specific value instead of being spread over a range of pos-
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TABLE III: Second and third highest-density inherent structures (locally densest lattice packings),

including their packing density φ, kissing number Z, and success rate from the TJ algorithm. See

Table II to compare to the densest lattice packings. The number of lattice packings generated for

each dimension is 10000 for d ≤ 18 and 100000 for d = 19. Multiple lattices with equal density are

grouped together and written in ascending kissing number order. See Ref. 26 for the definitions

of the following lattices: A+3
5 , E∗

6 , P7.3, P7.5, K2
9 , Dim11 (named dim11kis422 in the reference),

K1
14, K

2
14, Λ

2
15, K

1
15, Λ

2
16, and K1

16. Lattices that were not identified in Ref. 26 and found here are

denoted as Un
d , where n is used to distinguish different lattices at some fixed dimension d.

Second densest Third densest

d Lattice φ Z Rate (%) Lattice φ Z Rate (%)

2 — — — — — — — —

3 — — — — — — — —

4 A4 0.5517 20 25.69 — — — —

5 A+3
5 0.4136 30 1.51 A5 0.3799 30 1.08

6 E∗

6 0.3315 54 1.53 D6 0.3230 60 7.70

7 P7.3 0.2143 72 0.88 P7.5/D7 0.2088 72/84 1.92/0.11

8 U1
8 0.1691 142 0.41 U2

8 0.1530 116 3.75

9 U1
9 0.1383 258 2.60 K2

9 0.1190 198 14.09

10 U1
10 0.08282 294 0.42 U2

10 0.08231 308 0.05

11 Dim11/Λmin
11 /Λmax

11 0.05888 422/432/438 5.32/7.80/0.30 U1
11 0.05551 408 0.81

12 Λmin
12 /Λmid

12 /Λmax
12 0.04173 624/632/648 9.24/2.96/0.03 U1

12/U
2
12/U

3
12 0.03732 550/560/566 1.38/0.18/0.05

13 Λmin
13 /Λmid

13 /Λmax
13 0.02846 888/890/906 12.17/1.50/0.29 U1

13 0.02683 828 2.97

14 U1
14 0.01934 1260 0.69 K2

14/K
1
14 0.01922 1242/1248 2.26/0.38

15 Λ2
15/U

1
15 0.01376 1872/1890 1.57/0.02 K1

15 0.01298 1746 0.92

16 Λ2
16 0.01040 2982 0.69 K1

16/U
1
16 0.009805 2772/2820 0.67/0.03

17 U1
17 0.007194 4266 0.63 U2

17 0.006661 3942 0.09

18 U1
18 0.005134 6336 0.03 U2

18 0.004743 5820 0.02

19 U1
19 0.003686 9480 0.012 U2

19 0.003475 8910 0.002

15



0 200 400 600 800 1000
Kissing number, Z

10
-4

10
-3

10
-2

10
-1

10
0

Pr
ob

ab
ili

ty

0 0.01 0.02 0.03
Packing density, φ

0
100

  200
300
400
500
600
700

Pr
ob

ab
ili

ty
 d

en
si

ty

(a)

0 500 1500 2500
Kissing number, Z

10
-4

10
-3

10
-2

10
-1

10
0

Pr
ob

ab
ili

ty

0 0.005 0.01 0.015 0.02
Packing density, φ

0
500

1000
1500
2000
2500
3000

Pr
ob

ab
ili

ty
 d

en
si

ty

(b)

0 2000 4000 6000
Kissing number, Z

10
-4

10
-3

10
-2

10
-1

10
0

Pr
ob

ab
ili

ty

0 0.003 0.006 0.009
Packing density, φ

0
1000
2000
3000
4000
5000
6000

Pr
ob

ab
ili

ty
 d

en
si

ty

(c)

FIG. 1: Probability density functions for the packing density φ (left) and probabilities for the

kissing number z (right) of the lattice resulting from the TJ algorithm for (a) d = 13, (b) d = 15,

and (c) d = 17. The minimal value of the kissing number Zmin = d(d + 1) is 182 for d = 13, 240

for d = 15, and 106 for d = 17.

sible densities. This concentration tendency is caused by the rapid increase in the number of

such low-density inherent structures for large d, which eventually overwhelms the algorith-

mic bias toward high-density lattices. This explains the dramatic reduction in success rates

in Table II for d ≥ 17. The kissing number has a similar behavior to the packing density,
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resulting in the fact that most of the generated lattices for d ≥ 17 have an identical low

kissing number. Since these are locally-optimal solutions, a local deformation of the lattice

would either decrease its packing fraction or makes the central sphere and its neighboring

spheres overlap. Therefore, we can define a lower bound on the kissing number by exploiting

the fact that, for a linear program to have a unique feasible solution, it requires at least

one more active inequality constraint than the number of degrees of freedom. Since the

problem possesses d(d + 1)/2 degrees of freedom (the number of independent components

of ε), 1 + d(d + 1)/2 active inequality constraints are required for the problem to be fully

constrained. One of these constraints comes from the density being at a local maximum,

while each pair of kissing spheres adds a single constraint. Consequently, the minimum kiss-

ing number of a lattice inherent-structure in d dimensions is Zmin = d(d+ 1). Referring to

Fig. 1, we observe that as d increases, the proportion of generated configurations with a kiss-

ing number equal to Zmin increases rapidly relative to all other kissing numbers. Since the

best known lattice packings have high kissing numbers (nearly the same or equal to highest

known kissing numbers), the tendency of the TJ algorithm tendency to favor lattices with

minimal kissing numbers further explains its low success rates for d ≥ 17.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have shown that the Torquato-Jiao algorithm is able to quickly find

the densest known lattice packings for d ≤ 19. The TJ algorithm is found to be orders of

magnitude faster than the previous state-of-the-art lattice packing methods [19, 20]. This

makes the TJ algorithm the fastest current numerical method to generate the densest lattice

packings in high dimensions.

While we limited our present study to d ≤ 19, the TJ algorithm can be employed to gen-

erate dense lattice packings in higher dimensions at greater computational cost. We expect

that dimensions d = 20 and d = 21 would be manageable with more computing resources,

but improvements to the algorithm would be required to study d ≥ 22. One possible ap-

proach to increase the likelihood of generating a dense lattice packing for d ≥ 22 would be

to include ad hoc methods in between the TJ-algorithm steps that favor denser packings,

such as thermal equilibration of the system (e.g., via Monte Carlo methods to solve the

“adaptive shrinking cell” optimization problem [51, 52]) or relaxation under pair potentials
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known to favor high-density configurations. Another possibility would be to combine the

strengths of the TJ algorithm with those of other lattice packing methods. The ability of

the TJ algorithm to quickly generate extreme lattices (the inherent structures) could be

used as a starting point for an algorithm that performs an exhaustive search in the space

of perfect lattices [20]. Moreover, its efficiency in finding locally-densest lattice packings

from arbitrary initial conditions could be used to rapidly obtain such packings starting from

intermediate-density packings generated using other methods [19]. As d increases from one,

the first dimension in which the densest known packing that is not a Bravais lattice (peri-

odic packing with a multiple-particle basis) is d = 10, which has a basis of 40. Since the TJ

algorithm was successfully used to obtain the densest known packings for d ≤ 6 with a large

multiple-particle basis (up to a basis of 729 for d = 6) [32], it would be interesting to explore

whether the TJ algorithm could be used to discover currently unknown denser non-lattice

packings in 10 dimensions or higher.

For d ≥ 17 dimensions, the TJ algorithm mainly produces lattices that have both a low

packing density and a minimal kissing number, while still being locally densest, revealing

a richer and more complex density landscape than in most dimensions less than 17. This

phenomenon could possibly be exploited to quickly generate low-density extreme lattices in

very high dimensions. Since these lattices are strictly jammed and have the minimal kissing

number to ensure mechanical stability, they can be considered to be the lattice analogs to

the maximally random jammed packings (disordered local-maxima inherent structures) that

have been generated using the TJ algorithm with many particles per fundamental cell [32].

Such configurations could be generated in much higher dimensions than those considered in

this paper, since the requirement of reaching the ground state would be removed, and the

TJ algorithm is less resource-intensive when generating suboptimal kissing configurations

(through the reduced number of constraints).

Acknowledgments

We thanks Alexei Andreanov, Henry Cohn, Veit Elser, Yoav Kallus, and Antonello Scar-

rdicchio for very helpful discussions. This work was partially supported by the Materials

Research Science and Engineering Center Program of the National Science Foundation under

Grant No. DMR- 0820341 and by the Division of Mathematical Sciences at the National

18



Science Foundation under Award No. DMS-1211087. This work was partially supported

by a grant from the Simons Foundation (Grant No. 231015 to Salvatore Torquato). S.T.

also thanks the Department of Physics and Astronomy at the University of Pennsylvania

for their hospitality during his stay there.

Appendix A: Lattice definitions

In this appendix, we define some common lattices, following the notation and nomencla-

ture used in Refs. 22 and 26.

The hypercubic Z
d lattice is defined by

Z
d = {(x1, . . . , xd) : xi ∈ Z} for d ≥ 1 (A1)

where Z is the set of integers (. . .− 3,−2,−1, 0, 1, 2, 3 . . .) and x1, . . . , xd denote the compo-

nents of a lattice vector. The kissing number of Zd is 2d. A d-dimensional generalization of

the face-centered-cubic lattice is the checkerboard Dd lattice defined by

Dd = {(x1, . . . , xd) ∈ Z
d : x1 + · · ·+ xd even} for d ≥ 2. (A2)

Its kissing number is 2d(d − 1). Note that D2 is simply the square lattice Z
2. Another

generalization of the face-centered-cubic lattice is the root lattice Ad, which is a subset of

points in Z
d+1, i.e.,

Ad = {(x0, x1, . . . , xd) ∈ Z
d+1 : x0 + x1 + · · ·+ xd = 0} for d ≥ 1. (A3)

The kissing number of Ad is d(d+ 1). In three dimensions, D3 and A3 are identical, but Dd

and Ad are inequivalent for d ≥ 4. Another set of root lattices is denoted Ed, for d = 6,

d = 7, and d = 8. The root lattice E8 is equal to the union of D8 and the translation of

D8 by (1
2
, 1

2
, 1
2
, 1
2
, 1
2
, 1
2
, 1

2
, 1

2
). The root lattice E7 is the section of E8 where the sum of the

lattice coefficients is set equal to zero, and the root lattice E6 is the section of E7 where the

sum of the first and eight coefficients is also set equal to zero. Alternatively, vectors in E8

perpendicular to any A2-sublattice in E8 also form E6.

The laminated lattice Λd is constructed by stacking layers of a (d− 1)-dimensional lam-

inated lattice Λd−1 as densely as possible such that the shortest vector in Λd is of equal or

longer length than the shortest vector in Λd−1. This definition does not uniquely define Λd
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for all dimensions. For d = 11, d = 12, d = 13, and d ≥ 25, there exist multiple laminated

lattices of equal densities, which we distinguish using superscripts. Many of the previously

defined lattices are also laminated lattices. For example, Λ1 = Z
1, Λ2 = A2, Λ3 = D3,

Λ4 = D4, Λ5 = D5, Λ6 = E6, Λ7 = E7, and Λ8 = E8. A particularly interesting laminated

lattice is the 24-dimensional Leech lattice Λ24. Finally, the Coxeter-Todd lattice K12 can be

defined for 18 dimensions:

K12 = {(x11, · · · , x16, x21, · · · , x26, x31, · · · , x36) : xij ∈ Z} , (A4)

where xik denotes the components of a lattice vector, subject to the following conditions

xi1 + xi2 + xi3 = 0 i ∈ {1, · · · , 6}, (A5)

xi1 − xj1 ≡ xi2 − xj2 ≡ xi3 − xj3 mod 3 i, j ∈ {1, · · · , 6}, and (A6)

x1k + x2k + x3k + x4k + x5k + x6k ≡ 0 mod 3 k ∈ {1, 2, 3}. (A7)

This lattice can be generalized to other dimensions in the range 6 ≤ d ≤ 18 by requiring that

Kd is the densest section of Kd+1 which either contains or is contained in K12 and taking

K18 = Λ18.
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