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Abstract

A study of anisotropic heat transport in reversed shear (non-monotonic q-profile) magnetic fields

is presented. The approach is based on a recently proposed Lagrangian-Green’s function method

that allows an efficient and accurate integration of the parallel (i.e., along the magnetic field) heat

transport equation. The magnetic field lines are described by a nontwist Hamiltonian system,

known to exhibit separatrix reconnection and robust shearless (dq/dr = 0) transport barriers. The

changes in the magnetic field topology due to separatrix reconnection lead to bifurcations in the

equilibrium temperature distribution. For perturbations of moderate amplitudes, magnetic chaos

is restricted to bands flanking the shearless region. As a result, the temperature flattens in the

chaotic bands and develops a very sharp radial gradient at the shearless region. For perturbations

with larger amplitude, shearless Cantori (i.e., critical magnetic surfaces located at minimum of the

q-profile) give rise to anomalous temperature relaxation involving widely different time scales. The

first stage consists of the relatively fast flattening of the radial temperature profile in the chaotic

bands with negligible flux across the shearless region that, for practical purposes, on a short time

scale acts as an effective transport barrier despite the lack of magnetic flux surfaces. In the long-

time scale, heat starts to flow across the shearless region, albeit at a comparatively low rate. The

transport of a narrow temperature pulse centered at the reversed shear region exhibits weak self-

similar scaling with non-Gaussian scaling functions indicating that transport at this scale cannot

be modeled as a diffusive process with a constant diffusivity. Evidence of nonlocal effective radial

transport is provided by the existence of regions with non-zero heat flux and zero temperature

gradient. Parametric flux-gradient plots exhibit multivalued loops that question the applicability

of the Fourier-Fick’s prescription even in the presence of a finite pinch velocity.
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I. INTRODUCTION

Magnetic fields play a critical role in laboratory and astrophysical plasmas. In particu-

lar, the use of magnetic fields to confine high temperature plasmas is considered the most

promising mechanism for achieving controlled nuclear fusion. Because of this, understanding

heat transport in magnetized plasmas is a current open problem in plasma physics research.

This problem is particularly challenging because, in general, magnetic fields in 3-dimensions

can have complex structure, including the possibility of being chaotic. Even in 2-dimensions,

where chaos is precluded in the time independent case, the problem can be difficult due to

the existence of nontrivial magnetic field topologies involving the reconnection of separa-

trices linking the hyperbolic points of the field. Beyond the complications brought by the

structure of the field lines, the problem is difficult because heat transport in magnetized

plasmas is strongly anisotropic; typically, the parallel (i.e. along the field line) heat flux, q‖,

is many orders of magnitude larger than the perpendicular heat flux, q⊥. To make things

worse, in the low collisionality plasmas of interest to controlled fusion, the closure relation

of the parallel heat flux typically involves nonlocal operators along the field line, turning the

parallel heat transport equation into an integero-differential equation. To circumvent these

difficulties, Refs. [1, 2] proposed a Lagrangian-Green’s (LG) function method that provides

an efficient and accurate algorithm for the solution of the heat transport equation in the

extreme anisotropic (q⊥ = 0) case. The goal of this paper is to apply the LG method to the

case of reversed shear magnetic field configurations.

Reversed shear magnetic field configurations in toroidal devices are characterized by a

non-monotonic poloidal rate of rotation of the magnetic field as function of the minor radius

of the torus. These configurations are interesting for at least two reasons. The first one has to

do with the experimental observation that this type of configurations typically exhibit very

robust transport barriers in toroidal plasma confinement devices [3, 4]. The second reason

touches a fundamental aspect of the connection between Hamiltonian dynamical systems and

magnetic field lines. As it is well-known, the symmetry of toroidal confinement devices, along

with the divergence condition ∇ ·B = 0, imply that the equations describing the field lines

orbits are a 1-degree of freedom, possible non-autonomous, Hamiltonian system in which

the minor radius and the poloidal angle of the torus correspond to the canonical conjugate

variables, and the toroidal angle plays the role of “time”. Within this analogy, magnetic
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field lines that foliate well-defined magnetic flux surfaces correspond to integrable orbits,

and chaotic field lines correspond to nonintegrable orbits of the Hamiltonian. Of particular

theoretical and practical interest is to understand when, why, and how the transition from

integrability to chaos takes place. Answering these questions is the goal of Hamiltonian

perturbation theory of which the celebrated KAM (Kolmogorov-Arnold-Moser) theorem is

one of the main results [5]. However, it turns out that this theorem, as well as other

powerful results, cannot be applied in the case of reversed shear magnetic field configurations

because the corresponding Hamiltonian perturbation problem is degenerate at the shearless

(dq/dr = 0 ) region where the Hamiltonian violates the twist condition. This brings us

back to the second reason why the reversed shear problem is interesting. Namely, the

destruction of magnetic flux surfaces in the regions where the magnetic shear vanishes is

fundamentally different to what happens in regions where the magnetic shear is finite. This

result, which goes beyond the specific plasma physics application, was originally discussed in

the more general context of area preserving Hamiltonian nontwist maps in Refs.[6, 7] where

the resilience of shearless KAM curves was numerically found and the transition to chaos was

shown to belong to a universality class different to the one of the non-degenerate Hamiltonian

systems. Application of this generic Hamiltonian dynamics result to magnetically confined

plasmas include the early works in Refs. [8, 9], and the more recent studies reported in

Refs. [10, 11].

Going beyond these previous studies, that limited attention to the dynamics of the mag-

netic field, here we compute how heat is actually transported when the Hamiltonian de-

scribing the field lines is degenerate. In particular, we present the first study on the role

of separatrix reconnection and the resilience of shearless barriers (two key signatures of

nontwist Hamiltonian systems) on heat transport in reversed shear configurations. As men-

tioned before, our approach is based on the LG method which allow the uses of general

parallel flux closures. Here we consider two cases. The first one is a diffusive closure in

which the parallel heat flux is proportional to the local temperature gradient along the field

line. The second case corresponds to a non-local closure in which the heat flux depends on

the global temperature distribution along the whole field line. This regimen is of importance

in the study of high temperature, low collisionality plasmas [12]. The mathematical model

adopted here to study this case is based on fractional diffusion operators. These opera-

tors provide a unifying framework to describe non-diffusive transport in plasmas when the
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standard Fourier-Fick’s law fails to apply [13].

The specific problems that we address in the present paper are: (i) the role of separatrix

reconnection on heat transport; (ii) the role of shearless Cantori on the relaxation of the

radial temperature profile; (iii) non-local effective radial transport. Separatrix reconnection

is an ubiquitous global bifurcation in nontwist Hamiltonian systems, see for example [6, 14–

16] and references therein. Here, we study how the resulting changes in the magnetic field

topology lead to bifurcations in the steady state radial temperature profile. At the threshold

of the transition to chaos, magnetic field lines trace Cantor-like fractal sets in the Poincare

section. Following the dynamical systems terminology [17], we refer to these structures as

“Cantori”. Our goal here is to study the role of these partial barriers on the equilibration

of the temperature across the reversed shear region. Finally, regarding non-local effective

transport, we provide numerical evidence of the violation of the Fourier-Fick’s prescription

for the radial transport of temperature.

The rest of this article is organized as follows. The next section presents a review of

the Lagrangian Green’s function (LG) method. The reversed shear magnetic field model is

presented in Sect. III along with a discussion of the connection with nontwist Hamiltonian

systems. The core of the numerical results are presented in Sec. IV. Section V contains the

conclusions.

II. LG METHOD FOR DIFFUSIVE AND NON-LOCAL FRACTIONAL PARAL-

LEL TRANSPORT

In this section we review the method to compute heat transport along magnetic field lines

developed in Refs. [1, 2]. The starting point is the heat transport equation

∂tT = −∇ · q + S (1)

where q is the heat flux and S is a source. The flux is decomposed into a parallel (along

the magnetic field) and a perpendicular component, q = q‖b̂ + q⊥, where b̂ = B/|B| is

the unit magnetic field vector. Motivated by the strong anisotropy typically encountered

in magnetized plasmas (e.g., χ‖/χ⊥ ∼ 1010 in fusion plasmas, where χ‖ and χ⊥ denote the

parallel and perpendicular conductivies) we limit attention to parallel heat transport in the

extreme anisotropic regime i.e., we assume q⊥ = 0. To close the system, Eq. (1) needs to
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FIG. 1: (Color online) Schematics of Lagrangian-Green’s function (LG) method [1, 2]. When

q⊥ = 0, the temperature at point r0, at time t, depends only on the heat transported along the

unique magnetic field line passing through r0. The problem then reduces to the solution of a

1-D transport problem with initial condition, T0(r(s)), and source, S(r(s), t), where r = r(s) is

the magnetic field line trajectory parametrized by the arc-length, with r(s = 0) = r0. If Gα is the

Green’s function of the transport operator, T (r0, t) is computed directly by evaluating the integrals

in Eq. (10).

be complemented with a relationship between the parallel heat flux and the temperature,

q‖ = χ‖Q [T ] , (2)

where Q denotes a general differential or integro-differential, possibly nonlinear, operator.

Substituting Eq. (2) into Eq. (1) gives

∂tT + χ‖

(
∇ · b̂

)
Q = −χ‖∂sQ+ S , (3)

where ∇ · b̂ = − (∂sB) /B, and ∂s = b̂ · ∇ denotes the directional derivative along the

magnetic field line with s the arc-length parameter. In deriving Eq. (3), we have assumed
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that the parallel diffusivity is constant along the field line, i.e., ∂sχ‖ = 0. Throughout this

paper we neglect the second term on the left hand side of Eq. (3). That is, we assume

|(∂sB) /B| � |(∂sQ) /Q|, and write the parallel transport equation as

∂tT = −χ‖∂sQ+ S . (4)

This approximation (known as toroidal ordering in fusion plasmas) is commonly used in

the study of magnetically confined plasmas in the presence of a strong guiding field. In

particular, it is a good approximation in cylindrical geometry, B = B0 + εB1, where B0 is a

helical field for which ∂sB0 = 0, and εB1 � B0. In the calculations presented here, ε ∼ 10−4

and |(∂sB) /B| ∼ 10−3.

The specific form of the operator Q depends on the physics of the closure relating the

heat flux and the temperature. For high collisionality plasmas, parallel transport is typically

dominated by diffusion and a Fourier-Fick’s type local flux-gradient relation of the form

Q [T ] = −∂sT , (5)

is assumed. Substituting Eq. (5) into Eq. (1), leads to the standard diffusion equation,

∂tT = χ‖∂
2
sT + S , (6)

for collisional transport along magnetic field lines.

However, for low collisionality plasmas, the parallel flux closure is in general nonlocal [12].

That is, the heat flux at a point depends not only on the local properties of the temperature

(i.e., its gradient) but on the temperature distribution along the whole magnetic field line.

As a tractable model to study non-local heat transport along magnetic field lines, following

[13], we consider the fractional diffusion equation

∂tT = χ‖∂
α
|s|T + S (7)

where ∂α|s| denotes the symmetric fractional derivative of order α along the field line, defined

in Fourier space as

∂̂α|s|T = − |k|α T̂ , (8)

where T̂ =
∫∞
−∞ e

iksT (s)ds denotes the Fourier transform. For α = 2, ∂α|s|T formally reduces

to the diffusion operator ∂2
xT . For 1 ≤ α < 2, the nonlocal flux closure corresponding to the
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fractional diffusion model in Eq. (7) is

Q[T ] = −λα
π

∫ ∞
0

T (s+ z)− T (s− z)

zα
dz , (9)

with λα = −π(α − 1)/ [2Γ(2− α) cos(απ/2)], where Γ denotes the Gamma function. For

α = 1, the fractional flux closure in Eq. (9) reduces to the free streaming case [12].

Figure 1 illustrates the LG method proposed in Refs. [1, 2] for the solution of the

anisotropic heat transport equation for a time-independent magnetic field in the limit

q⊥ = 0. Given an initial temperature distribution T0(r) = T (r, t = 0), and a source

S(r, t), the temperature at a given point in space r0, at a time t, is obtained by summing all

the contributions of the initial condition and the source along the magnetic field line path:

T (r0, t) =

∫ ∞
−∞

T0 [r(s′)]Gα(s′, t)ds′ +

∫ t

0

dt′
∫ ∞
−∞

ds′S [r(s′), t′]Gα(s′, t− t′) , (10)

where Gα is the Green’s function of the parallel transport equation, and r(s) denotes the

magnetic field line trajectory obtained from the solution of the initial value problem

dr

ds
= b̂ , r(0) = r0 (11)

where s is the arc-length.

As it is well-known, in an unbounded domain, for α = 2, G2 is given by the Green’s

function of the diffusion Eq. (6)

G2(s, t) =
1√
2π

(χ‖t)
−1/2 exp

(
− s2

4χ‖t

)
, (12)

and for general α, Gα is given by the Green’s function of the fractional diffusion Eq. (7),

Gα =
1

(χ‖t)
1
α

Lα

[
s

(χ‖t)
1
α

]
(13)

where

Lα(η) =
1

2π

∫ ∞
−∞

e−|k|
α−iηkdk , (14)

is the symmetric α-stable Levy distribution. The case α = 1, which corresponds to the

commonly used nonlocal free streaming closure, has the analytically simple expression

G1(s, t) =
(χ‖t)

−1

π

1

1 + (s/χ‖t)2
. (15)

The numerical implementation of the LG method requires three elements: an ODE in-

tegrator for solving the field line trajectories in Eq. (11), an interpolation procedure of the
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function T0(r) on the field line, and a numerical quadrature to evaluate the Green’s function

integral in Eq. (10). These elements are relatively straightforward to implement numerically,

making the LG algorithm a versatile, efficient, and accurate method for the computation of

heat transport in magnetized plasmas. By construction, the method preserves the positiv-

ity of the temperature evolution and avoids completely the pollution issues encountered in

grid-based algorithms. Also, because of the parallel nature of the Lagrangian calculation,

the formulation naturally leads to a massively parallel implementation. In particular, the

computation of T at r0 at time t does not require the computation of T in the neighborhood

of r0, as it is the case in finite different methods, or the computation of T at previous times.

Further details on the method and the numerical implementation can be found in Refs. [1, 2].

As mentioned before, throughout this paper we limit attention to purely parallel trans-

port. However, as discussed in Ref. [18], the LG method can be extended to include finite

perpendicular transport, i.e. χ⊥ 6= 0. The key idea is to formally include the perpendicular

transport channel as part of an effective source, S∗ = S + χ⊥∇⊥T , in Eq. (7), and use the

formal LG solution in Eq. (10) to transform the heat transport equation into an integro-

differential equation. The numerical solution of the integro-differential equation is based

on a semi-Lagrangian operator-splitting algorithm consisting of two steps. The first step is

the Eulerian solution of the perpendicular transport equation, and the second step is the

solution of the parallel transport equation with source using the LG method.

III. REVERSED SHEAR MAGNETIC FIELD MODEL AND NONTWIST

HAMILTONIAN SYSTEMS

We assume a periodic straight cylindrical domain with period L = 2πR, and use cylin-

drical coordinates (r, θ, z). The magnetic field is given by

B(r, θ, z) = B0(r) + B1(r, θ, z) , (16)

where

B0 =

[
r

R

B0

q(r)

]
êθ +B0êz , (17)

is a helical field with B0 constant, and B1(r, θ, z) is a perturbation. The function q(r) in

Eq. (17), known as the safety factor, determines the shear of the helical magnetic field, i.e.

the dependence of the azimuthal rotation of the field as function of the radius. In the present

9



paper we assume

q(r) = q0

[
1 + λ2

(
r − 1√

2

)2
]
, (18)

which, as shown in Fig. 2, is non-monotonic in r and has a minimum at r = rsl = 1√
2
.

This implies a reversal of the magnetic field shear which is positive for r < rsl, negative for

r > rsl, and vanishes at the shearless point r = rsl. For the value of the model parameters,

we take R = 5, B0 =1, q0 =0.64, and λ = 3.0. The functional form of the q-profile and

the parameter values were chosen to have the reversed shear region in the middle of the

computational domain (in the R2ψ variables) and to guarantee that modes with m/n < 1

exhibit two resonances. We assume that the perturbation, B1, has no z-component and

write it as

B1 = ∇× [Az(r, θ, z)êz] , (19)

where the magnetic potential, Az, has the form

Az(r, θ, z) =
∑
m,n

Amn(r) cos
(
mθ − nz

R
+ ζmn

)
. (20)

To explain the connection of the reversed shear model with nontwist Hamiltonian systems,

recall that the magnetic field line trajectories parametrized by λ, λ→ r(λ), are determined

by the solution of the equations, dr/dλ = Br, rdθ/dλ = Bθ, dz/dλ = Bz. For the magnetic

field model in Eqs. (17)-(20) this implies

dr

dλ
=

1

r

∂Az
∂θ

,
dθ

dλ
=

B0

Rq(r)
− 1

r

∂Az
∂r

,
dz

dλ
= B0 . (21)

Since B0 is assumed constant, the dynamics in the z-direction in trivial, and z = B0λ can

be used to parametrize the field line orbits. Doing this and defining

ψ =
r2

2R2
, H(ψ, θ, z) = H0(ψ) +H1(ψ, θ, z) , (22)

where

H0 =
1

R

∫
dψ

q(ψ)
, H1 = − 1

B0R2
Az(ψ, θ, z) , (23)

the equations for the magnetic field lines for the nontrivial r and θ components can be

written as the canonical Hamiltonian system

dθ

dz
=
∂H

∂ψ
,

dψ

dz
= −∂H

∂θ
. (24)
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In the absence of a perturbation, B1 = H1 = 0, Eqs. (24) are trivially integrable and

θ = θ0 + Ω(ψ0)
z

R
, ψ = ψ0 , (25)

where (θ0, ψ0) denotes the initial condition and

Ω(ψ) =
∂2H0

∂ψ2
=

1

q(ψ)
(26)

is the unperturbed rotation frequency. The study of the fate of these integrable orbits in the

presence of the perturbation H1 is the subject matter of Hamiltonian perturbation theory.

As it is well-known, whereas some of the integrable orbits are just slightly deformed when

H1 6= 0, others are fundamentally altered and can become chaotic. Determining how and

when the transition from integrability to chaotic behavior happens is a highly nontrivial

dynamical systems problem of key interest to controlled fusion because of the favorable

confinement properties of non-chaotic magnetic fields. However, what makes this problem

particularly challenging in the case studied in the present paper is that the non-monotonicity

of the q-profile in Eq. (18) implies that there is a value of ψ = ψsl for which the shear of the

rotation frequency vanishes, i.e., dΩ/dψ = 0 at ψ = ψsl. Because of this, the non-degeneracy

condition,
∂2H0

∂ψ2

∣∣∣∣
ψsl

6= 0 , (27)

that is a cornerstone in the justification of key dynamical systems results including the

celebrated standard KAM (Kolmogorov-Arnol-Moser) theorem [5], does not hold. As orig-

inally discussed in Refs. [6, 7], one of the main consequences of the breakdown of the non-

degenaracy condition is the remarkable resilience of integrable orbits in shearless regions

which implies that transport barriers typically exist in these regions. In the context of

magnetically confined plasmas this naturally leads to the conclusion that robust magnetic

flux surfaces typically form in reversed shear magnetic field configurations as pointed out

in Ref. [6, 8] and subsequent papers including Refs. [9–11]. In addition to the robustness of

shearless transport barriers, nontwist Hamiltonian systems (i.e., systems that do not satisfy

Eq. (27)) exhibit nontrivial changes in the phase space topology due to separatrix recon-

nection [6, 14–16]. As mentioned in the introduction, one of the main goals of the present

paper is to explore the role on parallel transport of these two signatures of reversed shear

configurations, namely: the robustness of transport barriers and separatrix reconnection.
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The magnetic field perturbation in Eq. (20) is chosen so that the function Amn(ψ) is

peaked at the resonance(s) for each (m,n). We recall that a resonance r∗ is defined by the

condition q(r∗) = m/n. Due to the non-monotonicity of the q-profile, as Figure 2 indicates,

it is possible to have two, one, or no resonances depending on the value of m/n. In the case

when there are no resonances for (m,n), Amn = 0. When there are two resonances for a

given (m,n), we take

Amn(r) = εa(r) (Amn,1 + Amn,2) , (28)

where ε is a small free parameter, and

Amn,i = Cmn,ir
m exp

[
−
(
r − r0i√

2σ

)2
]
, (29)

for i = 1, 2. The width, σ, controls the overlap of Amn,1 and Amn,2, which increases near the

minimum of the q-profile, where the resonances are close to each other. For the modes used in

the numerical simulations presented here, it was observed that σ = 0.05 is sufficient to guar-

antee negligible overlap. To guarantee the vanishing of the perturbation at the boundary,

and the existence of good flux surfaces there, we assume a(r)= {1− tanh [(r − 1)/0.05]} /2,

which decays exponentially fast near r = 1. The prefactor, rm, is introduced to ensure the

regularity of the perturbation at r = 0. The constants,

r0i = ri∗ −
mσ2

ri∗
,

Cmn,i =

(
1

r∗i

)m
exp

[(
ri∗ − r0i√

2σ

)]
,

(30)

for i = 1, 2, are chosen to satisfy the conditions:

dAmn,i
dr

(ri∗) = 0 , Amn,i(ri∗) = 1 , (31)

that guarantee that Amn,i has a maximum with unit amplitude at the location of the reso-

nance, r = ri∗. Finally, in the case when there is only one resonance for the mode (m,n),

Amn(r) = εa(r)Amn,1 (32)

where Amn,1 is given in Eq. (29) with i = 1.
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FIG. 2: (Color online) q-profile in Eq. (18) as a function of radial flux coordinate, R2ψ, in the

reversed shear magnetic field configuration used in the calculations. For a given m/n, resonances

are located where q(R2ψ) = m/n. For the values corresponding to (a), (b), and (c) in the plot,

there are two, one, and zero resonances respectively.

IV. HEAT RANSPORT IN INTEGRABLE, WEAKLY CHAOTIC, AND FULLY

CHAOTIC REVERSED SHEAR MAGNETIC FIELDS

In this section we apply the Lagrangian-Green’s function method to compute parallel

transport in the reversed shear magnetic field model in the integrable, weakly chaotic, and

fully chaotic regimes.

A. Separatrix reconnection and heat transport in integrable fields

For single-mode perturbations the magnetic field is fully integrable. However, the mag-

netic field topology can exhibit bifurcations due to separatrix reconnection, and in this

subsection we study the effect of these bifurcations on transport. We consider a single mode

with (m,n) = (2, 3). Figure 3 shows the Poincare plots of the magnetic field in this case
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FIG. 3: (Color online) Bifurcations in the steady state radial temperature profiles due to sepa-

ratrix reconnection in the magnetic field as function of the perturbation amplitude ε, and initial

temperature distribution in Eq. (33). The left column shows the Poincare plots for single-mode

perturbations with (m,n) = (2, 3) and (a) ε = 1× 10−4, (d) ε = 3.95× 10−4, and (g) ε = 9× 10−4.

The middle (right) column shows the corresponding θ1 = 2.14 (θ2 = 2.96) cuts of the asymptotic

steady state temperature profiles.

for perturbation amplitudes ε = 1 × 10−4, ε = 3.95 × 10−4, and ε = 9 × 10−4. The initial

temperature distribution for the transport calculation consisted of a linear profile of the

form

T0(ψ) = 1− 2R2ψ . (33)
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Figure 3 shows cuts along θ1 = 2.14 and θ2 = 2.96 of the computed asymptotic, steady state

temperature distribution. As expected, plateaus in the temperature profile are observed at

the location of the resonant islands. Most importantly, the separatrix reconnection charac-

teristic of reversed shear configurations leads to nontrivial bifurcations in the radial temper-

ature profiles. In particular, at the reconnection threshold the temperature plateaus collide

and, after reconnection, a reverse gradient in the asymptotic temperature profile, due to the

meandering curves wrapping around the islands, is observed.

B. Weakly chaotic fields and destruction of shearless temperature transport bar-

rier

When two modes are added the system ceases to be integrable and chaotic field lines

appear in the Poincare plots. In the calculations we use two modes with the same amplitude

ε, and (m,n) = {(2, 3), (7, 10)}. As shown in Fig. 4, for ε = 10−4 a banded chaos regime

(i.e., well-defined flux surfaces flanked by chaotic bands) is observed in the Poincare plot.

For the larger amplitude, ε = 3.38× 10−4, the chaotic bands grow, but a resilient shearless

integrable flux surface is observed. For ε = 5×10−4 the shearless flux surface breaks and the

magnetic field exhibits widespread chaos. The steady-state temperature profiles in Fig. 4

reflect the chaotic structure of the field lines. In particular, for ε = 10−4, the banded chaos in

the magnetic field gives rise to two temperature plateaus, resulting from the strong mixing

in the chaotic regions, separated by a temperature gradient maintained by the flux surfaces

in the reversed shear region. Near the threshold for the destruction of the shearless flux

surface, i.e. for ε = 3.38× 10−4, the two chaotic mixing plateaus expand and approach each

other but a very sharp temperature gradient separating the two regions is observed. For the

larger amplitude, ε = 5×10−4, the destruction of the shearless flux surfaces gives rise to the

merging of the two temperature plateaus and to the creation to an extended, albeit noisy,

plateau in the temperature profile.

C. Shearless Cantori and multi-scale temperature relaxation

At the threshold of the transition to chaos, magnetic field lines trace Cantor-like fractal

sets in the Poincare section. This is a generic property of chaotic Hamiltonian systems
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FIG. 4: (Color online) Heat transport in weakly chaotic and fully chaotic magnetic fields with

two modes with (m,n) = {(2, 3), (7, 10)}, and initial temperature distribution in Eq. (33). The left

column shows the Poincare plots, and the right column shows the corresponding steady state radial

temperature profiles. Panels (a) and (b) correspond to the banded chaos regime with perturbation

amplitude ε = 10−4. Panels (c) and (d) correspond to the threshold of the destruction of the

shearless curve with ε = 3.38×10−4. Panels (e) and (f) correspond to the global chaos regime with

ε = 5× 10−4.
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[17, 19]. Following the dynamical systems terminology, we refer to critical magnetic surfaces

at the reversed shear region as “shearless Cantori”. Cantori are partial barriers in the sense

that although they do not fully confine the magnetic field, transport across them can be

anomalously slow. The goal of this subsection is to study the role of these structures on the

effective radial transport of heat.

Figure 5 shows the Poincare plot and the corresponding asymptotic, χ‖t = 106, temper-

ature distribution in the presence of the seventeen modes

(m,n) = {(2, 3), (7, 10), (4, 5), (9, 10), (13, 15),

(12, 13), (3, 4), (11, 12), (14, 15), (7, 8), (8, 9),

(11, 13), (6, 7), (11, 10), (14, 17), (5, 6), (9, 11)} ,

(34)

with amplitude ε = 3.75 × 10−4. Although for this amplitude most of the field lines are

chaotic, a robust shearless transport barrier is still observed in the Poincare plot along with

a sharp temperature gradient in the reversed shear region. In this case, the initial condition,

T0, consisted of the superposition of a positive temperature pulse on the left and a negative

temperature pulse on the right of the q′ = 0 line. Because of the shearless barrier, there

is no mixing of the positive and negative temperature distributions. To study the role of

shearless Cantori, the previous calculation was repeated with a slightly increased amplitude,

ε = 4.1 × 10−4. The resulting Poincare section is shown in Fig. 6 for a single field line

with 500 crossings (left panel) and for 600 crossings (right panel). The key point to observe

is that, although there are no transport barriers for this amplitude, the migration of the

chaotic field lines across the reversed shear region is retarded due to the existence of partial

transport barriers. This phenomenon is related to the anomalous escape rate of magnetic

field orbits discussed in Ref. [20].

Given the nature of the field lines depicted in Figure 6, we expect heat flux across the

reversed shear region to be anomalously slow. To study this, we consider the evolution of

an initial condition with a linear profile of the form in Eq. (33), and compute the evolution

of the radial temperature profile averaged in z and θ, 〈T 〉 (ψ), and the corresponding radial

flux,

〈q · êψ〉 = − 1√
2ψ

d

dt

∫ ψ

0

〈T 〉 dψ′ , (35)

obtained directly from the continuity equation. The evaluation of the flux in Eq. (35) is

numerically challenging because the radial profile 〈T 〉 (ψ) can be noisy in chaotic regions
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FIG. 5: (Color online) Robustness of shearless magnetic flux surface and radial heat transport

barrier in the presence of the modes in Eq. (34) with perturbation amplitude ε = 3.75 × 10−4.

(a) shows the Poincare plot for two magnetic field lines: one started at the left of the reversed

shear region, and the other started at the right of this region. Despite the widespread chaotic

behavior exhibited by the two field lines, a resilient shearless flux surface precludes the crossing

between these two regions. As a result, the radial temperature profile at θ = 2.14, shown in (b),

exhibits a sharp gradient. The two vertical lines on (a) indicate the radial region outside which a

flat temperature distribution is observed.

(e.g., Figs. 4 and 5). For short time scales (relative to the slow evolution of the mixing) this

can give rise to a small signal to noise ratio in the computation of the time derivative. For

example, the change of the radial temperature in the time window χ‖t ∈ (107, 107 + 105) is

practically undistinguishable from the noise level. A numerically accessible and robust way

to circumvent this problem is to approximate the flux, 〈q · êψ〉, at time χ‖t by its average

qavg over the interval [χ‖t−∆t, χ‖t+ ∆t],

qavg(χ‖t,∆t) =
1

2∆t

∫ χ‖t+∆t

χ‖t−∆t

〈q · êψ〉 (s)ds

= − 1

2∆t

1√
2ψ

∫ ψ

0

〈T 〉 (χ‖t+ ∆t)− 〈T 〉 (χ‖t−∆t)dψ′ .

(36)

The selection of the time interval ∆t is a subtle issue as it has to be large enough to increase

the signal to noise ratio and small enough so that the change in time of the profile is captured

accurately. For short time scales, the temperature profiles 〈T 〉 tend to be smooth, but for
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FIG. 6: (Color online) Slow leak of magnetic field lines across the reversed shear region in the

presence of the modes in Eq. (34) with perturbation amplitude ε = 4.1×10−4. Panel (a) shows the

Poincare plot of a single magnetic field that remains confined to the left of the shearless region by

Cantori partial barriers for up to 500 crossings. As panel (b) shows, for 600 crossings the magnetic

field eventually crosses to the right side. The vertical lines are the same as those shown in Fig. 5.

large time scales they tend to be noisy. Although this noise can be significantly reduced

using finer grids in (z, θ), there seems to be an irreducible noise level due to the nonergodicity

of temperature mixing in chaotic regions.

For relatively small time scales, e.g. χ‖t = 10k, k = 2, 3, 4, we have observed that

∆t/χ‖t = 0.1 gives a good signal-to-noise ratio in the computation of the flux. Figure 7

shows the numerically computed flux in this case along with the corresponding radial pro-

files. It is observed that the averaged flux in the time interval [95, 105] is peaked in the

chaotic regions on the left and right of the reversed shear region, and has a minimum in the

middle where the shearless Cantori are present. For later times, it is observed that, once the

temperature begins to flatten in the left and right chaotic bands, the radial flux bifurcates

and exhibits a maximum in the reversed shear region.

To account for the increase in the noise level of the profiles at later times, we use ∆t/χ‖t =

0.5 to compute qavg(χ‖t,∆t) for χ‖t = 5 × 10k, k = 5, 6, 7. The results in this case are

reported in Fig. 8. It is observed that, in this time scale, the temperature profiles are flat

in the chaotic bands and the transport is dominated by an anomalousy slow erosion of the
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FIG. 7: (Color online) Short time behavior of anomalous temperature relaxation in the presence

of shearless Cantori for the magnetic field in Fig. 6. The right column shows the flux averaged

over χ‖t ∈ [95, 105] in (b), [950, 1050] in (d), and [9500, 10500] in (f). The left column shows the

corresponding temperature profiles at the endpoints of these intervals, e.g. T (χ‖t = 95, x) and

T (χ‖t = 105, x) in (a) and so on. Note that due to the small change in χ‖t, these profiles are

practically undistinguishable. The vertical lines are the same as those shown in Fig. 5.
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temperature gradient in the reversed shear region.

D. Self-similarity and strong non-local radial temperature transport

To study the spatio-temporal evolution of the temperature profile in the reversed shear

region in more detail, we consider the transport of a localized initial temperature profile of

the form

T0 = exp

[
−R

4(ψ − ψ0)2

σ2

]
(37)

with R2ψ0 = 0.25 and σ = 0.02. Of particular interest is to compare the evolution of 〈T 〉 in

the reversed shear case with the results reported in Refs. [1, 2] that assumed a monotonic

q-profile. Also of interest is to explore the departures from the Fourier-Fick’s diffusion

paradigm due to non-local transport processes.

In Refs. [1, 2], it was observed that 〈T 〉 exhibits self-similar evolution of the form

〈T 〉 (ψ, t) =
(
χ‖t
)−γ/2

L(η) (38)

with scaling variable η = (ψ − ψ̄)/
(
χ‖t
)γ/2

, and scaling exponent γ. Sub-diffusive scaling

(γ = 1/2) was found for the parallel diffusion closure in Eq. (5), and diffusive scaling (γ = 1)

was found for the parallel fractional closure in Eq. (9) with α = 1. As Fig. 9 shows, in the

reversed shear magnetic field case studied in the present paper, similar scaling exponents

are found, although the level of self-similarity is weaker as judged by the poorer level of

self-similar collapse of the profiles.

In the intermediate asymptotic regime, where self-similarity is present, it is interesting

to explore the shape of the self-similarity function L(η). These functions are shown Fig. 10

for the case of diffusive, and α = 1 fractional diffusive parallel closures. For comparison,

we have also included the corresponding results for the monotonic q-profile case reported

in Refs. [1, 2]. As discussed in Refs. [1, 2], in the diffusive closure case, L is well-fitted by

an stretched exponential function whereas in the α = 1 fractional diffusive parallel closure

case, L exhibits algebraic decay. However, as Fig. 10 shows, in the reversed shear case the

behavior of the scaling functions is different. In particular, clear scaling is only observed in

the reversed shear region where L is well-fitted by an exponential function.

Although as Fig. 9 shows, the scaling in the reversed shear case is approximately similar

(although weaker) than the scaling of the monotonic q-case, there are some differences. One
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FIG. 8: (Color online) Long time behavior of anomalous temperature relaxation in the presence of

shearless Cantori for the magnetic field in Fig. 6. The right column shows the flux averaged over

χ‖t ∈ [4×105, 6×105] in (b), [4×106, 6×106] in (d), [4×107, 6×107] in (f). The left column shows

the corresponding temperature profiles at the endpoints of these intervals, e.g. T (χ‖t = 4× 105, x)

and T (χ‖t = 6×105, x) in (a) and so on. Note that due to the relatively small change in χ‖t, these

profiles are very similar. The vertical lines are the same as those shown in Fig. 5.
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FIG. 9: (Color online) Spatio-temporal dynamics of average radial temperature profiles plotted

in self-similar variables. The magnetic field corresponds to the one in Fig. 6, and the initial

temperature distribution is in Eq. (37). In panel (a), which corresponds to the local parallel flux

closure in Eq. (5), γ = 0.5. In panel (b), which corresponds to the non-local parallel flux closure

in Eq. (9) with α = 1, γ = 1.

way to explore these differences is to study the scaling of the fractional moment,

σ1/2 =
(
ψ − ψ̄

)1/2
(39)

where f̄ =
∫
f 〈T 〉 dψ/

∫
〈T 〉 dψ, that puts more weight on the peak of the temperature

distribution which is centered in the reversed shear region. Figure 11, compares the time

evolution of the temperature maximum, Tmax, and σ1/2 for the monotonic and non-monotonic

q-profile cases. A clear delay in the decay of Tmax and in the growth of σ1/2 is observed. This

delay is a manifestation of the Cantori that, as discussed before, slow down the transport

process across the revered shear region. As the algebraic fits in dashed lines indicate, the

self-similar evolution of 〈T 〉 starts around ∼ χ‖t = 100 for the non-monotonic q profile

versus the monotonic q-profile that starts around ∼ χ‖t = 10. The fact that the self-similar

regime begins at a later time is expected since the Cantori slow down the relaxation process,

especially when the heat is initially localized near the shearless region as is the case in these

simulations.

To further compare the non-monotonic and monotonic q cases, we compute the delay, τ ,
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FIG. 10: (Color online) Comparison between the numerically computed averaged radial tempera-

ture profiles (solid blue lines) and corresponding fits (dashed red lines). The left column corresponds

to the magnetic field configuration with monotonic q-profile studied in Refs. [1, 2]. The column on

the right corresponds to the reversed shear magnetic field case. Panels (a) and (b) correspond to

the diffusive parallel flux closure in Eq. (5), and panels (c) and (d) to the non-local parallel flux

closure in Eq. (9) with α = 1. The vertical lines are the same as those shown in Fig. 5.

in the temperature evolution defined by the condition,

ft(τ) = T nmmax(χ‖t+ τ)− Tmmax(χ‖t) = 0 , (40)

where Tmmax (T nmmax) denotes the temperature maximum in the monotonic (non-monotonic)

q-profile case. To compute τ , we used Newton’s method to solve Eq. (40). The result, shown

in Fig. 11, indicates that the delay scales approximately linearly with t. A similar analysis
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FIG. 11: (Color online) Temperature decay, Tmax, in (a), and growth of the fractional moment,

σ1/2, in (b), for monotonic and non-monotonic q-profiles, corresponding to the simulation in Fig. 9.

Panels (c) and (d) show the delay time, τ , of Tmax and σ1/2 respectively.

can be applied to the 1/2 moment, which as Fig. 11 shows, also exhibits a delay τ defined

by the condition

σnm1/2(χ‖t+ τ)− σm1/2(χ‖t) = 0 , (41)

which scales approximately linearly with t.

To conclude this section we study the relation between the radial flux in Eq. (35) and

the radial temperature gradient

〈∇T · êψ〉 =
1√
2ψ

∂ 〈T 〉
∂ψ

. (42)
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Of particular interest is to test the applicability of the Fourier-Fick prescription, according

to which these two quantities exhibit a linear relationship of the form

〈q · êψ〉 = −χ 〈∇T · êψ〉+ V 〈T 〉 , (43)

where χ is the effective diffusivity and V is an effective drift velocity, know in plasma

physics as a “pinch”. As discussed in Refs. [1, 2], one way to study this problem is to plot

the numerically computed flux and the gradient, along with the flux-gradient parametric

curves

C : ψ → [−〈∇T · êψ〉 (ψ), 〈q · êψ〉 (ψ)] . (44)

These plots are shown in Fig. 12 for the case of parallel diffusive closures and α = 1 parallel

fractional diffusion closures. The most striking feature observed is the presence of a finite flux

in regions where the gradient vanishes, something that is also observed in Figs. 7 and 8. The

only way to make the results in Fig. 12 consistent with Eq. (43) is by assuming the existence

of a non-zero, spatially dependent pinch velocity, i.e. V (ψ) 6= 0. However, the existence

of such asymmetric pinch velocity is inconsistent with Fig. 8. This is because according to

Fig. 8, the steady state, ∂t 〈T 〉 = 0, solution in R2ψ ∈ (0.05, 4.5) is 〈T 〉 =constant, which

implies V 〈T 〉 = 0, i.e. V = 0. Having ruled-out the existence of a pinch velocity, the loops

observed in the flux-gradient plots in Fig. 12 provide further evidence of the inapplicability

of Fourier-Fick prescription unless an ad hoc spatial dependence of χ is assumed. Although

such an spatial dependence might be conceivable, the strongest argument against the Fourier-

Fick prescription is the existence of a finite flux in the presence of zero gradient.

V. SUMMARY AND CONCLUSIONS

We applied a Lagrangian-Green’s (LG) function method to solve the anisotropic

heat transport equation in reversed shear magnetic configurations characterized by non-

monotonic q-profiles. From the dynamical systems perspective, these type of magnetic fields

correspond to nontwist (degenerate) Hamiltonians known to exhibit robust transport KAM

(Kolmogorov-Arnold-Moser) barriers. As a result, reversed shear magnetic field configu-

rations typically have barriers to chaotic magnetic field line transport in the vicinity of

the extrema of the q-profile, i.e. shearless regions of the magnetic field. This key property

makes these configurations particularly attractive to confinement, and an important problem
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FIG. 12: (Color online) Non-local effective radial transport corresponding to the simulation in

Fig. 9. The left column corresponds to the local diffusive parallel closure n Eq. (5), and the right

column to the nonlocal free streaming closure in Eq. (9) with α = 1. Panels (a) and (b) show

the profiles of the flux and temperature gradient. Panels (c) and (d) show the corresponding

flux-gradient parametric curves.

in controlled nuclear fusion research is to understand the role of magnetic chaos suppression

in shearless regions on heat transport.

Motivated by the extreme anisotropic encounter in fusion plasmas, we focused in pure

parallel transport (χ⊥ = 0). A particularly challenging aspect of this problem is that near-

collisionless plasmas typically require the use of non-local closures for which the parallel heat

flux depends on the global properties of the temperature distribution on the whole field line,
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and not just the local gradient. To model this we used, in addition to the standard local

parallel diffusion equation, a parallel fractional diffusion equation.

Our main goal was to study the implications to heat transport of two key aspects of

reversed shear magnetic configurations: separartrix reconnection and robust shearless flux

surfaces. Separatrix reconnection is a generic property of nontwist Hamiltonian systems

leading to bifurcations in the topology of the magnetic field lines in the reversed shear region.

By solving the anisotropic transport equation for different parameters, we studied how the

changes in the magnetic field topology lead to bifurcations in the equilibrium temperature

distribution.

Like in the monotonic q-case, the addition of several resonant perturbations to reversed

shear equilibria typically leads to magnetic-field-line chaos through island overlap. However,

there are several key differences. In particular, in reversed shear configurations, for pertur-

bations of moderate amplitudes, magnetic chaos is restricted to bands flanking the shearless

region and, before the central shearless magnetic surface breaks, most of the magnetic field

is already chaotic. Here we have shown that, as a result, the temperature exhibits intense

mixing that locally flattens the radial profile in the chaotic bands, and, at the same time, it

exhibits a very sharp radial gradient in the shearless region.

At the threshold of the transition to chaos, the Poincare sections of critical magnetic field

lines trace Cantor-like fractal sets known as “Cantori”. Cantori are partial barriers in the

sense that they do not fully confine the magnetic field but the transport across them can be

anomalously slow. To explore the role of shearless Cantori (i.e., critical magnetic surfaces

located at minimum of the q-profile) on the radial transport of temperature, we studied the

relaxation of a linear temperature distribution in a reversed shear chaotic magnetic field. We

observed that the relaxation is a multi-scale process involving widely different time scales.

The first stage consists of the relatively fast (χ‖t ∼ 102) flattening of the radial profile in

the chaotic bands flanking the reversed shear region. During this stage, the flux exhibits

two peaks centered in the chaotic bands, and a minimum in the reversed shear region. This

minimum results from the anomalously slow leakage across this region due to the presence of

shearless Cantori. For practical proposes, on this time scale, there is an effective temperature

transport barrier despite the fact that there are no magnetic flux surfaces. However, once

the temperature has fully mixed in the chaotic bands, the flux develops a maximum in the

shearless region on the long time scale χ‖t ∼ 105. During this second stage, heat starts to
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flow across the shearless, albeit at a comparatively low rate. The final fully mixed state in

which the temperature is flat across the whole domain occurs occurs on a long time scale of

the order χ‖t ∼ 107.

To further explore the role of shearless Cantori, we considered the transport of a narrow

temperature pulse centered at the minimum of the q-profile, for diffusive and fractional

diffusive parallel closures. In all cases, we observed that the radial temperature profiles

exhibit weak self-similarity, with non-Gaussian scaling functions indicating that effective

radial transport at this scale cannot be modeled as a diffusive process with a constant

diffusivity. Related to this, we provided evidence of nonlocal effective radial transport in

reversed shear chaotic fields. In particular, the numerical results showed regions where the

flux is finite but the gradient is zero. The possibility of invoking the existence of a pinch

velocity to describe this anomalous behavior of the flux, is not fully consistent with the data.
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