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Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify contin-
uum states, generate resonances and hopping electron states, and generate short-range ionic order.
The mean ionization state (MIS), i.e, the mean charge Z of an “average ion” in such plasmas is a
valuable concept: pseudo-potentials, pair-distribution functions, equations of state, transport prop-
erties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS
of the plasma more concisely than with an “all-electron” description. However, the MIS does not
have a unique definition and is used and defined differently in different statistical models of plasmas.
Here, using the MIS formulations of several average-atom models based on density functional the-
ory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete
atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with
orbital-free Thomas-Fermi models, we quantify effects of shell structure, continuum resonances, the
role of exchange and correlation, and the effects of different choices of the fundamental cell and
boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context
of X-ray Thomson scattering in warm dense matter.

PACS numbers: 52.25.Jm, 61.05.cf, 71.15.Mb, 52.27.Gr

I. INTRODUCTION

The ionization state of elements at a given compres-
sion and temperature is an important quantity in plasma
physics and material science. Some applications, such as
the analysis of spectral line shapes, require detailed in-
formation about charge state distributions and their time
dependent fluctuations [1, 2]. However, a large class of
properties depends only on average values of certain ba-
sic plasma properties. Thermodynamic properties, linear
transport, and optical properties serve as examples. A
parameter which has proven to be invaluable, especially
in models where the plasma is treated as a collection
of charged point ions and electrons is the mean ioniza-
tion state (MIS) Z of the ions (here we take the electron
charge as |e|=1, and we use Hartree atomic units when
convenient). Thus, if the number of ions per unit volume
is ni, the number of “free” electrons per unit volume in
the plasma, viz., ne = Zni. Basic calculations of equa-
tion of state and transport properties require only ne or
the average charge Z of ionic scattering centers. For ex-
ample, only low-order moments of the charge state distri-
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bution appear in elementary formulae for the pressure of
a dilute plasma, X-ray Thomson scattering cross sections,
bremsstrahlung, electrical resistivity, and the electron-
ion temperature relaxation rate [3–7]. In regimes where
the point-ion model fails, the mean ionization enters as an
essential parameter of pseudopotentials with finite core
sizes used in quantum calculations [8, 9].

For weakly interacting plasmas (low densities and high
temperatures), composition fractions Xi of an element’s
ionization states Zi can be obtained from the Saha equa-
tion [1, 4], which is based on a balance of free energies of
ideal gases. However, the ideal gas partition function is
not convergent unless the sums are restricted to a finite
number of states via a physically motivated cut off. Ex-
tending the Saha equation’s regime of validity to strongly
coupled plasmas (dense, partially degenerate plaasmas
or low-density, low-temperature plasmas) in which Ryd-
berg states and continuum states are occupied requires
the formulation of convergent partition functions by in-
cluding many-body effects that set natural bounds to the
extent of the density of states. Generalized Saha equa-
tions, which incorporate some phenomenological modi-
fication of energy spectra and the density of states are
used in the so-called “chemical picture” [10]; an example
is the Hummer and Mihalas scheme that uses the plasma
microfield to reduce occupation probabilities [11]. Astro-
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physical opacity predictions using that model were found
to be incorrect, however, as shown by Iglesias and Rogers
[12].

Such phenomenological Saha schemes are unreliable
and fail at strong coupling. Then a “physical picture”
[8, 10, 13, 14] that views the plasma as a collection of
nuclei and electrons supporting delocalized and localized
states is needed. Activity expansions for effective com-
posite particles [13] and models based on self-consistent-
field calculations (mean-field approximations) for con-
fined atoms [15] have been used to treat partially ion-
ized atoms of differing charge states. Another class of
physical picture models[16, 17] considers the mean ion-
ization of a representative “average atom” (AA), viz.,
a spherical cell of plasma centered on one nucleus, in-
stead of the distribution of actual charge states. A sin-
gle determinant is used for the electronic wavefunction.
An “average molecule” involving many ionic centers may
also be used used in the calculation, as done in ab initio
molecular dynamics (AIMD) schemes. But the exten-
sion to several determinants (configuration interaction),
is currently computationally intractable. The method of
Ref. [8] is a direct generalization of [16, 17] to include
a co-existing multiplicity of species of charge states, us-
ing density functional theory (DFT) [18, 19] to calculate
the free energies, EOS and transport coefficients within
a fully physical approach. This method avoids the as-
sumption of a single-determinantal model with a single
average 〈Z〉 used in the average-atom model. We will not
address all these alternatives fully, but only to the extent
of their relevance to alternative definitions of MIS and
leading to differing values of Z.

Density functional theory (DFT) [20, 21] is the lan-
guge that most average-atom models are based on, ac-
cording to which all equilibrium plasma properties such
as internal energy, pressure and entropy can be described
as functionals of the total electron density ne(r) and the
density ni(r) of the nuclei. Thus the MIS, defined as
the mean charge Z of an ion, would also be a functional
of ne(r) and ni(r). Then, incorporating Z in pseudopo-
tentials, a simplified DFT which need not deal with the
bound electrons of the core can be constructed, as is often
done in practice for T = 0 problems. From then on, we
need not deal with the bound electrons, and the electron
density ne(r) now refers only to the free-electron den-
sity, with average densities satisfying ne = Zni. Thus,
the use of the MIS simplifies calculations of equilibrium
properties as well as dynamical, non-equilibrium proper-
ties such as stopping of fast charges [5, 22], temperature
relaxation [23, 24], or ion microfield fluctuations [25, 26].
The reason that such constructions are needed is simply
that “all-electron” calculations are extremely costly in
the context of time-dependent DFT [27, 28]) and other
relevant methods. Similarly, the Kubo-Greenwood rela-
tions [29–31] can be used to calculate linear transport
and optical properties either within an all-electron ap-
proach, or within a pseudo-potential approach assuming
a well-defined core of electrons (thus specifying a MIS).

The goal of this work is to explore key MIS-related
issues for AA models based on DFT. We employ mod-
els with spherical symmetry around a central nucleus,
since we are interested in plasmas with temperatures that
far exceed chemical bond energies associated with cluster
formation.

A computationally more expensive alternative is to
treat many nuclei in a periodic cell using either quantum
Monte Carlo (QMC) or AIMD. Time dependence of the
nuclei is included (in AIMD) on the Born-Oppenheimer
surface generated by the electronic DFT calculation [32].
Here, we do not consider AIMD for three reasons. First,
although the AIMD method can be generalized to fi-
nite temperatures, it has been computationally limited
to lower temperatures (T < 10 eV) in practice. Sec-
ond, most implementations [32] of AIMD employ for the
core electrons a zero-temperature pseudopotential and a
corresponding prescription for it. That is, the MIS is
assumed and is not computed self-consistently with the
bound and conduction electrons at finite T . Third, sin-
gle center models are known to be quite accurate even
for liquid metals, and we are not concerned with systems
that form molecular species at very low temperatures
that cannot be described by a single center. Orbital-
free DFT (OFDFT) methods promise to remove many of
these limitations [33–37], but little attention to the MIS
has been given in them.

Methods which are in-between AA models and full-
AIMD approaches also exist. These approaches include
many correlated ions spherically averaged around one nu-
cleus [39–42]. We do not consider these methods which
are relatively less developed, especially in dealing with
the MIS, which is our main focus. Furthermore, in re-
gard to AIMD, all the thermodynamic results obtained
by AIMD variants can be obtained very cheaply using the
multi-species DFT method of Perrot et al. [8] where sepa-
rate AA-like calculations for different ionization states of
an element in a plasma are combined within an equation
of state (EOS) to obtain the lowest energy composition
fractions and the mean ionization.

We begin in Section II with an overview of plasma
regimes, dimensionless parameters and their generaliza-
tion using MIS definitions. In Section III we present the
MIS as formulated in the three DFT-models we employ.
Two are based on a single ion in a Wigner-Seitz cell.
The third uses a single nucleus at the center, and many
“field ions” contained in a cell (known as the correlation
sphere, CS) which is at least a 100 times the volume of the
Wigner-Seitz cell. This sphere encompasses the plasma
volume within which ion-ion, ion-electron and electron-
electron correlations die away. In Section IV, we present
and contrast various MIS values computed by the dif-
ferent models for several metals, at densities bracketing
normal solid density, and across a range of temperatures.
In Section V, we consider implications of these results for
X-ray Thomson scattering. Section VI provides a brief
summary and future directions.
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II. CHARACTERIZATION OF DENSE
PLASMAS

Dense plasmas are usually characterized by dimension-
less parameters (DP). Here, we display their dependence
on the MIS charge Z. Strictly speaking, appropriate DP
for plasmas arise naturally in the context of a given phys-
ical property [43, 44] where they are used as expansion
parameters for corrections beyond a reference state, as
in the Debye-Hückel theory for weak plasmas. Thus the
strong-coupling plasma parameter Γ (see below) was ini-
tially used for expanding the free energy of the classical
one-component plasma (OCP), until it was shown that
such expansions are not really meaningful in strongly
coupled regimes. Thus the use of these DP are mainly
used now for qualitative characterizations of plasma con-
ditions.

Often a MIS Z of ions in a plasma is estimated by a
Thomas-Fermi-type theory, which serves to get dimen-
sionless parameters that are useful in qualitative consid-
erations [6, 43, 45]. We write these DP using a Z that
relates the average ion density ni to the average free elec-
tron density ne = Zni, and evaluate the DP as a function
of Z to reveal their ionization dependence. Note that the
use of a MIS enables us to remove bound electrons from
the problem, as they are subsumed in constructing Z. In
the discussion that follows in this section, all electrons
ne are “free”, i.e., delocalized.

The parameter Θ is a measure of the quantum degen-
eracy of the plasma electrons ne, viz.,

Θ =
EF
T

=
e2a0
2T

(
3π2ne

)2/3
. (1)

Here, T is the plasma temperature (in energy units), EF
is the usual Fermi energy defined in terms of the average
density ne of “free” electrons, and (e2/a0) = 27.21 eV is
the atomic unit of energy. (More will be said about the
precise definition of “free” in what follows, and in this
section we use ne to be a generic choice). When Θ ≥ 1
the plasma electrons are partially degenerate.

Another possible degeneracy parameter is ηe = µe/T ,
where µe is the electron chemical potential for the fully,
interacting system, including finite T -, finite density-,
and bound state information not captured by (1). These
modification of µe due to electron-ion interactions is
sometimes loosely called the “lowering of the contin-
uum”. The parameter ηe plays a key role in the MIS-
values predicted by DFT. For the homogeneous electron
gas, when ηe = 0 then Θ = 1 to within 1 percent. In
the high density limit (at constant T ), pressure ioniza-
tion eliminates all bound states, and ηe approaches Θ.
While a negative η is typical of uniform classical plasmas,
note that this definition, which will be explored below,
includes bound electrons.

The Coulomb coupling parameter is the ratio of the
mean unscreened potential energy, estimated as the
Coulomb energy of a pair of particles with charges Zαe
and Zβe at a separation aαβ , to the mean kinetic energy,

estimated classically as T , for a pair of particles α and
β, or

Γαβ =
ZαZβe

2

aαβT
(2)

aαα = aα = (4πnα/3)−1/3 (3)

aαβ = (4π(nα + nβ)/3)−1/3; α 6= β. (4)

Thus α = i, ai = (4πni/3)−1/3 is the Wigner-Seitz ra-
dius (WSR) of ions in a plasma with average ion den-
sity ni = ne/Z. The electron WSR is often denoted
by rs in condensed-matter physics. The Γee defined in
this traditional manner does not correctly reduce to rs
as T → 0. The inter-pair length aαβ is a measure of
the mean separation, and other definitions are also used.
These Coulomb parameters satisfy the relations

Γii = Z5/3Γee = {Z/(1 + Z)1/3}Γei. (5)

When Γαβ exceeds unity, strong spatial correlations be-
tween particles of type α and type β, develop, and their
pair distribution functions (PDF) deviate significantly
from those of weak-coupling theory, showing oscillatory
structures.

Because the electrons are polarized by the ions, the
effective coupling between ions in plasmas tends to be
smaller than the “bare” parameter of (2). Furthermore,
in the domain of partial electron degeneracy, the effective
couplings that involve electrons are also reduced, and one
can (approximately) replace T by an effective tempera-

ture T̃e that goes to a Tq= 2EF /3 at T = 0 and tends
to T itself at very high temperature. A more rigorous
approach is to use a “quantum temperature” Tq instead
of 2EF /3, where the Tq is determined from a classical
map of suitable quantum properties [46, 47]

Γ̃ei =
Ze2

aeiT̃e
; T̃e =

√
T 2 + T 2

q (6)

The use of the classical-map Tq in Γee ensures that it
reduces correctly to rs at T = 0. For low temperature
applications in classical maps near T = 0, the Coulomb
interaction e2/ae itself has to be corrected for diffrac-
tion effects associated with the thermal de Broglie length
of the electrons [46]. However, such corrections are not
needed for the regimes used in the present study.

Using such an effective electron temperature in a
screening length λs which depends on the density and
T̃e, an effective ion-ion coupling including screening can
be given as:

Γ̃scrii =
Z2e2

aiT̃e
e−ai/λs . (7)

This coupling parameter, which is always smaller than
the “bare” Γii, is a more realistic measure of the actual
ionic coupling in Yukawa fluids. The numerical value of
λs depends on the physical properties of the plasma un-
der consideration, but a Thomas-Fermi form is typically
used [48].
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The plasmas studied in astrophysics, in the labora-
tory, or computationally, involve temperatures and den-
sities which change by orders of magnitude as materi-
als are heated, ionized, and forced into compression or
allowed to expand {see Refs. [49–53] for several famil-
iar examples}. Thus one needs the MIS Z over a wide
variety of conditions, even to identify the regimes ac-
cessed by the plasma in terms of traditional plasma pa-
rameters; that is, the value of Z to be used in (2)-(7) is
poorly known. Indeed, the large variations occurring in
these MIS-dependent parameters highlight the difficulty
of plasma theory for partially ionized, dense matter. We
display the behavior of these dimensionless parameters
as a function of the MIS Z.

In this study we focus on plasmas having just a single
element of nuclear charge Znuc. We study Be, Al, and
Cu, whose normal-solid mass densities are, respectively,
ρ0 = 1.85, 2.70, 8.92 g/cm3. As an example of the com-
plexity of even this simple case, the top panel of Fig. 1
shows contours of the MIS for Al over a large range of
temperatures and relative compression ρ/ρ0. The MIS is
from More’s fit [54] to the Thomas-Fermi MIS 〈Z〉, dis-
cussed in Section III C and given in (20), below. Note
that greater ionization occurs both as the temperature
increases and as the density increases above ρ/ρ0 ≈ 1,
where pressure ionization begins. Fig. 1 also shows con-
tours of Θ in the middle panel, where the continuum
electrons in an Al plasma exhibit strong quantum ef-
fects at high density and low temperature. In the bot-
tom panel of Fig. 1, contours of the modified electron-
ion coupling parameter Γ̃ei are shown. Interestingly, the
strongest electron-ion coupling occurs at low tempera-
tures near normal solid density: higher densities decrease
inter-particle separations but increase the effective tem-
perature (introduced in (6)). Here, we see an interesting
effect of the MIS, which occurs explicity in the factor Z
and implicitly in both the mean separation aei and the
effective temperature. We see that the electron-ion cou-
pling is never very large because, if it were, the plasma
would recombine to a lower MIS value, thereby decreas-
ing the electron-ion coupling. That is, because (6) refers
to free electron coupling to a composite ion of charge Z, Z
has a complicated temperature and density dependence,
here taken from the More fit. In Fig. 2, we plot con-
tours of the bare ion-ion coupling parameter Γii, again
using (20) given below, for all three metals investigated
here. Contours in these maps were chosen to reveal im-
portant modifications to standard formulae as the MIS
varies with temperature and density. When this coupling
is strong, correlations among ions produce oscillatory ra-
dial distributions at distances beyond a Wigner-Seitz ra-
dius. The effect of this on the plasma electronic struc-
ture is included in a statistical way in two-component
correlation-sphere models, discussed in Sec. III E.

FIG. 1: (Color online) (top) Surface map of the Thomas-
Fermi 〈Z〉 for Al as a function of temperature and relative
density ρ/ρ0. (center) Surface map of Θ, measuring quantum
effects, for electrons in Al plasma, computed using the result
from the top panel. (Bottom) Surface map of electron-ion
coupling parameter for Al plasma computed using result from
the top panel.

III. FINITE-TEMPERATURE DENSITY
FUNCTIONAL MODELS AND MEAN
IONIZATION STATE DEFINITIONS

This section describes two distinct kinds of statistical
models based on DFT. Comprehensive accounts of DFT
concepts are widely available [20, 21, 32, 55], while the
review by Dharma-wardana and Perrot in Gross et al. [20]
is specifically directed to electron-ion plasmas.
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FIG. 2: (Color online) (top) Surface map of ion-ion coupling
parameter for Be. (center) Surface map of ion-ion coupling
parameter for Al. (bottom) Surface map of ion-ion coupling
parameter for Cu. In all cases, the TF 〈Z〉 definition of (20)
was used.

A. Ion-Sphere and Correlation-Sphere Models

In both ion-sphere (IS) and correlation sphere (CS)
models one nucleus is fixed at the origin, and DFT is used
to obtain the surrounding electron density. In CS the ion
densities are also self-consistently obtained via a classical
DFT equation identified to be a modified hypernetted
chain equation (MHNC). Being all-electron models, the
total electron density n(r) includes bound and free states.
In IS models, the surrounding ion distribution is assumed
to vanish within the Wigner-Seitz cell and is not specified
outside the cell. That is, other than the central nucleus,

no other nuclei can be found in the range r < ai. CS
models use a large correlation sphere and include many
field ions as well as a central nucleus within the CS. For a
plasma at temperature T > 0, IS models begin with the
grand potential, expressed as a functional of the electron
density,

Ω[n(r), T ] = F0[n(r), T ] + Fxc[n(r), T ]

+

∫
d3r n(r) (U [n(r)]− µe) . (8)

The first term in (8) represents the Helmholtz free en-
ergy of non-interacting electrons evaluated at the correct
interacting density. The second term represents electron
exchange and correlation (XC) contributions to the free
energy. In the third term, U [n(r)] is the Coulomb energy
per particle, which includes the classical electrostatic en-
ergy of electrons with the central nucleus with charge
Znuce, and with each other (the Hartree term), viz.

U [n(r)] = −Znuce
2

r
+
e2

2

∫
d3r′

n(r′)

|r− r′|
. (9)

The thermodynamic potential is stationary with respect
to density-functional variations,

δΩ[n(r), T ]

δn(r)
= 0 (10)

This Euler equation gives the equilibrium electron den-
sity n(r), and the grand potential Ω[n(r), T ]. The one-
body potential associated with (9), which satisfies the
usual Poisson equation, is obtained through this func-
tional differentiation as

u[n(r)] = −Znuce
2

r
+ e2

∫
d3r′

n(r′)

|r− r′|
. (11)

In some models, the electron chemical potential µe acts
as a Lagrange multiplier for the conservation of electron
number or, equivalently here, for overall charge neutral-
ity, whereas in others it is specified and another variable
acts as a Lagrange multiplier. We treat both cases in
what follows.

Charge neutrality in IS models is used to specify zero
electric field beyond a distance ai, and the second bound-
ary condition for the Poisson equation becomes

du

dr
= 0, r ≥ ai. (12)

This choice gives rise to a muffin-tin picture of potentials
in the plasma. In a purely quantum mechanical scheme,
boundary conditions must be associated with the orbitals
- i.e., bound states decaying exponentially and the con-
tinuum states decaying to plane waves; the electrostatic
boundary conditions are needed to ensure overall charge
neutrality of the Znuc electrons in the IS.

DFT equations yield the radial density distribution
n(r) of the Znuc electrons within this charge-neutral fun-
damental cell. Result for the ion’s effective charge, and
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other information like the density of states of contin-
uum electrons, can be calculated. The prototype of this
class is the finite-temperature TF algorithm of Feyn-
man, Metropolis, and Teller [56]. TF theory provides
a basic comparison with improved ion-sphere models,
and other improved models of dense plasmas. Below,
we identify two MIS definitions within the context of
TF theory. The introduction of orbitals and the addi-
tion of exchange and correlation interactions improve the
standard TF description. Orbitals give rise to bound-
state shell structure and continuum-state resonances, and
exchange-correlation interactions bring in the many-body
effects as an effective one-electron Kohn-Sham potential.
Liberman’s Inferno model [17], the non-relativistic Muze
[51, 57] code used here, and the relativistic Purgatorio
[58] and Paradisio (sic) [59] algorithms are all of this
type, and they offer yet a third MIS definition.

The average atom model, and its different implemen-
tations in the codes mentioned in the previous para-
graph, are all based on a spherical cell with one nucleus.
A more general approach would contain both electron-
and ion- equations, solved self-consistently, to yield elec-
tron and ion density distributions. This approach has
been implemented previously by several authors within
OFDFT [39–41] and in Kohn-Sham formulations [42].
The ion subsystem obeys classical statistical mechan-
ics. Here, we employ an approach developed by Dharma-
wardana and Perrot [20, 60–62].

In the correlation-function based DFT model of
Dharma-wardana and Perrot [20, 60–62], one considers
in principle the entire volume of the plasma surrounding
the nucleus at the origin. Coupled DFT equations for the
electron and ion densities ne(r) and ni(r) are solved out
to some distance Rc (usually, ∼ 5 − 6 times larger than
the radius ai), by when the correlations with the central
nucleus have died off, and the densities of both species
have approached asymptotic mean values. This Rc is the
radius of a different fundamental cell, the CS, and we
use that term to distinguish such two-component DFT
models. The major improvement obtained are (i) the
possibility of calculating electron bound states to cover
the full extent of their exponential decay, (ii) continuum
states to satisfy the Friedel sum rule, (iii) inclusion of
the influence of neighboring ions on the electrons asso-
ciated with a particular nucleus. The neighboring ions
introduce features into the continuum density of states
that result from multi-center scattering [63]; these can
be important when Γii is large, and Fig. 2 indicates that
this is true for most of the temperature-density region of
interest to us.

Dharma-wardana and Perrot [60] found that the local
density approximation, which works well for electrons,
was useless for treating the ion-ion correlations. They
showed that the ion distribution was better determined
by using the modified-hypernetted chain equations [10]
to describe the non-local character of these interactions.
It should be noted that the MHNC equation arises natu-
rally in Re. [60] as a classical DFT equation, via a func-

tional derivative of the free energy with respect to the
ion-density. For many plasmas of interest it is found that
the ion-ion pair correlation function can be replaced by
a simple-cavity model, and this simplification is known
as the neutral-pseudoatom (NPA) model [61]. In this ap-
proximation, the nucleus, the cavity, and the associated
electron cloud form a nearly neutral object having many
useful analytical properties. (The NPA model of Blan-
card and Faussurier [64] introduces a different treatment
of ionic correlations.) In the NPA approach used here,
where the average density of free electrons is specified as a
boundary condition, one computes the average density of
plasma ions (and, hence, the Wigner-Seitz radius). This
is done self-consistently as the MIS is determined, by as-
suming that all plasma ions have this same net charge
and that, in the asymptotic regime, the total charge den-
sity vanishes.

For the NPA, we construct three MIS definitions anal-
ogous to those of the orbital-based IS models. However,
because of the different boundary conditions for the IS
and CS models, two of the NPA definitions actually are
the same, and the third yields a very similar MIS.

B. Electron Exchange and Correlation Interactions

The electron exchange-correlation potential, calculated
as the functional derivative of the free energy Fxc[n(r), T ]
with respect to the electron density n(r) adds to the ef-
fective one-body potential u[n(r)] of (11); this potential
is given by:

δFxc[n(r), T ]

δn(r)
≈ ux[n, T ]r + uc[n, T ]r, (13)

where we make the local-density approximation (LDA) in
the final step, as indicated by the suffix [...]r.. The sepa-
rate exchange and correlation potential energies (per par-
ticle), ux[n, T ]r and uc[n, Tr], for homogeneous plasmas
have been evaluated by Dharma-wardana et al., [67–69],
Ichimaru et al., [72] and other workers [70, 71]. Conclu-
sions from these include:

1. Limiting, low- and high-temperature expressions
are well established for both ux[n, T ] and uc[n, T ].
The exchange energy often has been approximated
by a simple formula that interpolates between these
limits [73]; thus,

ux[n, T ] = ux[n, 0]

(
1 +

3

2Θ[n]

)−1
, (14)

with the T = 0 value ux[n, 0] = −e2(3n/π)1/3 be-
ing Dirac’s original expression. However, a form
which is essentially exact in all regimes, and cor-
rectly handles the logarithmic divergences in the
zero-temperature limit is [68]:

ux[n, T ] = ux[n, 0] tanh(1/t)
N(t)

D(t)
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N(t) = 1 + 2.8343t2 − 0.2151t3 + 5.2759t4

D(t) = 1 + 3.9431t2 + 7.9138t4, (15)

where t = 1/Θ[n]. By comparison, the often used
form (14) may be in error by as much as 50% in the
warm dense matter (WDM) regime, 1 < Θ < 10.
We also note that, in this regime, it is better to
treat the exchange and correlation (XC) contribu-
tions together, because of strong cancellations that
occur in their sum; this is consistent with a wide
body of experience in developing and using zero-
temperature functionals. Parametrization covering
both exchange and correlation from T = 0 to finite-
T are available from Ichimaru et al. [72], and from
Perrot and Dharma-wardana [69]. The exchange
potential given by (15) is the form that we will use
here for ion-sphere models, although other forms
have been used for average atoms models previously
[57]. The correlation-sphere models reported here
use the XC-parametrization of Perrot and Dharma-
wardana [69].

2. At T = 0 the quantity |uc[n, 0]/ux[n, 0]| does not
exceed 0.3 for normal solid-state densities, and it is
even smaller at higher densities. For T < EF , ex-
change dominates over correlation, but a cross-over
occurs around Θ = 1, and as the plasma becomes
hotter, exchange becomes unimportant.

3. At very low temperatures, Θ� 1, uxc[n, T ] is not a
monotonic function of temperature. Also, the local
degeneracy is high in high density regions near ion
centers, and low in low-density regions at the edges
of ion spheres. Therefore, accurate parameteriza-
tions covering all regimes, and including important
cancellations between exchange effects and correla-
tion terms should be used. That is, the combined
quantity uxc[n, T ] should be used.

4. At all densities the magnitude of uxc[n, T ] (itself
a negative quantity) decreases monotonically with
temperature for Θ < 1/2. Thus, for studies of
warm and hot dense matter, both exchange and
correlation at finite-T are needed; and the zero-
temperature quantity, uxc[n, 0] is of uncertain va-
lidity at best.

These stand in sharp contrast to those applicable to
cold, compressed solids [74, 75], where T = 0 values
are adequate. This conclusion is reinforced by Fig. 3,
which is a surface map of |uxc[n, T ]|, from Perrot and
Dharma-wardana [68] and used in the Muze and NPA
calculations of this study. Curvature in the lines of con-
stant |uxc[n, T ]| highlight the temperature dependence of
uxc. Further, for the range of electron densities explored
here (1022 ≤ ne ≤ 1025 cm−3; 0.544 ≤ rs ≤ 5.44 a.u.),
exchange-correlation interactions can reduce the chemi-
cal potential of plasma electrons by several eV, and re-
duce the MIS by a half unit or more (see Tables II-VII
of Section IV).

FIG. 3: (Color online) Surface map of the absolute magnitude
of the finite-temperature exchange-correlation interaction of
Ref. [68], in units of eV, for the homogeneous electron gas.
Contour lines denote (from left) |uxc| = 0.1, 1.0, 10 eV.

In section IV the consequences of the exchange-
correlation contribution will be explored.

C. OFDFT and the Thomas-Fermi Model

In the Thomas-Fermi (TF) model [21, 55] two approx-
imations are made to Ω[n(r), T ]: (i) The free energy
of non-interacting electrons F0[n(r), T ] is treated in the
local density approximation (LDA), F0[n|r, T ], wherein
electronic quantities for the inhomogeneous system are
taken to be those of the homogeneous system at the lo-
cal value of the density, viz., n= n|r. (ii) In the original
TF model, the XC-contribution to the kinetic energy,
as well as to the potentials are neglected since Fxc[n, T ]
is set to zero. The key advantage of the TF-model is
that only an equation for the density needs to be solved.
Such models are realizations of the original Hohenberg-
Kohn-Mermin [18] formulation of DFT, rather than the
Kohn-Sham approach discussed below.

The kinetic-energy contribution in TF models is:

FTF0 [n, T ] =

√
2e2

πa0

(
T

e2/a0

)5/2

·∫
d3r

{
ξ[n]I1/2(ξ[n])− 2

3
I3/2(ξ[n])

}
, (16)

where

Iα(t) =

∫
dy

yα

1 + exp(y − t)
(17)

is the Fermi-Dirac integral function and where

ξ[n(r)] = −{U [n(r)]− µe} /T (18)



8

The approximation (16) is accurate at high density. The
Euler equation for this model leads to the usual finite-
temperature TF result for the local density,

n(r) =

√
2a30
π2

(
T

e2/a0

)3/2

I1/2[ξ(r)]. (19)

Once the above (non-linear) equations are solved and
the chemical potential µTFe determined through iteration,
an MIS can be computed for the ion in the IS. The sim-
plest prescription involves only the density at the sphere’s
edge where, because of boundary conditions, electrons
experience no electrostatic forces:

〈Z〉TF =
4πa3i

3
n(ai)

=
4
√

2

3π

(
ai
a0

)3(
T

e2/a0

)3/2

I1/2

(
µTFe
T

)
.(20)

Feynman et al. [56] constructed the first hot, dense mat-
ter EOS using an electron pressure consistent with this
estimate of the free electron density, and some modern
EOS schemes [76] still do this. (Note, however, that the
remaining thermodynamic quantities, such as the energy,
are not constructed from the edge density.)

An alternative MIS definition for the TF model in-
volves electrons that have, locally, negative total energy
[40]. One first determines their density,

nTFb (r) =

√
2a30
π2

(
T

e2/a0

)3/2

·∫ −U(r)/T

0

dy
y1/2

1 + exp(y − ξ(r))
, (21)

and then sums all such bound electrons within the ion
sphere to obtain

Z∗TF = Znuc −
∫
d3r nTFb (r). (22)

It is easy to see that Z∗TF > 〈Z〉TF because not all of the
enhanced density at small r-values represents electrons
with negative total energy. This is illustrated in Fig. 4
for Al at normal solid density and 30 eV. Thus, counting
these additional unbound electrons increases the MIS by
about 20% (see Section IV for details).

Attention has been given to adding XC-interactions to
the original finite-T TF scheme [55, 77]. It is worthwhile
to note subtleties that arise when one considers the MIS
definitions for TF calculations (TFxc) that include these
terms. Our first Thomas-Fermi MIS definition, 〈Z〉TF ,
uses the fact that Coulomb forces vanish at r = ai, and
hence that all electrons there are free. The quantity
uxc[n(ai), T ], however, does not vanish at the edge of this
sphere, but we reestablish the condition that all electrons
at r = ai are free, viz. nTFxcb (ai) = 0, by identifying this
boundary value of uxc as the exchange-correlation con-
tribution uxc to the chemical potential of the interacting

electron gas outside the cell. Since uxc < 0, it follows
that 〈Z〉TFxc < 〈Z〉TF . Our second TF MIS definition,
Z∗, identifies electrons with negative total energy, viz.,

nTFxcb (r) =

√
2a30
π2

(
T

e2/a0

)3/2

·
∫ −U ′(r)/T

0

dy
y1/2

1 + exp(y + uxc(r)− ξ(r))
, (23)

where now −U ′(r)/T = −(U(r)+uxc(r))/T . However, as
defined in DFT, the exchange-correlation functional in-
cludes not only true potential energy terms arising from
XC, but also the part of the kinetic energy neglected
when the true free energy functional is replaced by a
functional of non-interacting particles taken at the in-
teracting density. Thus, in both definitions, we see an
ambiguity arising from the fact that kinetic and poten-
tial energy contributions cannot be disentangled in the
context of DFT.

FIG. 4: (Color online) Behavior of bound (negative energy)
and free (positive energy) electron densities, in atomic units,
within an IS, for Al at normal solid density and T = 30 eV.
There are fundamental differences between orbital-based and
OFDFT models, here illustrated by Muze and TF calcula-
tions. In particular, with orbitals, bound electron density
can extend beyond the sphere, and orthogonality of bound
and continuum orbitals imposes obvious structure on the free
electron density near the nucleus.

With regard to our MIS definition (22) for TF mod-
els, we see by the negative sign of uxc(n, T ) at all r-
values that it adds to the nuclear attraction; thus, the
fraction of bound electrons is increased, leading to the
result Z∗TFxc < Z∗TF , obtained by substituting (23) into
(22). This conclusion is consistent with MIS calculations
reported in Ref. [77], wherein an approximate, but dif-
ferent, T -dependent exchange interaction was used.
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D. Orbital-Based DFT and the Muze Model

With XC interactions included in the TF model, fur-
ther improvements result from adding gradient correc-
tions to the non-interacting free energy F0[n, T ]. Such
models, which attempt to retain n(r) as the basic vari-
able, fall in the category of orbital-free DFT [35–37].
New, more reliable forms for the kinetic energy as a
functional of the electron density ne(r) have recently
been developed [38]. Thus OFDFT methods have been
over-shadowed by finite-temperature, orbital-based DFT
models. Kohn and Sham [19] (KS), presented a solution
to the kinetic-energy problem (extendable to finite-T as
well) through the introduction of a special set of one-
electron orbitals {ψs(r)} that enables the non-interacting
energy to be computed exactly if the exact XC free en-
ergy functional is known. These orbitals satisfy a one-
body Schrödinger equation,[

− h̄2

2m
∇2 + U(r)

]
ψs(r) = εsψs(r). (24)

The orbitals are constrained to be orthogonal via La-
grange multipliers which are the Kohn-Sham eigenval-
ues. The ground-state density of an N -electron system is
constructed from the sum of the orbital densities |ψs(r)|2
having the N lowest eigenvalues. This scheme exhibits
shell structure that is missing in OFDFT models.

Mermin [78] extended the theory to nonzero tem-
peratures. Here, bound-state solutions, with εs < 0,
again give rise to shells (although high plasma pres-
sure severely limits the number of bound states), and
continuum-state solutions εs ≥ 0 yield distorted plane
waves. The eigenvalues εs, the Lagrange multipliers in
the Kohn-Sham scheme, differ substantially from true
eigen-energies. Similarly, the Kohn-Sham orbitals are
not true electronic states. However, in most applications
εs are used as energy eigenvalues, and ψs(r) are used
as one-electron orbitals without further discussion. The
electron density n(r) is constructed from a sum over the
KS-orbitals and Fermi occupation probabilities

n(r) =
∑
s

f(εs, µe) |ψs(r)|2 (25)

f(ε, µ) = (1 + exp[(ε− µ)/T ])−1 (26)

Mermin noted that, in the high density limit, the TF
form of the electron density is regained.

In the present work, we use the code Muze [51, 57],
which is an IS model, to explore the importance of
both orbitals and XC-interactions for improving Thomas-
Fermi estimates of MIS in ion-sphere models. For a spec-
ified nuclear charge, temperature, Wigner-Seitz radius,
and choice of exchange-correlation interaction, Muze
computes KS orbitals and eigenvalues from the non-
relativistic, single-electron Schrödinger-like equation,[
− h̄2

2m
∇2 + U(r) + uxc[n(r), T ]

]
ψs(r) = εsψs(r). (27)

The electron chemical potential µMuze
e is found by an

iteration involving (25), from the requirement of overall
charge neutrality for the ion sphere.

One benefit of an orbital-based DFT is its treatment
of the largest portion of the kinetic energy operator. Rel-
ative to OFDFT formulations, this circumvents the need
for approximate gradient corrections to the kinetic en-
ergy F0[n, T ] that are often used to obtain reasonable
cusps near the nuclei [21, 35–37, 55]; however, gradient
corrections are still necessary in the exchange-correlation
potential. Orbitals also lead to new physics not occurring
in the TF model. Because Muze chooses boundary condi-
tions in which the exponentially decaying tails of bound
orbitals can extend beyond the IS radius, a portion of the
density at r = ai (and beyond) actually represents elec-
trons with negative energy, i.e., bound electrons not en-
tirely confined to the IS. This phenomenon is illustrated
in Fig. 4, which shows bound and continuum densities
for Al at normal solid density and 30 eV. The contrasting
behavior of (orbital-free) TF and (orbital-based) Muze
densities is evident. For this reason, comparisons of the
orbital-based MIS expression,

ZISMuze =
4πa3i

3
n(ai), (28)

and the TF quantity 〈Z〉TF are of limited value because
the density in (28) includes an unspecified contribution
from bound (negative energy) electrons.

On the other hand, an analog of Z∗TF can be obtained
by summing the density of negative energy electrons
within the ion sphere (Model A of Ref. [17]). Using
only the few bound orbitals contained in the summation
of (25), one identifies the bound electron density nb(r).
hence we have:

Z∗Muze = Znuc −
∑
εs<0

{
ω(εs)f(εs, µe)

∫
IS

d3r |ψs(r)|2
}
,(29)

where now the sum is over energy states and ω is the
degeneracy. Any bound electron density outside the ion
sphere is excluded.

When a bound state is pressure ionized and moves
into the continuum , the resulting resonance electrons
close to the edge of the continuum retain much of their
bound state character and contribute narrow peaks to
the continuum density of states [35, 54, 58, 63]. Al-
though a proper treatment of new resonances ensures
that the plasma pressure varies smoothly [79–81], Z∗ for
orbital-based, ion-sphere models can undergo an abrupt,
unphysical increase. Various ideas have been proposed to
overcome this behavior [8], which is seen and discussed
in Section IV.

As regards this second MIS definition, if, instead of a
summation of bound-state orbital terms, an energy inte-
gration is performed with respect to the continuum KS-
orbital terms in (25), {s→ ε, ν, with ν representing any
additional quantum numbers needed for specificity}, one
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can re-order integrations to obtain

Z∗Muze =

∫
d3r

{∫ ∞
0

dεf(ε, µe)
∑
ν

ων |ψε,ν(r)|2
}

=

∫
dεf(ε, µe)

[∫
d3r g(ε, r)

]
, (30)

where g(ε, r) is an effective, local density of states (DOS)
per unit volume. If we replace this effective DOS in (30)
by g0(ε), the DOS for an ideal gas,

g(ε, r)→ g0(ε) =
1

2π2

(
2m

h̄2

)3/2√
ε (31)

we obtain a MIS having the same form as 〈Z〉TF in the
sense that the MIS is obtained from a Fermi-Dirac dis-
tribution with no interactions; however, this distribution
involves the chemical potential of an orbital-based calcu-
lation in place of µTFe , viz.

〈Z〉Muze =
4
√

2

3π

(
ai
a0

)3(
T

e2/a0

)3/2

I1/2

(
µMuze
e

T

)
.(32)

For orbital-based ion-sphere models, the difference Z∗ −
〈Z〉 is an integral measure of non-ideal features in the
computed DOS.

Once a Muze solution is found, one can construct the
three MIS-values,

{
〈Z〉Muze , Z

∗
Muze, Z

IS
Muze

}
, using, re-

spectively, (32), (30), and (28).

E. Including Ion Correlations: Coupled-Densities
Models

Here, we sketch the implementation of KS models that
include ionic correlations beyond the IS, as developed by
Dharma-wardana and Perrot [60]. Other, related models
by Ofer et al. [39] and by Zakowicz et al. [40] employ
orbital-free methods for the electron density and correla-
tions within the ion density, but these will not discussed
further here.

Our calculational scheme begins with a correlation
sphere of radius Rc ∼ 5-8ai, filled with a homogeneous
electron fluid of specified temperature T and average elec-
tron density ne; hence, the electron chemical potential is
known. A charge-neutralizing ion fluid is also included.
The choice of a correlation sphere radius Rc of (5− 8)ai
is chosen to be large enough to be greater than typical
ion-ion correlation lengths for a given problem. Even
at Rc = 5ai the cell is two orders of magnitude more
voluminous than that of the IS-model. Electron correla-
tions die much faster than ion-correlations and are eas-
ily contained in the CS. A nucleus of charge Znuce is
placed at the origin in the fluid, pulling electrons around
it and causing a local modification ∆nf (r) of the free
electron density in the CS; bound states may form, caus-
ing an additional local enhancement nb(r). Thus the nu-
cleus acquires some mean ionization Z due to population

of bound states and free states. This Z is taken as a
trial value for the effective charge of “field ions”, whose
mean number density becomes ni = ne/Z. In effect, in
this algorithm Z is the Lagrange multiplier that enforces
charge neutrality. This interpretation of MIS was first
discussed in Ref. [60] in the context of hydrogen plasmas.
The field ions are allowed to interact with other charges
and form a correlated equilibrium distribution about the
central nucleus. The coupled Euler equations for the
electron and ion subsystems arise from the stationary
property of the total free energy F [ne(r), ni(r)] with re-
spect to functional derivatives of the two densities. The
electron-subsystem Euler equation δF/δne(r) = 0 leads
to a Kohn-Sham like equation, while the ion-subsystem
Euler equation, δF/δni(r) = 0 leads to an MHNC equa-
tion. The equations are coupled through the Lagrange
multiplier Z, and via electrostatic and correlation poten-
tials. Iterative solution of the coupled equations lead to
the thermodynamic ne(r) and ni(r) profiles. The charge
density profiles established around Znuc are

qe(r) ≡ −enegei(r)
= −e [ne + ∆nf (r) + nb(r)] (33)

qi(r) ≡ Znuceδ(r) + Zenigii(r)

= Znuceδ(r) + Ze [∆ni(r) + ni] , (34)

where gei(r) and gii(r) are the electron-ion and ion-ion
pair distribution functions, and where ∆ni(r) represents
the modification of the ion density from the bulk value.
The calculation also yields the chemical potential of the
ions.

The computation is begins with trial electron and ion
density profiles. The value of Z, as well as the associ-
ated Wigner-Seitz radius bi which is the trial value of
ai, are adjusted at each iteration using the calculated
nb(r) and ∆nf (r), while {Rc, T, ne} are held fixed. So-
lutions to the coupled DFT equations for the densities
are iterated until, at r = Rc and beyond, they yield a
stationary value for the ratio ne/ni = Z, which we take
to be the definition of the mean ionization 〈Z〉. The
chosen CS is deemed large enough if both pair distribu-
tion functions have tended to unity, and if all bound-
state orbitals have decayed exponentially while the con-
tinuum solutions have become phase-shifted free-electron
orbitals. Consistency requires that at Rc the phase shifts
of the continuum orbitals satisfy the Friedel sum rule,
adding up to the value of the mean ionization 〈Z〉.

F. The Neutral Pseudo-Atom (NPA) Model

The above coupled-densities model, which has been im-
plemented in several investigations, provides a systematic
method with only a minimum of assumptions. However,
a simpler version, when applicable, enables one to de-
couple the KS (electron) calculation from the ion profile
calculation, so that the electron density can be addressed
separately [20, 60–62], using a very simple model for the
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ion profile. This simplification is based on the concept of
the “neutral pseudoatom” (NPA), i.e., a single nucleus
and an associated cavity embedded in a responsive elec-
tron gas with a compensating, uniform ionic background
of charge density qi. Properties of the NPA model are
such that, to a good approximation, the total density of
electrons in the plasma is the superposition of the pseu-
doatom densities surrounding individual ions.

To construct a neutral pseudoatom, a spherical cavity
of radius bi is made in the positive ion background; an
amount of charge ∆Z = 4πb3i qi/3 is thereby scooped out.
A nucleus Znuc is placed at the cavity’s center, and an
inhomogeneous electron charge density qe(r) = −en(r),
determined from KS orbitals, is established in response to
this nucleus and the static, positive background with its
spherical cavity. Effectively, the true ion-ion pair distri-
bution function has been replaced by an approximation,

gii(r) = θ(r − bi), (35)

where θ(x) is the usual step function. This cavity plus
its contents is similar to the Wigner-Seitz sphere used
in ion-sphere models; however, we emphasize that the
charge density qe(r) belongs not only to the central nu-
cleus, but also to the charge inhomogeneity associated
with the cavity. However, this is a small perturbative
effect compared to that of the central nucleus. Hence,
as detailed by Perrot [89], linear response theory can be
used to correct for the presence of the cavity, since the
cavity potential induces a density displacement. Thus
the electron density attributable to the NPA is given by

qe(r) = −e
[
ne + ∆nf (r)−∆ncavityf (r) + nb(r)

]
, (36)

with free- and bound-state contributions analogous to
the terms in (33). The NPA calculation uses the CS so
its boundary conditions (r = Rc) for KS orbitals are the
same as those applied to the full coupled-densities model.
With a self-consistent NPA electron density in hand, the
free-electron excess ∆Ñf (r) = ∆nf (r)−∆ncavityf (r) can
be used to determine a pair potential for evaluating the
ion-ion gii(r) obtained from a modified HNC equation,
but this feature of the NPA model is not needed when
its MIS-value is determined.

The KS orbital equation for the electrons, (27), must
be solved iteratively for each orbital, with the cavity ra-
dius bi being adjusted so that at each step 4πb3ine/3 = Z,
where the effective charge Z is that of the nucleus Znuc
minus the part of all its bound electrons that can be at-
tributed to a single ion. When any of the bound states
extend beyond the cavity, it is necessary to construct a
method of sharing these delocalized, or “hopping” elec-
trons so that only a suitable fraction of them are at-
tributed the central nucleus. To this end, Perrot [61]
introduced a cutting function f(r) that applies to the
delocalized states. This function, which integrates to
unity, was constructed by studying results from full, two-
component DFT calculations, and with it one expresses

the effective number of bound electrons as

νb =

∫
CS

d3rf(r)nb(r), (37)

where the integration is over the volume of the CS (ef-
fectively, all space, since all bound states have decayed
exponentially by r = Rc). Similarly, the number of elec-
trons that contributes to a quasi-bound mobility edge, as
in disordered semiconductors, can be written as

νh =

∫
CS

d3r [1− f(r)]nb(r). (38)

These electrons cannot be assigned to any one ion cen-
ter. When the number of quasi-bound electrons is sub-
stantial, say, νh > 1, then the coupled electron/ion DFT
equations should be used instead of their approximate,
NPA version. Note that only a part of the total bound
electrons nb is included in νb, since the hopping electrons
are not ascribed to any ion center, but belongs to the ion
distribution. The theory of hopping electrons in plasmas
has been discussed by Dharma-wardana and Perrot [62].

Equations for the NPA are iterated until self-
consistency is obtained. At that point, the quantity

〈Z〉NPA = Znuc − νb. (39)

is identified as the MIS of the neutral pseudo-atom, and
bi converges to ai, the computed radius of the Wigner-
Seitz sphere for the central ion.

We may compare the correlation-sphere approach with
the ion-sphere model MIS-value of 〈Z〉 by noting that the
MIS sets the ratio of uniform electron and ion densities
at the edge of the CS, i.e., 〈Z〉NPA = n(Rc)/ni, while
the ion-sphere model uses the values at the edge of the
ion-sphere, as in Eq. 28.

All the models, including the NPA, examined in this
paper are “average-atom” models. There is just one
species of field ions, with the MIS charge Z. The result-
ing 〈Z〉NPA need not be an integer. A simple extension of
the average atom model is to consider the plasma to con-
sist of several stages of ionization Zi with composition
fractions xi. Here Zi are integers, as in an Al-plasma
with Z1 = 3, Z2 = 2 and Z3 = 3 with an average atom
value which is a non-integral quantity between 1 and 3.
Then the average-atom mean ionization is usually found
to be a simple approximant to the multi-species estimate
of the mean ionization given by

〈Z〉 =
∑
i

xiZi (40)

In the multi-species DFT calculations [8] using the NPA
model or CS model, the equation of state is also com-
puted, and the composition fractions are determined by
a minimization of the total free energy as a function of
xi. Thus an aluminum plasma at a compression of 0.507
(i.e., about half the normal density), and at T = 1.5 eV
is found to have a mean ionization state of 〈Z〉=1.478.
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This fractional mean value is found to correspond to a
multi-species plasma of Al1+, Al2+, and Al3+ with com-
position fractions 0.614, 0.294, 0.092. These numbers are
obtained from the multi-species extension of the NPA
model as described in [8]. The three types of ions and
electrons provide a 4-component plasma (i=e,Al1+, Al2+,
and Al3+) with 10 different pair distribution functions
(PDFs) gij(r) that were determined via a set of coupled
MHNC equations and the Kohn-Sham equations. This
is a highly degenerate system which can be treated by
AIMD methods. However, to date AIMD results are not
available to test these calculations and the PDFs, electri-
cal conductivities etc., predicted by [8]. Judging by pre-
vious experience, we are confident that when such results
become available, good agreement with AIMD would be
found.

The results from the average-atom models, and from
the full multi-species approaches agree unless the plasma
is close to ionization thresholds and phase-transitions.
The multi-species DFT model establishes the thermody-
namic character of 〈Z〉, already familiar from the sim-
plest ionization models of Saha theory where particle in-
teractions are ignored.

IV. MEAN IONIZATION STATE
CALCULATIONS FOR BE, AL, AND CU

We now present and discuss mean ionization results
for the different models described in Section III. It is
helpful, first, to collect the equations used for the MIS
definitions in various models, and this we do in Table I.
With regard to recent, related work of Sterne et al. [80]
using Purgatorio, the notational connections are: their
ZWS ↔ ZISMuze, their Zbackground ↔ 〈Z〉Muze and their
Zcontinuum ↔ Z∗Muze. Notation in most of the cited NPA
papers of Perrot and Dharma-wardana is such that their
Z ↔ 〈Z〉NPA.

TABLE I: Equations for MIS calculations in different models.

model: TF Muze NPA

cell : IS IS CS

〈Z〉 (20) (32) (39)

Z∗ (22) (30) . . .

We studied the metals Be, Al, and Cu under tempera-
ture and density conditions of contemporary laboratory
interest. Tables II through VII list results computed
for a representative set of points in the WDM regime,
where the range of the electron degeneracy parameter
ηe = µe/T is ± few. Material densities are expressed
as compressions relative to normal solid density. (Again,
for Be, Al, and Cu, respectively, ρ0 = 1.85, 2.70, and
8.92 g/cm3.) For each table, the ion density ni, the
Wigner-Seitz radius ai, and the ion-ion coupling factor
(computed using 〈Z〉NPA) are listed. Column headings

identify the particular model, and whether the calcula-
tion includes exchange-correlation interactions (as given
in (15)). Entries are the electron chemical potential µe,
and the MIS values 〈Z〉 and Z∗. Given the statements
in Section II, we pay particular attention here to differ-
ences in µe-values obtained from the different models. In
each table, reading from left to right reveals the effects
of going beyond basic TF to include: (1) orbitals; (2) or-
bitals plus exchange-correlation; and, lastly, (3) orbitals,
exchange-correlation, and a larger fundamental cell.

TABLE II: Mean ionization of Be: ρ/ρ0 = 1.0 and T = 10
eV.

ni = 1.24 · 1023 cm−3, ai/a0 = 2.32, ΓNPA
ii = 4.63

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) 5.06 4.72 3.39 7.77

〈Z〉 1.73 1.69 1.53 2.00

Z∗ 2.17 2.00 2.00 . . .

TABLE III: Mean ionization of Al: ρ/ρ0 = 0.1 and T = 10
eV.

ni = 6.03 · 1021 cm−3, ai/a0 = 6.44, ΓNPA
ii = 2.14

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) −25.0 −26.2 −27.5 −26.2

〈Z〉 2.53 2.26 1.98 2.25

Z∗ 3.01 2.52 2.27 . . .

TABLE IV: Mean ionization of Al: ρ/ρ0 = 1.0 and T = 10
eV.

ni = 6.03 · 1022 cm−3, ai/a0 = 2.99, ΓNPA
ii = 8.30

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) 2.61 1.10 −0.77 2.76

〈Z〉 2.96 2.64 2.28 3.02

Z∗ 4.00 3.11 3.02 . . .

Along the model sequence TF→Muze (no xc)→Muze
(recall that this an IS model), one can see that each of
the three tabulated quantities decreases monotonically as
first orbitals and then orbitals with exchange-correlation
interactions are introduced. Values of 〈Z〉 will be close
when electron degeneracy parameters computed by a pair
of models are about the same and, for small differences,
properties of the Fermi-Dirac integrals yield the relation
∆ 〈Z〉 ≈ (∆ηe/2) I−1/2(ηe). If one considers only the val-
ues of 〈Z〉, the effects of orbitals and exchange-correlation
interactions tend to be comparable; on the other hand,



13

TABLE V: Mean ionization of Al: ρ/ρ0 = 1.0 and T = 30 eV.

ni = 6.03 · 1022 cm−3, ai/a0 = 2.99, ΓNPA
ii = 5.60

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) −37.7 −40.5 −44.9 −37.4

〈Z〉 4.26 3.93 3.42 4.30

Z∗ 5.18 4.78 4.16 . . .

TABLE VI: Mean ionization of Al: ρ/ρ0 = 10.0 and T = 30
eV.

ni = 6.03 · 1023 cm−3, ai/a0 = 1.39, ΓNPA
ii = 9.44

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) 72.0 67.0 60.6 48.9

〈Z〉 5.67 5.25 4.70 3.80

Z∗ 7.40 4.50 3.81 . . .

if one considers instead only the Z∗-values, in all cases
orbitals have the larger effect. It is the latter result that
is consistent with expectations raised in Section III.

It is reassuring that, since the same exchange-
correlation interaction energy is used, the values of
Z∗Muze and 〈Z〉NPA usually are very close. In light of
comments made above, this means that νh is very small
and that the NPA model is a good approximation of the
full, two-component DFT model. But, it is disconcerting
that often there are large differences between the corre-
sponding electron chemical potentials. There is, however,
a straightforward explanation that we mentioned earlier:
In the NPA model and as required by KS theory [19, 21],
the chemical potential is the non-interacting value at the
interacting, homogeneous electron density which prevails
in the bulk of the plasma. That is, µe is fixed by the
electron density n(Rc) specified at the edge of the cor-
relation sphere. However, for orbital-based ion-sphere
models such as Muze, the density at which µe is estab-
lished is actually not that of a homogeneous, interacting
electron gas: The central ion’s influence usually is still
felt at the boundary, r = ai, as evidenced by KS orbitals
not yet having attained their asymptotic values. Inter-
estingly, this problem does not arise in the orbital-free,
TF model since, at r = ai, there are no electrons with
negative total energy and there is no residual influence
of the central ion on electrons with positive total energy.

Figures 5 through 8 reveal additional MIS trends and
information. In Figs. 5, 6, and 7 we show computed
values of MIS and ηe for a wide range of temperatures,
for each of the metals Be, Al and Cu at normal solid
density. For Be and Al, the temperature dependence of
MIS-values shown in Figs. 5 and 6 is smooth, and the
results for NPA and Muze tend to lie somewhat lower
than those for TF and Muze-noxc. Here again we see the

TABLE VII: Mean ionization of Cu: ρ/ρ0 = 1.0 and T = 30
eV.

ni = 8.41 · 1022 cm−3, ai/a0 = 2.67, ΓNPA
ii = 15.3

DFT model: TF Muze Muze NPA

xc: no no yes yes

µe (eV) −13.8 −16.2 −21.8 −13.6

〈Z〉 6.18 5.79 4.93 6.72

Z∗ 8.08 6.74 5.79 . . .

expected effect on the MIS as first orbitals and then or-
bitals plus exchange-correlation interactions are added to
the ion-sphere model. The exception is Cu, where Fig.
7 shows that Z∗Muze drops abruptly by several charge
states from a value of 11 at temperatures near 10 eV.
This anomalous and unphysical behavior is due to the
way this MIS apportions states that are continuum res-
onances at low temperature but evolve to bound, 3d or-
bitals as the temperature and, hence, the core charge
increases. The abrupt change is not evident in Muze val-
ues of 〈Z〉 or in the corresponding values of ηe, both of
which vary smoothly. In the right/lower panels of Figs.
5, 6, 7 the common trend of smaller differences in ηe, be-
tween Muze and NPA, as the temperature rises, confirms
the increased reliability of ion-sphere models as electron
degeneracy, Coulomb coupling, and exchange-correlation
effects all decrease.

Figure 8 highlights the effects of pressure ionization,
in plots of mean ionization (Muze) versus density for Al
and Cu at T = 30 eV. The trend in Z∗ is, first, one of
decreasing ionization with increasing density, interrupted
by small jumps when outer orbitals become pressure ion-
ized. Later, large jumps occur in the region of increasing
ionization when core orbitals are pressure ionized. As
above, 〈Z〉 follows the general trend of Z∗, but without
near discontinuities. Here, three points are noteworthy:
(1) This behavior of first decreasing and then increas-
ing ionization vs. density occurs over a modest range of
plasma temperatures, as shown qualitatively by the TF
values of 〈Z〉 for Al (at 20 ≤ T ≤ 40 eV) that are plotted
in Fig. 1. (2) In ion-sphere models, large MIS differences
|Z∗ − 〈Z〉 | signify important resonant structure in the
continuum DOS. (3) Quite similar, nearly discontinuous
ionization behavior has recently been published for gold
and aluminum at low temperatures, T ≤ 10 eV, using
the NPA model [9]. Evidently, the pressure ionization
jumps shown in Figs. 7 and 8 are a possible feature of
all orbital-based average-atom models.

Figure 9 shows the run of the different MIS values
computed by Muze (exchange-correlation included) ver-
sus temperature for Al at normal solid density. As the
temperature drops, we see a growing difference between
〈Z〉 and the third MIS quantity, ZISMuze (28). Because
that difference is a measure of bound electron density at
r = ai, we have yet another indication that an ion sphere
is not a large enough fundamental cell for determining
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FIG. 5: (Color online) Plots of mean ionization (top panel)
and electron degeneracy ηe (bottom panel) for Be at nor-
mal solid density, versus temperature, as determined by DFT
models discussed in the text: Thomas-Fermi [TF], Muze with-
out exchange-correlation [MU noxc], Muze with exchange-
correlation [Muze], and neutral pseudo-atom [NPA].

certain properties of strongly coupled systems. Figure
9 (right/lower panel) shows the run of 〈Z〉 versus tem-
perature, as determined by the three ion-sphere models,
for Cu at normal solid density. For comparison, we also
plot NPA results. These curves illustrate the sensitiv-
ity of this MIS to the computed differences in electron
chemical potentials.

To illustrate MIS sensitivity to the exchange-
correlation potential, in Fig. 10 we plot 〈Z〉-values for Al,
as calculated by Muze with different forms of uxc[n, T ],
for two temperatures and a range of densities. At T = 1
eV, 〈Z〉 is practically independent of the temperature
or the exact form of uxc, confirming the recent AIMD
results of Faussurier et al. [82]. However, at T = 30
eV, the two temperature-dependent formulations of the
exchange-correlation interaction both lead to a lower 〈Z〉
than that corresponding to the T = 0 potential that

FIG. 6: (Color online) As in Fig. 5, for Al at normal solid
density.

was used in, for example, Ref. [58]; also, values with
the Iyetomi & Ichimaru formulation [72] lie closer to the
T = 0 result than do those with the formulation by Per-
rot and Dharma-wardana (used in the other calculations
reported herein) [71]. We also note the interesting result
that 〈Z〉 here decreases with temperature at above-solid
densities.

We conclude this section with some comments on the
TF model. In general, TF results for (isolated) neutral
atoms (at T = 0) are expected to be better for heav-
ier elements, because a greater fraction of the electrons
have large principal quantum numbers and so are less
localized; hence, the uniform density approximation of
F0[n, T ] is more accurate. For cool-to-warm (say, T ≤ 10
eV) dense matter, data plotted in Figs. 5-7 suggest a
more complicated trend: The TF values of Z∗ are rea-
sonably close to those of the orbital-based DFT models
for Be, but the relative agreement worsens as the nuclear
charge Znuc increases. As Fig. 3 illustrated, exchange-
correlation interactions are more important at low tem-
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FIG. 7: (Color online) As in Fig. 5, for Cu at normal solid
density.

peratures. However, by comparing the Z∗-values plot-
ted here for all three ion-sphere models, we see that in
fact orbitals have a relatively greater effect at low tem-
peratures while exchange-correlation interactions have
relatively greater effect than orbitals at high tempera-
tures. Such results suggest caution when applying “con-
ventional wisdom” to plasmas having partial ionization
and partial degeneracy! There also is a trend, most ap-
parent in Fig. 5, where TF theory overestimates the more
accurate values of Z∗ for low ionization, but underesti-
mates them for high ionization. Finally, the tabulated
results that 〈Z〉TF (the simplest MIS calculation) some-
times turns out to be close to Z∗Muze and 〈Z〉NPA. This
situation results from a partial cancellation of two effects:
(1) the enhanced density of continuum electrons counted
in Z∗Muze and 〈Z〉NPA and (2) the enhanced binding due
to exchange-correlation effects. Unfortunately, (cf. Table
IV and Fig. 8 ), such fortuitous agreement disappears at
the densities of compressed solids, where pressure ioniza-
tion of orbitals is significant.

FIG. 8: (Color online) Mean ionization values Z∗ and 〈Z〉,
as calculated by Muze, for Al (top panel) and Cu (bottom
panel) at T = 30 eV, versus density. See text for discussion
of abrupt jumps in Z∗.

V. X-RAY THOMSON SCATTERING AS A
PROBE OF MEAN IONIZATION

X-ray Thomson scattering (XRTS) is an important di-
agnostic for a variety of hard and soft condensed matter
systems. XRTS also has the promise to provide useful in-
formation about dense plasmas that cannot be obtained
otherwise [83], due to their short existence. MIS con-
cepts are central to understanding dense-plasma XRTS,
and here we consider these experiments in the context
context of MIS.

A popular formulation of XRTS by electrons in plas-
mas and liquid metals is due to Chihara [84], where the
XRTS cross section per nucleus, differential in frequency
and direction of scattered radiation, is

d2σ

dΩfdω
=
dσTh
dΩf

kf
ki
Stotee (k, ω), (41)
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FIG. 9: (Color online) (top) Comparison of the three different
MIS values defined in the Muze model ((20), (28), and (32)),
for Al at normal solid density, versus temperature. (bottom)
Comparison of 〈Z〉-values for Cu at normal solid density, as
computed by different DFT models ((20), (32), and (39)),
versus temperature.

Here h̄ω and h̄k are the energy and momentum lost when
a photon of incident wavevector ki (as modified by the
plasma’s index of refraction) is scattered into the solid-
angle element surrounding the final wavevector kf , and
where dσTh/dΩf is the usual differential Thomson cross
section for scattering of unpolarized radiation by elec-
trons. All effects of the medium are contained in the elec-
trons’ total dynamic structure factor, Stotee (k, ω), which
includes contributions from both bound and free elec-
trons, as well as ionic contributions to the electron dy-
namics.

Chihara’s analysis assumes the separability of an ion’s
electrons into: (1) core electrons Zc that are tightly
bound, and hence highly localized; and (2) so-called free
electrons, that are delocalized. This latter group includes
all electrons having positive energy, plus valence electrons
that are only weakly bound. These are Zf = Znuc − Zc

FIG. 10: (Color online) The density dependence of Al 〈Z〉 cal-
culated by Muze, at two temperatures and with four different
treatments of the exchange-correlation potential (including no
xc). PDW denotes Ref. [69] and II denotes [72].

per ion, where, as before, Znuc is the nuclear charge. Sim-
ilarly, their densities sum to give the total electron den-
sity associated with that nucleus, n(r) = nc(r) + nf (r).
Thus we see that superpositions and overlaps of electron
densities are not adequately treated. Chihara’s principal
result is that the dynamic structure factor appearing in
(41) has three contributions, commonly written as:

Stotee (k, ω) = |nf (k) + nc(k)|2 Sii(k, ω) + ZfS
(0)
ee (k, ω)

+ Zc

∫
dω′Sce(ω − ω′)Ss(k, ω′). (42)

The first term on the rhs is a product involving the usual
ion-ion dynamic structure factor and the Fourier trans-
form of n(r). This term represents low-frequency, in-
elastic scattering by electrons that follow the ion motion
[48]; it is often referred to as the “quasielastic peak”. The

second term contains the structure factor S
(0)
ee (k, ω) that

represents high-frequency electron dynamics that are not
correlated with ion motion. The third term involves a
convolution of special dynamic structure factors pertain-
ing to the core electrons and to a gas of non-interacting
ions, and it represents inelastic scattering by the elec-
trons tightly bound to ions; details of the notation can
be found elsewhere [84]. Our interest is with the quanti-
ties multiplying each of these structure factors.

The essential problem is that in dense plasmas the elec-
tron separation nc(r)+nf (r) that Chihara posits is a del-
icate matter which depends on the nature of the probe
and the material itself. In simple metals and their plas-
mas, there is a clear energy separation between valence
electrons from core electrons. The same feature also ex-
ists in weakly-coupled plasmas in which isolated-atom
electronic structure calculations can be used to designate
deeply bound or completely free electrons (such models
are used in the “chemical picture”, and in Saha-like ion-
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FIG. 11: The integrated fraction of bound (ε < 0) electron
density outside the radius r = xai, and the integrated fraction
of free (ε ≥ 0) electron density inside the radius r = xai, as
computed by Muze. (top) Al at T = 30 eV and ρ/ρ0 = 1,
with other details listed in Table IV. (bottom) Al at T = 30
eV and ρ/ρ0 = 10, with other details listed in Table IV.

ization equations for weakly coupled systems). However,
in most plasmas the electronic structure of ions has to
be calculated using some model like the ones described
here. The separation between “core” and free electrons
must be carried out, paying attention to the overlap of
bound-electron distributions between ions. Nor is there
a separation in configuration space (a measure of local-
ization; recall (25)) and, hence, in k-space forced by the
orthogonality of KS orbitals. This is evident in Fig. 4,
which plots bound (i.e., negative energy) and free (i.e.,
positive energy) electron densities versus position r, for
solid-density Al at 30 eV. Clearly, the bound electrons
are only slightly localized relative to the free electrons.
Another way of displaying the information in Fig. 4 is
shown in Fig. 11, where integrated Al densities - total
bound density within r and total unbound density be-
yond r - are plotted. The left panel is, again, for solid

density Al at 30 eV; the right panel is for Al at the same
temperature but the higher density, ρ/ρ0 = 10. We see
that greater compression leads to greater delocalization
of negative energy states and to greater uncertainty in
any assignment of core vs. free, in these regimes of com-
pression and temperature.

These issues complicate the use of distinct XRTS fea-
tures to determine MIS of a dense plasma. In the current
literature involving heated, solid-density or compressed
targets [83–87], the working assumption that ne = Zfni
has been used to infer Chihara’s Zf from the relative
strengths of the first two XRTS terms in (42), or from
the electron density that the measured position of a plas-
mon feature yields. Some of these experiments have
shown certain orbital-based MIS values to be in reason-
able agreement with data for plasmas at varying temper-
atures, while Saha-type MIS values underestimate the in-
ferred degree of ionization at low temperatures. This is
expected, since ionization based on a chemical picture
does not include weakly bound or resonant-state con-
tributions to the MIS. Even so, with what MIS com-
puted by an orbital-based approach should one identify
the Zf extracted from XRTS? The quantity 〈Z〉NPA
does define the ratio ne/ni of the background, uniform
density plasma for that model and, as we have found,
Z∗Muze ≈ 〈Z〉NPA under many conditions. On the other
hand, according to Eqs. 29 and 39, both Z∗Muze and
〈Z〉NPA include all positive-energy electrons but only
that fraction of weakly bound, delocalized electrons ex-
isting outside the ion sphere. Moreover, orbital-based
models include electrons in localized, resonant states of
positive energy - states whose electrons probably partici-
pate differently in various plasma processes because they
are not fully “free” [10, 54, 88].

As alternative strategies, one could identify Zf as
〈Z〉 for some ion-sphere model. This would count just
positive-energy electrons constituting the uniform back-
ground (cf. (20), but it would ignore, e.g., effects of the
structure evident in the right panel of Fig. 4 and would
exclude electrons in resonance states. Or, one could inte-
grate the sum of “core” orbital terms (somehow defined)
in (25) over the volume of the fundamental cell and then,
by subtraction from Znuc, obtain a simple expression for
Zf that would correct the MIS for any diffuse, weakly
bound states whose density partly lies within the ion
sphere. In our view, such manipulation of DFT results
to better match an experimentally inferred Zf for high
density, partially ionized matter is not particularly mean-
ingful. A better formulation of XRTS may be needed
here.

We illustrate these concepts by computing the ion
static structure factor S(k), which is proportional to the
frequency integral of the quasielastic peak [48]. This part
of the scattering cross section represents the portion of
the scattered light that can probe ionic properties, such
as the ion temperature Ti. Measuring the electron and
ion temperatures separately is of paramount importance
for many plasma studies. We consider normal solid den-
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FIG. 12: (Color online) Structure factors for Be at ρ =
1.85g/cm3 are shown for the four temperatures 5eV (top pair,
purple), 10eV (first pair from top, green), 20eV (second pair
from bottom, red), and 40eV (bottom pair, blue). The dashed
lines correspond to the Z∗ definition, while the solid lines cor-
respond to the 〈Z〉 definition, here calculated using the TF
model for the ionization and a Yukawa structure calculation.
Due to ionization effects when Θ < 1, the structure factors
are very similar above q = 3 and provide no ion tempera-
ture information over this broad temperature range; however,
temperature information is available at longer wavelengths.

sity Be and use a Yukawa model for the ion-ion inter-
action; the structure is computed using an MHNC ap-
proach [48]. Four temperatures, T = 5, 10, 20, 40eV, that
span a wide degeneracy (Θ) range are studied, using only
Thomas-Fermi results for 〈Z〉 and Z∗. The results are
shown in Fig. 12.

We examine important features that emerge from this
calculation. First, between T = 5eV and T = 10eV,
the free electrons are moderately degenerate, and the
ionic structure depends mainly on the ion temperature
Ti, making that regime better for Ti measurements. Sec-
ond, when Θ < 1, there is atomic core excitation and
ionization, which has two effects in the Yukawa model.
Higher temperatures correspond to both larger charge
states, and also to higher kinetic energies, which partially
cancel in determining the Coulomb coupling parameter,
yielding a smaller sensitivity to temperature in this tem-
perature regime. Similarly, there is a partial cancellation
in the screening parameter, since the electrons are hotter,
but there are also more of them. This is particularly ap-
parent in the comparison of the T = 20eV and T = 40eV
cases, which differ by only as much as 30%. These are
the basic features that ionization has on this portion of
the XRTS spectrum.

Next consider the pairs of lines, in which the dashed
and solids curves correspond to Z∗ and 〈Z〉, respectively.
The difference between the two ionization definitions is
seen to be small, at most about 5%. This agreement can
again be traced to the interplay between strong coupling

and stronger screening so that the effective Coulomb
coupling parameter (7) is weakened (when most models
agree).

The factor n(k) multiplying the ionic dynamic struc-
ture factor in (42) is usually a product of DFT proce-
dures which require the density both in direct and re-
ciprocal space. Using a DFT n(k) for XRTS would be
self-consistent since the same DFT calculation provides
the MIS defining Zf . This has not been the approach
taken to date, but the effect of making this change in
the analysis should be explored. Well beyond that, one
could develop an “all electron” model of XRTS, in which
a coupled, electron-ion DFT scheme is used to determine,
self-consistently, all the electronic and ionic information
necessary to interpret the scattering data. Such a model
would involve treatment of plasma dynamics via time-
dependent DFT [27], a topic undergoing rapid develop-
ment [21, 28].

Future XRTS experiments could test details of orbital-
based DFT calculations and better illuminate the role of
weakly-bound and resonant states in the scattering pro-
cess. Consider a mostly ionized plasma. Then, nc(k) rep-
resents very few electrons, and one can use XRTS mea-
surements to study the density functional characteriza-
tion of delocalized electrons. Conversely, when pressure
ionization is modest, the use of XRTS to explore core
electron issues is facilitated. By using different measure-
ment angles (hence, probing different k-values), modula-
tions in n(k) caused by shell structure and/or continuum
resonances and pseudogaps [63] might even be observ-
able, although uncertainties in Sii(k, ω) would need to
be accounted for. In such investigation, plasmas where
the distinction between core and free electrons is blurred
(e.g., a case such as shown in Fig. 11) may be best.
Another interesting XRTS study would be the change in
plasma ionization across a predicted jump in the MIS for
a case like in the left panel of Fig. 7 (for fixed density) or
in Fig. 8 (for fixed temperature). Metal–nonmetal tran-
sitions are evident in electrical resistivity measurements
of warm plasma under expansion, but the increase in re-
sistivity with decreasing density is not as dramatic as
the computed MIS behavior of ion sphere models would
suggest (better overall agreement with electrical conduc-
tivity has been obtained from NPA-type calculations).
These issues and complications notwithstanding, XRTS
may be a better probe of ionization than integrated mea-
surements of bulk transport properties, which do not gen-
erally distinguish the MIS effects on the scattering cross
section from those on the number of charge carriers.

VI. SUMMARY AND FUTURE PROSPECTS

We have investigated the subject of ionization in dense
plasmas, applying several formulations of DFT and sev-
eral definitions of the MIS to the well-established notion
of average atom models. Models based on an IS (i.e.,
Wigner-Seitz cell) do not yield a unique result for an
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atom’s MIS; models based on a larger CS do, although
there is some latitude in how one deals with weakly
bound electrons. We have discussed three MIS defini-
tions, and compared numerical results of four DFT mod-
els, for the metals Be, Al, and Cu, over a wide range
of conditions. These conditions, which represent plas-
mas having partial degeneracy and partial ionization, are
accessible with a variety of experimental methods. We
find very good agreement between the ion-sphere and
correlation-sphere results for particular MIS definitions,
but often see significant differences among other MIS-
values. One way to obviate this issue is to cast a given
problem in a purely “physical picture,” which makes no
reference to the MIS (i.e., uses all the electrons with-
out finite-T pseudopotentials), but this remains imprac-
tical for many applications, and finite-T pseudopoten-
tials [8, 9] will eventually play an important role, just as
for T = 0 applications.

By using the common framework of DFT, comparisons
among models and involving specific physics issues could
be made unambiguously. We considered both OFDFT
(finite-temperature TF) and orbital-based (KS) models.
Also, we explored the importance of including an LDA
exchange-correlation potential that is accurate at all rel-
evant temperatures and densities [68]. Lastly, using the
neutral pseudo-atom model we examined consequences of
employing a fundamental cell larger than the ion sphere.
Some of our key findings include:

• Under most conditions explored, there is excellent
agreement between the IS and NPA based MIS-
values defined as the integral of continuum elec-
tron density based on orbitals. However, the corre-
sponding electron chemical potentials µe can dif-
fer considerably. Each model determines µe at
the edge of its fundamental cell, but in orbital-
based ion-sphere models the electron density there
is not yet that of the interacting, homogeneous
background. Larger differences between chemical
potentials occur in plasmas with larger electron-
ion coupling parameters, with a relationship that
is roughly linear. The NPA µe, when modified for
ion-subsystem effects as in Re. [8] may lead to closer
agreement (or disagreement in some cases) with the
IS values. This has not been investigated.

• In all cases, the (negative) exchange-correlation in-
teraction serves to enhance binding and reduce the
MIS; the same is true for the introduction of or-
bitals. But, their relative importance in IS mod-
els depends on the particular MIS definition in use.
The relevance of a finite-T exchange-correlation po-
tential is very clear.

• Because of the way resonance states are treated in
orbital-based IS and NPA models, pressure ioniza-
tion can cause large, jumps in Z∗. Such jumps are
not present in either the chemical potential or in
the ion-sphere MIS quantity 〈Z〉. These “jumps”

physically correspond to rapid variations in the
MIS, and such smoothed mean-Z values are ob-
tainable in multi-state DFT models [8]. In fact, an
abrupt change in the difference 〈Z〉−Z∗ when small
changes in T or ni is a good indicator of emergent
structure in the low-energy sector of the continuum.
The TF model fails to exhibit such behavior as it
has no shell structure.

• From the discussion of X-ray Thomson scattering,
it is evident that the measurement of ionization in
WDM is far more problematic than it is in dilute
plasmas, or solids and liquid metals, all of which,
interestingly, have provided insights and techniques
for the study of this complex regime. We agree
with comments made by others [54] to the effect
that, for IS models, the “best” MIS choice likely
depends on just what phenomenon is being investi-
gated. Even for CS models, where there is no MIS
ambiguity, it should be remembered that an ion’s
charge state “is not the eigenvalue of any quantum
operator” [89], and hence that one requires some
physically motivated definition that sets the role of
hopping electrons in a given situation [62]. How-
ever, even the temperature of a plasma is a prop-
erty for which there is no direct quantum operator,
and such properties are quite common in statistical
physics. Hence, the lack of a quantum mechanical
operator does not mean that a MIS cannot be ex-
tracted from suitable measurements like stopping
power and electrical conductivity which include it.
The temperature T of a plasma and the mean ion-
ization Z can both be viewed as Langrange multi-
pliers, where T is associated with the conservation
of energy [90], while 〈Z〉 is a Lagrange multiplier as-
sociated with charge neutrality, as discussed in [60].

Progress motivated from this study should occur in a
number of directions. There is in wide use a simple fit
[54] to the TF value of 〈Z〉, computed without exchange-
correlation. Because of the importance of this interac-
tion at very high densities, as we have seen, and the
ready availability of a fit for it (recall (15)), improved
〈Z〉 fits should be produced for a TFxc model; together
with finite-temperature gradient corrections, a more ac-
curate orbital-free model may result. Combining such a
model with ionic structure [39, 41, 42] may yield a more
accurate, all-electron model that includes self-consistent
ionic correlations. The notion of an average atom with
a definite MIS provides a simple one-parameter, finite-
temperature pseudo-potential for describing ions in plas-
mas; determining, for example, ion-ion dynamic struc-
ture factors using more accurate ionic models could in-
volve, e.g., atomic shells of specified radii and well depths
[8]. A more accurate pseudo-potential is expected to
be particularly important in plasmas having heavy ions
with many bound electrons, and a comprehensive set
of orbital-based DFT calculations would provide these
pseudo-potential parameters, as already done in [8] for
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Al ions in plasmas. Finally, extending comparative stud-
ies like the present one to plasmas with mixtures of ele-
ments is attractive.

Finally, we conclude by returning to the issue of which
MIS is optimal for a given problem. In a study of dense
plasma viscosity [91], strong sensitivity to the choice of
the MIS was found. For such a problem one seeks the
best effective ion-ion interaction potential, which is not
easily tied to any of the MIS quantities we have consid-
ered, except perhpas those from coupled-CS models [92].
For electron-ion physics, measurements of the electrical
conductivity can be used to deduce the most appropriate
MIS [80]. In purely theoretical treatments, it is also pos-
sible to decide among several choices of the MIS through
thermodynamic self-consistency arguments [14].
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