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Abstract

The wave packet molecular dynamics (WPMD) method provides a variational approximation

to the solution of the time-dependent Schrödinger equation. Its application in the field of high-

temperature dense plasmas has yielded diverging electron localization (spreading), which results

in diminishing electron-nuclear interactions. Electron spreading has previously been ascribed to a

shortcoming of the WPMD method and has been counteracted by various heuristic additions to the

models used. We employ more accurate methods to determine if spreading really occurs and how

WPMD can be improved. A scattering process involving a single dynamic electron interacting with

a periodic array of statically screened protons is used as a model problem for the comparison. We

compare the numerically exact split operator Fourier transform (SOFT) method, the Wigner trajec-

tory method (WTM), and the time-dependent variational principle (TDVP). Within the framework

of the TDVP, we use the standard variational form of WPMD, the single Gaussian wave packet

(WP). We then generalize this form to include multiple Gaussians for the single electron as in

the split WP propagation method. Wave packet spreading is predicted by all methods, so it is not

the source of the unphysical electron uniformity of WPMD at high temperatures. Instead, the

Gaussian WP’s inability to correctly reproduce breakup of the electron’s probability density into

localized density near the protons is responsible for the deviation from more accurate predictions.

Extensions of WPMD must include a mechanism for breakup to occur in order to yield dynamics

that lead to accurate electron densities.

∗ Joint first author: grabowski@lanl.gov
† Joint first author: andreas.markmann@yale.edu
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I. INTRODUCTION

There has been extensive work on dense plasmas, with applications ranging from iner-

tial confinement fusion [1], Z-pinch experiments [2], X-ray Thompson scattering [3–5], and

exploding wire experiments [6, 7] to describing the astrophysics of white dwarfs [8] and the

interiors of giant planets [9–11]. Many of these systems feature strongly non-equilibrium

evolution. Dynamical simulation at the particle level is desirable to accurately model the

evolution of non-equilibrium plasmas and study energy exchange between electrons, ions,

and radiation because of the importance of collisional processes at high densities.

We are interested in calculating transport and collisional properties of dense plasmas.

Molecular dynamics (MD), in which particles’ positions and velocities evolve classically given

an inter-particle force, is a many-body method which includes numerically exact classical

collisions. However, in dense plasmas degeneracy and quantum diffraction can be important

for describing the electrons. Furthermore, classical electrons and ions may collapse into the

singular Coulomb wells via many-body interactions. The potential energy is converted to

an arbitrarily large amount of kinetic energy, given to nearby particles, unphysically heating

the system. The classical approximation for the ion dynamics is still usually valid for the

relatively heavy ions, so we focus on methods that employ MD for the ions and treat electrons

quantum mechanically.

Ideally, we want to calculate a numerically converged solution to the many-body time-

dependent Schrödinger equation (TDSE) for the electron wave function in the external

potential due to the ions. Tens or a few hundred degrees of freedom can be evolved with the

efficient multi-configuration time-dependent Hartree (MCTDH) method [12, 13]. Despite

making significant progress in reducing the computational effort for many-body quantum

problems, MCTDH still scales exponentially with the number of degrees of freedom and

cannot handle the system sizes needed to represent temperature and density gradients com-

monly found in the dense plasmas listed above. The use of quantum statistical potentials

(QSPs) [14, 15] within MD yields quasi-dynamics, but requires a temperature which explic-

itly appears in the potential. Properties of quasi-equilibrium problems, such as temperature

relaxation, may be valid [16], but fully non-equilibrium dynamics cannot be trusted.

The wave packet molecular dynamics (WPMD) method [17, 18] is an alternative we

wished to validate or invalidate. Each electron’s wave function is usually modeled by an
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isotropic (spherical) Gaussian wave packet (WP), whose parameters obey equations of mo-

tion derived from the time-dependent variational principle (TDVP) while ions are usually

treated classically with standard MD. Electron interactions with other particles depend ex-

plicitly on electron states and not on global statistical properties such as temperature. This

method is capable of simulating non-equilibrium dynamics and gives a well-defined approx-

imation to the many-body TDSE, while also being easy to implement in an MD code. The

Gaussian ansatz was first used to simulate scattering between simple atoms [17]. It was

later adopted by the nuclear physics community [18, 19] to understand nuclear structure

and reactions. Klakow, Toepffer, and Reinhard [20, 21] were the first to apply WPMD to

plasmas. The Gaussian ansatz seemed reasonable because at high temperatures, electrons

were expected to approximate classical behavior [20]. However, electrons as simulated by

WPMD feature divergent width parameters leading to wave packet spreading [22–29]. Elec-

trons then overlap all ions, with no mechanism to localize near nuclei, producing a nearly

constant electron background at large times.

Knaup, Reinhard, and Toepffer [22] introduced an ad hoc fix to wavepacket spreading by

adding a harmonic constraint to the wave packet (WP) width. Later, Ebeling and coworkers

[28] derived this term from the TDVP by imposing a position-dependent phase factor with

constant nonzero coefficient to the variational ansatz. These approaches include an arbitrary

fixed parameter that determines the width of the harmonic well acting on the WP width.

Morozov and Valuev [29] showed that by varying the constraint, they could obtain any value

of the dynamical collision rate; including the constraint makes WPMD an empirical model.

Wave packet spreading is reduced by antisymmetrization of the wave function, allowing

simulations at slightly higher than the Fermi temperature [30]. Several flavors of WPMD

exist to take into account Fermi statistics. Full antisymmetrization requires order N4 [19]

operations. A less demanding approach is pairwise antisymmetrization [20–23, 31] or only

antisymmetrizing with respect to the kinetic energy [25–27, 32, 33]. Alternatively, in the

electron force field (eFF) method, a Pauli potential with empirical parameters fit to highly

accurate molecular properties is added [30, 34, 35]. With eFF, improved agreement between

simulations and recent Z-pinch [2] and high explosive [36] Hugoniot measurements is ob-

tained. The impact of multiparticle properties such as antisymmetrization on wave packet

spreading is not studied in this article.

In order to decide whether spreading is physical, we study a scattering process involving
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a single dynamic electron interacting with a realistic static dense plasma charge density,

described in Sec. III. This simple system was chosen in order to allow simulation methods

employing different degrees of approximation, thereby offering a range of physical insights.

With this test problem the Gaussian ansatz of WPMD is directly compared to more accurate

methods.

II. METHODS

For many-particle systems, numerically converged quantum dynamics are computation-

ally infeasible, so approximate methods are needed. Here, we present several methods ap-

plied to a single electron problem. Generalization to many electron systems is complicated

by the enforcement of a totally antisymmetric wave function and the additional computa-

tional effort. We outline several approximations to the TDSE, including the TDVP in Sec.

IIA, with both the single Gaussian WP and split WP ansatzes, and the Wigner trajectory

method (WTM) in Sec. II B. For single electron scattering, we can afford to quantify the

success of these approximate methods by comparison with quantum dynamics obtained from

the split operator Fourier transform (SOFT) method (Sec. IIC). We also present the well

known non-interacting WP solution in Sec. IID so that the impact of scattering can be

quantified.

In all cases, the initial state is an isotropic (spherical) Gaussian with given initial position

and momentum vectors and given scalar width. All quantities are understood to be in atomic

units unless otherwise noted, i.e. ~ = 1, length is measured in Bohr, a0 ≈ 0.52918 Å, and

energy in Hartree, Eh ≈ 27.211 eV.

A. The time-dependent variational principle (TDVP)

The TDVP leads to a rigorous approximation of the TDSE with a given variational

ansatz. With this method the residual of the TDSE is minimized over a given subspace of

states |ψ〉, so that

δ

tf
ˆ

ti

〈

ψ

∣

∣

∣

∣

i
∂

∂t
− Ĥ

∣

∣

∣

∣

ψ

〉

dt = 0, (1)
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where ti and tf are the initial and final times of the integration, and Ĥ is the Hamiltonian.

If the state |ψ〉 is allowed to vary throughout a Hilbert space that includes the solution, the

TDSE will be exactly solved. Otherwise, the error in the state grows linearly with time over

short times [18].

A variational state |q〉 can be parametrized by a vector of complex time-dependent vari-

ational parameters,

q = {q1, q2, . . . , qNv
}. (2)

The variational parameters follow the equations of motion [18]:

iN q̇ =
∂〈Ĥ〉
∂q∗

, −iN q̇∗ =
∂〈Ĥ〉
∂q

, (3)

where 〈Ô〉 = 〈ψ|Ô|ψ〉 and ∗ denotes the complex conjugate. The Hermitian norm matrix is

defined by [18]:

Nab =
∂

∂q∗a

∂

∂qb
ln〈q|q〉. (4)

Note, Eqs. (3) are time reversed forms of each other; so models derived from the TDVP

preserve time reversal symmetry. For special choices of the variational form and parameters,

the matrix N reduces to a trivially-inverted matrix and canonical positions and momenta

can be defined that make the equations of motion have a Hamilton form in Nv dimensions

(see for example Ref. [37]):

ρ̇=
∂〈Ĥ〉
∂π

, π̇= −∂〈Ĥ〉
∂ρ

. (5)

In spite of the persuasiveness of this form, it has to be noted that ρ and π are variational

parameters inextricably tied to a particular variational wave function form that should not

be mistaken for classical positions and momenta. Using the TDVP with a small number

of parameters requires physical intuition as to the form of the wave function. It must be

flexible enough to give reasonable observables as well as numerically convenient and capable

of representing the desired initial state.

1. Gaussian wave packet

The Gaussian WP wave function is parameterized as

ϕG(x, t) =

(

3

2πσ2

)3/4

e−γ|x−r|2+ip·(x−r) (6)

6



where

γ =
3

4σ2
+

ipσ
2σ
. (7)

This ansatz depends on 8 real time-dependent variational parameters, (r, σ,p, pσ), represent-

ing position and momentum vectors as well as scalar width and conjugate width momentum

of the isotropic (spherical) Gaussian, respectively. A wave function which is initially a

Gaussian will not remain a Gaussian at all times unless the potential has zero third and

higher derivatives. However the Gaussian ansatz forces this to always be true, obtaining the

Gaussian closest to the exact solution at short times.

Equations (1) and (6) lead to the equations of motion

ṙ =
∂〈Ĥ〉
∂p

, ṗ = −∂〈Ĥ〉
∂r

, (8)

σ̇ =
∂〈Ĥ〉
∂pσ

, ṗσ = −∂〈Ĥ〉
∂σ

, (9)

which have the same form as the classical Hamilton equations except that an extra degree

of freedom has been added (σ) and the classical Hamiltonian is replaced by the quantum

expectation value of the Hamilton operator, leading to significantly adjusted dynamics.

2. Split wave packet

A generalization of the Gaussian WP is the split WP [38], which represents a single

electron wave function by M Gaussians with mixing coefficients cα:

ϕs(x, t) = n−1/2

M
∑

α=1

cαϕα(x, t), (10)

where

n =
∑

α,β

c∗αcβ

ˆ

ϕ∗
αϕβdx (11)

is the normalizing factor for ϕs. Each WP (ϕα) has the same form as Eq. (6), where the

variational parameters (r, p, σ, and pσ) take on different values and evolve independently

for each WP.

The term “split” in the name of the method originates from the possibility of using

this variational form [Eq. (10)] for the simulation of wave function splitting into multiple

branches. Incorporating initially unpopulated Gaussians (having vanishing weights) into a
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basis set creates a solution subspace for quantum branching. The initial parameters for these

auxiliary Gaussians may often be anticipated from the physical conditions, thus keeping the

dimension of the basis set small. Although M may be changed dynamically, in the present

work we fix M and place the auxiliary basis functions at the minima of the potential.

The time-dependent complex coefficients cα(t) together with the M sets of standard WP

parameters {rα(t), σα(t),pα(t), pσα
(t)} constitute a set of dynamic variables for a moving

electron. Due to the normalization condition and the free choice of a constant phase, there

are 10M−2 independent parameters for the single electron, consistent with the 8 parameters

of WPMD for M = 1.

In the Gaussian basis the interaction matrix elements of single-electron operators (T̂ and

V̂ ) are proportional to the corresponding WP overlaps oαβ =
´

ϕ∗
αϕβdx:

〈ϕα|T̂ |ϕβ〉 =
1

2
∇rα

·∇rβ
oαβ, (12)

〈ϕα|V̂ |ϕβ〉 = Vαβoαβ, (13)

where Vαβ can be calculated analytically by integration for many simple forms of V̂ . The

variational total energy of the split WP model is:

〈Ĥ〉 = n−1
∑

α,β

(

1

2
∇rα

·∇rβ
+ Vαβ

)

(c∗αoαβcβ). (14)

The norm matrix needs to be evaluated and inverted at every time step for M > 1.

The overcompleteness of the Gaussian basis may lead to a degenerate norm matrix, adding

computational burden to the split WP algorithm, especially since it is often nearly singular

due to significant overlap between Gaussians. Large time derivatives of the variational

parameters may occur, forcing reduction of the time step. Variable time stepping needs

to be employed to preserve the total energy within a given accuracy (of the order of 10−5

Hartree).

The initial state of the split WP should be equivalent to the Gaussian WP form, requiring

only the first of the WPs to have non-zero weight. However, populating only a single

Gaussian leads to a singular norm matrix, so the initial state is perturbed by setting cα(0) =

0.001 for α > 1 and correcting c1 accordingly. The other initial values for the time-dependent

variational parameters of the auxiliary WPs are determined by choosing time-independent

variational minima of single Gaussian WPs, as these minima correspond to the peaks of

electron density once that area of space is populated by the electron. By ordering the
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minima by their overlap with the initial Gaussian, a small number of Gaussian basis functions

additional to the initial state can be selected.

B. Wigner trajectory method (WTM)

An alternative, but equivalent, formulation of the TDSE that yields to both different

approximations and complementary insights is the WTM [39–41]. We start with the six-

dimensional Wigner transform of the wave function [42]

fW (x,p, t) =

ˆ

ds eip·s

(2π)3
ϕ∗

(

x+
~s

2
, t

)

ϕ

(

x− ~s

2
, t

)

, (15)

which obeys the time-dependent Wigner equation
(

∂

∂t
+

p

m
·∇x + ÔQM

)

fW (x,p, t) = 0, (16)

where

ÔQMfW (x,p, t) =

ˆ

dp′VW (x,p− p′)fW (x,p′, t) , (17)

VW (x,p) =

ˆ

ds e−ip·s

i(2π)3~

[

V

(

x− ~s

2

)

− V

(

x+
~s

2

)]

, (18)

and

V (x) = 〈x|V̂ |x〉. (19)

These equations encode the non-locality of quantum mechanics; a quantum particle interacts

with the potential throughout all of space. We wish to explore how important non-locality

is, so we remove the non-locality by assuming V is slowly varying and Taylor expand V

about s = 0, which yields

ÔQMfW (x,p, t) = − ~
0

201!
∂xi V (x)∂

p

i fW (x,p)

+
~
2

223!
∂xijkV (x)∂pijkfW (x,p)− . . . , (20)

where repeated indices imply a summation, ∂vi is the partial derivative with respect to the

ith part of v, and ∂vijk = ∂vi ∂
v

j ∂
v

k . Here we will only keep the first term on the right hand

side,

ÔQMfW (x,p, t) ≈ F ·∇pfW (x,p, t) , (21)
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where

F = −∇xV (x), (22)

which leaves us with

(

∂

∂t
+

p

m
·∇x + F ·∇p

)

fW (x,p, t) = 0. (23)

This is the Thomas-Fermi (long wavelength) limit. One can also think of Eq. (20) as an

~ expansion. In this sense Eq. (21) is the classical limit. However, we stress that ~ has

not been set to zero everywhere; the initial distribution satisfies the Heisenberg uncertainty

principle for the physical value of ~ and fW should be thought of as an approximate quantum

state. Equation (23) has the exact solution

fW (x,p, t) = fW (x(t),p(t), 0), (24)

where

ẋ(t) = p(t) and ṗ(t) = F (x(t)), (25)

from the method of characteristics [39]. For a Gaussian initial state, the Wigner transform

is positive definite, as it is a Gaussian in phase space. It can then be used to sample an

initial phase space distribution of point masses. The characteristic trajectories of the Wigner

distribution are obtained by classical Velocity-Verlet integration [43] of Eq. (23) [15, 44]. The

WTM results illuminate whether the uncertainty in the position and momentum of the wave

function is the dominant quantum effect in the process studied, since other quantum effects

such as interference and tunneling are missing from WTM.

A complication arises when an electron experiences a close encounter with an ion - the

gradient of the potential then becomes divergent. Here, we simply use a sufficiently small

time step so that the final density is converged. We also note that the expansion, Eq. (20) is

invalid near the singularities. The convergence radius of the Taylor expansion extends only

to the singularity of the nearest neighbor nuclear interaction potential. So one should not

try too hard to numerically solve Eq. (23) in the vicinity of the ions because the model is

incorrect there. We rely on the fact that these regions are small in phase space and so do

not have too large an effect on most parts of the density.
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C. The split operator Fourier transform (SOFT) method

It is useful to have a method that can be used as a reference to compare against the ap-

proximate models described above. This reference can also be used to inspire improvements

to the other models. For a single electron problem, the Schrödinger equation is:

i
∂

∂t
ϕ (x, t) =

(

T̂ + V̂
)

ϕ (x, t) , (26)

where T̂ and V̂ are the kinetic and potential energy operators, respectively. Equation (26) is

solved by repeated application of the propagation operator for a time step ∆t, approximated

by the split operator [45–49]

U (t, t +∆t) = e−iV̂∆t/2e−iT̂∆te−iV̂∆t/2 +O[∆t3]. (27)

The SOFT method takes advantage of this factorization by applying the first and third

operator in position space and the second in momentum space because these operators are

diagonal in those spaces. The basis change from coordinate space to momentum space and

vice versa is realized by forward and backward fast Fourier transforms on the equidistant

grid.

The complex wave function ϕ (x, t) at time t is represented on a grid

xαk = xα0 + k ·∆x, k = 1, . . . , 128,

where α enumerates the three Cartesian directions, x10 = x20 = x30 = −L/2, ∆x = L/128,

small enough to correctly represent the momenta of the wave function at the energy range

given, and L is the length of the cubic box. Because the error in the propagator [Eq. (27)]

is proportional to commutators involving the potential energy, the required time step is

controlled by the size of gradients in the potential on the grid. We minimize this effect by

ensuring that no ion is too close to the grid points.

D. Non-interacting wave packet

It is instructive to compare the motion of an electron with that of a non-interacting

electron, i.e. an electron with the same initial conditions moving through a vacuum. The

exact non-interacting Gaussian solution at time t is

ϕn(x, t) = ϕG(x, t)e
iθ (28)
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with

θ = (t− t0)
p20
2

− 3

2
tan−1

(

3(t− t0)

2σ2
0

)

(29)

r = p0(t− t0) + r0 (30)

p = p0 (31)

σ = σ0

√

1 +
9(t− t0)2

4σ4
0

(32)

pσ =
9(t− t0)

4σσ2
0

, (33)

where the minimum uncertainty WP is assumed at the initial time t = t0 and values of the

variational parameters at this time are marked by the subscript 0. The extra phase factor,

θ, compared to the Gaussian WP makes no difference in the density. Free particle dynamics

always lead to a spreading WP. A potential may act on a WP by localizing or spreading it.

By directly comparing with the non-interacting WP solution, we will examine which of the

two processes is occurring.

III. QUANTUM PINBALL

To compare the methods of Sec. II, single electron dynamics are simulated in a realistic

model plasma, given by the following:

1. Ions are fixed at positions derived from a snapshot of a QSP MD simulation equili-

brated at T = 50 eV and ion number density n = 1024 cm−3 and then slightly modified

as described in Sec. IIC . The ions are bare nuclei of charge Z = 1.

2. Background electrons are treated implicitly by taking into account screening of the

ionic Coulomb potentials by replacing them with Yukawa potentials having a screening

length λ of 1Å.1

3. An infinite system is approximated by periodic boundary conditions. The number of

ions per unit cell is 500.

1 The Yukawa screening model begins to break down at high densities/low temperatures because the number

of electrons per cubic screening length becomes of order or less than unity. In order to correct for this

failure, non-linear screening is needed. In the interest of simplicity of the model, we study the failure of

the Gaussian ansatz with the Yukawa model. When using each of the methods described in the previous

section, we make this approximation, so direct comparisons between them are still valid.
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Preliminary tests were presented in Refs. [15, 44] with a finite (non-periodic) smaller cluster

of Coulomb potentials; here, the Yukawa potential more realistically models scattering of

a recently ionized electron in the bulk of a plasma dominated by fast electrons, for which

static screening of the ions is a good approximation. However, none of the methods in Sec.

II are inherently limited to static nor short-range potentials, although such changes incur

additional costs.

The Hamiltonian operator of the quantum pinball problem is then

Ĥ = T̂ + V̂ , (34)

where

T̂ =
p̂2

2
, (35)

〈x|V̂ |x〉 = −
∑

I

VYukawa (|RI − x|) , (36)

and

VYukawa(r) =
1

r
e−r/λ. (37)

Here, p̂ is the momentum operator, |x〉 is a position eigenstate, RI are the ion positions,

and λ = 1Å is the screening length.

In this section, we emphasize the differences between the Yukawa screened potential

and bare Coulomb for the Gaussian ansatz of the TDVP, compare the simulation times

and densities of the Gaussian WP propagated with the methods of Sec. II, and quantify

localization and breakup.

A. Gaussian wave packet Hamiltonian

With Eqs. (34-37), the expectation value of the Hamiltonian can be explicitly evaluated.

Here, we calculate that expectation value for the Gaussian WP so that its dynamics can be

directly explained. The derivatives of this expectation value with respect to the variational

parameters yield the time derivatives of those parameters according to Eqs. (8) and (9).

The kinetic and potential expectation values are

〈T̂ 〉 = p2

2
+
p2σ
2

+
9

8σ2
, (38)

〈V̂ 〉 =
∑

I

Vexp (|r −RI |, σ) , (39)

13



where

Vexp (r, σ) = − 1

2r
eσ

2/6λ2

[V+(r, σ) + V−(r, σ)] (40)

V± (r, σ) = e±r/λ

{

erf

[

√

3

2

( r

σ
± σ

3λ

)

]

∓ 1

}

. (41)

The first term (p2/2) on the right of Eq. (38) is the translational kinetic energy, while the

latter two are due to the uncertainty in the value of the momentum. The first of these, (p2σ/2),

depends on the temporal change of the width in a manner very similar to the translational

kinetic energy. A positive (negative) value of pσ signifies a growing (shrinking) width. If

pσ = 0, the Gaussian WP is a minimum uncertainty WP. The last term (9/8σ2) produces an

infinite energy barrier to having zero width. The physical reason for this term stems from

the position-momentum uncertainty principle. A small width implies a large uncertainty in

momentum, so the second moment of momentum about p must be large as well. These three

terms produce the dynamics of the non-interacting WP, which approximates the dynamics

when either σ ≪ aI or σ ≫ aI , where aI is the ion sphere radius defined by the average

space-filling sphere volume per ion at a given number density.

B. Comparison of simulation times

To give a sense of the relative computational effort needed for this single electron problem,

we present the simulation times in Tab. I. Because we ran these simulations on different types

of computers with differing amounts of parallelization and different programmers, ratios of

times should be taken as rough guides of relative computational effort. The Gaussian WP

evolution is the fastest. When multiple WPs are employed per electron as in the split

WP method, the computational time increases with M for three reasons: there are more

parameters to evolve, a matrix equation whose size scales with M and the solution of which

is trivial for M = 1, must be solved to extract time derivatives of the variational parameters,

and the likelihood of the norm matrix becoming nearly singular increases. If the norm matrix

is dense, the computational time for the split WP method scales as M3, otherwise the scaling

isM2. The singular norm matrix events are quasi-random, which is why theM = 3 case took

the longest. Having an adaptive time step algorithm is important for accurately integrating

these events. Both the Gaussian and split WP methods can be parallelized by splitting
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CPU time # of CPU # of Wall clock

Method per step steps time CPUs time

Gaussian WP 13.8 ms 105 1.45 s 11 0.15 s

split WP M = 2 984. ms 127 125. s 11 12.1 s

split WP M = 3 1.93 s 345 666. s 11 61.5 s

split WP M = 4 2.37 s 137 325. s 11 30.7 s

split WP M = 5 3.68 s 137 504. s 11 47.4 s

WTM 82.0 s 5× 105 475. d 480 23.7 hr

SOFT, pot. N.A. N.A. 15 hr 1 15 hr

SOFT, dyn. 864. ms 500 7.2 min 1 7.2 min

Table I. Comparison of computation times of the different methods to propagate the 8.8 eV electron

for 50 as. The time for the SOFT method is split into the time for calculating the potential at all

1283 grid points (SOFT, pot.) and the propagation time (SOFT, dyn.).

the work of calculating the expectation value of the potential energy amongst the available

processors.

The WTM suffers from having to integrate particle trajectories near Coulomb singular-

ities. We solved this problem with brute force, hence the enormous total computational

time of over a year. The algorithm is efficiently parallelized because each particle used to

represent the electron’s density evolves independently of the others due to the local approx-

imation made to the Wigner equation in Eq. (16). It was much easier to parallelize our

algorithm than to make it more efficient. Modifications to improve the algorithm should

include changing the algorithm from a fixed time step to an adaptive one, as well as split-

ting the time propagation into an exact Kepler part and a numerical non-singular part [44].

We expect a speedup of several orders of magnitude from such improvements because our

current algorithm used a thousand or more times as many time steps as the other methods,

which was fixed by the rare hard collisions between the numerical particles and the ions.

Note, neither the Gaussian nor split WP forms resolve the Coulomb singularity, which is

one reason they are less computationally expensive.

The computational time for the SOFT method is split between calculating the potential

at each grid point, which involves summing the contributions to the potential at all 1283
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grid points due to the 500 protons and each of their 27 nearest images. The large amount

of time to calculate these quantities, 15 hours, was why we were forced to fix the protons.

The large mass ratio of the proton to the electron makes this approximation a valid one

for our purpose of testing electron dynamics. Actually propagating the electron took only

a little more than seven minutes. So we were able to save the potential data and quickly

rerun with other initial conditions. The potential calculation is easier to parallelize than

the time propagation because the latter relies heavily on fast Fourier transforms, which

require global information of the wave function at all Fourier grid points. Note, doing the

two-electron problem at the same resolution would have required more than a million times

greater computational effort. Therefore, we present SOFT only as a reference.

C. Comparison of predicted electron densities and widths

The initial wave function is a single Gaussian, representable by all methods in Sec. II:

ϕ(x, t = 0) =

(

3

2πσ2

)3/4

exp

(

− 3

4σ2
|x|2 + ip · x

)

, (42)

where σ =
√
3 Å, p is in the x−direction, and we have chosen its magnitude by setting

p2/2m = 8.8, 62.5, 250, and 1000 eV. The first value was used for all methods, while the

latter three were only done with SOFT, Gaussian WP, and the non-interacting WP. The last

three values match those of Ref. [15]. The initial density integrated over the z-coordinate

is shown in Fig. 1. The initial wave function was evolved in three dimensions using SOFT,

Gaussian WP, split WP (M = 5), and WTM, producing the densities shown in Figs. 2 and

3 at times when the non-interacting WP is displaced 0.99 Å. The non-interacting electron

case (V ≡ 0) is also shown for comparison. There are two comparisons to make for each

approximate method. We compare to the SOFT result to test for accuracy, and we compare

to the non-interacting WP result to see how the potential affects their dynamics.

At high impact energies, the Gaussian WP agrees very well with the SOFT and non-

interacting WP results, as the wave function remains approximately spherical while it is

displaced by about 1 Å. At lower impact energies, the non-interacting WP has a significantly

smaller width than the Gaussian WP, so the net effect of the potential on a WP this size

is to make it spread. Attractive Coulomb potentials always slow down the growth of σ or
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Figure 1. (Color online) Probability density isocontours of the initial state integrated over the z

coordinate. The three contours represent 60.7% (dark), 13.5% (medium), and 1.1% (light) of the

maximum density. The black dots represent fixed protons, with the larger dots being protons closer

to the z = 0 plane.

accelerate its reduction, as can be seen by the λ→ ∞ limit of Vexp [see Eq. (40)]:

lim
λ→∞

Vexp(r, σ) = −1

r
erf

(

√

3

2

r

σ

)

, (43)

while repulsive Coulomb potentials do the opposite. The attractive Yukawa screened poten-
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Figure 2. (Color online) Propagated electron densities after the center of the non-interacting WP has

moved 0.99 Å for four initial translational kinetic energies, K = 〈p̂〉2/2m, showing the predictions

of SOFT (solid red), Gaussian WP (long-dashed green), and the non-interacting electron (short-

dashed gray). Note, the higher energy cases are shown at earlier times so that all cases have roughly

the same displacement. The purple × indicates where the center of the WP was initially, at t = 0.

The Gaussian WP gives reasonable agreement with SOFT at high kinetic energies, while at lower

energies, the SOFT density shows localization which cannot be represented with a single Gaussian.

In comparison to the non-interacting electron, the pinball potential delocalizes the electron density,

which can be seen most easily at low energies.
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Figure 3. (Color online) Same as Fig. 2 except at only 8.8 eV and densities as predicted by SOFT

(solid red), split WP with M = 5 (dashed green), and WTM (noisy blue). It can be seen that the

more flexible approximate methods split WP and WTM are capable of reproducing wave packet

break-up and considerably improve agreement with the SOFT density.

tial can do both because it represents the effects of both the bare nucleus and the electrons

around it. The σ-dependence of the potential energy of a Gaussian centered away from a

single Yukawa well has a minimum at a positive value (Fig. 4). So the Gaussian WPs will

have a tendency to grow until a significant portion of their densities overlap neighboring

19



0 1 2 3 4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Σ�r

V
ex

p�V
Y

uk
aw

a

r = 4 a.u.
r = 3 a.u.
r = 2 a.u.
r = 1 a.u.

Figure 4. (Color online) The dynamics of the Gaussian WP width σ is governed by the σ dependence

of the expectation value of the potential energy between a Gaussian WP electron and a Yukawa

screened ion. The graphs show the ratio Vexp (r, σ) /VYukawa (r) between the potential expectation

value and the Yukawa potential itself as a function of the ratio between WP width, σ, and the

distance between the ion and electron, r. Curves for four different values of r are shown: 1 a.u.

(solid red), 2 a.u. (dashed orange), 3 a.u. (dotted green), and 4 a.u. (dot-dashed blue). Note that

the minimum in the expection value of the potential is at nonzero values of σ/r unlike for the bare

Coulomb potential (similar to the solid red curve). The minimum at nonzero width makes the WP

spread towards the distant ions.

protons.

The potential expectation value Vexp (r, σ) also has a finite asymptote at infinite σ. This

asymptote is energetically accessible during the evolution of a WP with a positive energy

expectation value. If a WP obtains a large width asymptote, the absence of interaction

inhibits a return to small σ.

We expect the exact solution to have a component of its probability current to be directed

towards each ion, instead of spreading in all directions. For an isotropic system, this has
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little effect on the uncertainty in the position of the electron compared to the Gaussian WP

method, but there is a large difference in how much the density will vary as a result. At lower

energies, the SOFT wave function visibly localizes near ion clusters in the unit cell, leading

to the breakup of the electron density into localized components. Using a single Gaussian

WP to represent the wave function fails to capture this breakup, crucial to reproducing the

electron density predicted by SOFT. This same breakup also happens for the higher energy

cases but to a lesser extent and more visibly at later times than shown in Figs. 2 and 3. We

quantify this effect in the following subsection.

D. Quantification of spreading, breakup, and localization

We show the widths predicted by three methods, SOFT, Gaussian WP, and the non-

interacting WP in Fig. 5 as defined in the x-direction by

σx =
√

〈x̂2〉 − 〈x̂〉2 (44)

and similarly in the y- and z-directions. Technically, the SOFT wave function is periodic,

so the expectation values of moments of position are ill-defined. However, over this short

evolution time, the wave function does not spread enough to significantly interfere with itself,

so we calculate the expectation values as if the particle is in a non-periodic box centered at

the position of the Gaussian WP. The widths grow at roughly the same rate regardless of

energy with a slight trend of growing more slowly at higher energies. The growth is lower

in the direction of motion because scattering by the nuclei tends to only increase the width

in directions orthogonal to the motion. The Gaussian WP gives a reasonable prediction

of the mean spreading in the three directions and in all cases has greater width than the

non-interacting WP. If anything, the Gaussian WP width is a bit small compared to the

SOFT WP, so restricting the growth of the Gaussian WP width [22–29] is unphysical.

The main failure of the Gaussian WP is its inability to represent breakup. In order to

quantify the breakup of the WP, we counted the number of local maxima, Nm, in the three

dimensional density. A grid point in the SOFT density is a local maximum if it is greater

than its 26 nearest neighbors. Many of these are very small in amplitude, so we applied a

smoothing filter multiple times. Each application of the filter replaced the density at the

grid point by the value midway between the current value and the mean of the 26 nearest
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Figure 5. (Color online) The position uncertainties of the SOFT solution in the x- (3, solid red),

y- (1, solid purple), and z-directions (2, solid blue), the Gaussian WP (4, dashed green), and

non-interacting WP (5, dotted gray) for four different initial values of the translational kinetic

energy. The Gaussian WP and non-interacting WP are spherically symmetric, so their positition

uncertainties in all three directions are the same.

neighbors. These results are shown in Fig. 6. At first we were surprised that the number

quickly grew into the thousands, but detailed inspection reveals that these are actually

caused by the interference of all the spherical waves emanating from the scattering centers.

In fact, a rough estimate for Nm at large times can be calculated by taking the maximum of

the number of cubic de Broglie wavelengths that fit in the box and the number of protons,

Np,

Nm(t = ∞) ≈ max

(

Np,

(

L

Λ

)3
)

, (45)

where Λ = h/p is the de Broglie wavelength corresponding to the magnitude of the expec-

tation value of the momentum and h is Planck’s constant. Equation (45) implies that the

lowest two energies produce roughly the same number of maxima, Np. Their respective WPs
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Figure 6. (Color online) The number of local maxima in the SOFT electron density as a function of

time for four different WP energies: 8.8 (solid red), 62.5 (dashed orange), 250 (dotted green), and

1000 eV (dot-dashed blue). The lowest two energy cases are nearly indistinguishable. Four curves

are shown for each energy representing the number of maxima after zero, one, two, and three passes

of a smoothing filter as described in the text. The horizontal line indicates the number of ions in

the periodic unit cell. Surpassing this number is indicative of the onset of interference effects.

breakup to produce higher densities near each proton as their bound parts of their densities

tunnel to each minimum in the potential and the free parts have greater time averaged den-

sities there. The dynamics of the higher two energies are dominated by continuous free-free

scattering and interference between all of the resulting modes. We also note that the highest

energy WP is able to remain close to a Gaussian shape for longer, so that at short times

there are fewer maxima as shown by Fig. 6.

Another measure of localization is the participation function (PF) [50], defined as the

inverse of the integral of the probability density squared,

P [ϕ] =

(
ˆ

|ϕ|4dx
)−1

. (46)

23



8.8 eV
62.5 eV
250 eV
1 keV

1
2
3
4

1
2
3
4

1

2

3
4

SOFT
Gaussian

WP

0 10 20 30 40 50

30

40

50

60

70

80

t @asD

P@
j
D@

Å
3 D

Figure 7. (Color online) The participation function evaluated with the SOFT (solid curves) and

Gaussian WP (dashed curves) density for four different values of the initial translational kinetic

energy: 8.8 eV (1, red), 62.5 eV (2, orange), 250 eV (3, green), 1000 eV (4, blue).

The PF is a rough measure of the volume occupied by the WP. The two extremes of the PF

are the Dirac delta function (P = 0) and constant density (P = L3). We have plotted the PF

in Fig. 7. Completely different predictions are obtained by Gaussian WP and SOFT. The

PFs of SOFT are lower because SOFT properly handles the breakup of the WP, localizing

densities to near ions, while in the Gaussian WP simulation the WP spreads by roughly the

same amount as the SOFT WP, as shown in Fig. 5, but occupies the entire space inside that

width. The two predictions only converge to one another at very high energies (& 1000 eV).

Unlike the monotonically growing Gaussian WP PFs, the SOFT PF’s time evolution can

be divided into three regimes. Before about five attoseconds regardless of the energy, the

WP spreads slightly, occupying more volume and increasing the PF. This early behavior is

equivalent to the non-interacting electron. This is followed by a period ranging from zero

to about thirty attoseconds, depending on the energy, over which time the participation
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function decreases when the density “falls” into local potential energy minima. Density does

not follow where the non-interacting particle is centered, but becomes localized near the

protons. The participation function eventually increases again as the collapse of the density

into the minima ends and spreading of both the bound and free parts of the density becomes

dominant.

E. Accuracy of approximate methods

The lowest impact energy is the most challenging case. Adding more wave packets, as

in the split WP method, significantly improves the final density. Localization similar to

that predicted by SOFT is obtained, with the caveat that split WP packets are spherical,

while the localized components in SOFT are distorted. This is reflected in the overlaps and

density overlaps shown in Figs. 8 and 9, respectively. A steady improvement is obtained by

increasing the number of WPs in split WP.

Saturation of the convergence with respect to the number of WPs may be explained by

our special choice of basis, where only a small number of Gaussians at selected positions was

used. For our choice of initial positions of the auxiliary WPs, the electron density near local

peaks is represented more accurately than in the rest of the simulation box. We can see

that the WP as predicted by SOFT has only broken up into roughly five pieces of significant

size (see Figs. 2 and 3) in 50 as, so convergence beyond M = 5 is expected to be slow. At

later times the WP is likely to breakup even more, for which a greater value of M is needed.

In general, it is necessary to have initial basis functions available at space locations other

than at local potential minima only. Increasing the basis size for split WP is theoretically

expected to produce results converging to the exact solution.

Another feature of the overlap curves is that they fall off over a time scale of roughly

1 a.u. This is not surprising considering all quantities involved (electron mass, kinetic and

potential energies of the electron), are about 1 a.u. as well. We also show the WTM

result in Figs. 3 and 9.2 WTM performs surprisingly well, considering the only quantum

effect it includes is the initial uncertainty in position and momentum. However, many more

parameters (300, 000 positions and momenta) than for split WP (at most 50) are required,

2 We do not calculate a regular overlap for Fig. 8 between the WTM and SOFT states because 50, 000

particles does not produce a good resolution in the six-dimensional phase space. Hence, the overlap would

have extensive statistical noise.
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Figure 8. (Color online) Overlaps between the SOFT (ex) and wave functions evolved according to

the TDVP as a function of time. Results from one to five WPs indicate systematic improvement

from the Gaussian WP (M = 1) to split WP (M = 5) variational forms. The decay from unity

is a consequence of the use of only a small number of Gaussians at selected initial positions. As

predicted by SOFT, the initial state breaks up into five pieces of significant size (see Figs. 2 and

3) in 50 as, so convergence beyond M = 5 is expected to be slow.

so the greater flexibility in the Wigner function comes at considerable computational cost.

Note that, at t = 0, the density overlap is not exactly unity due to the statistical sampling

of the initial state.

IV. CONCLUSION

We have evolved the state of a single electron in a model plasma with a variety of theo-

retical methods in order to understand which approximations are valid in the dense plasma

regime. We used the TDVP with different variational forms ranging from the single Gaussian

WP commonly used in WPMD, up to a sum of five Gaussian WPs (the split WP method).
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Figure 9. (Color online) Overlap of the spatial densities between those from the SOFT and WTM

and the SOFT and split WP methods as a function of time. Initial overlap of WTM and SOFT is

not unity due to noise in sampling the initial state.

These were compared with the Thomas-Fermi limit in the WTM, the non-interacting WP,

and the numerically exact SOFT solution. We determined what properties are needed in

the form of the variational ansatz used by the TDVP and how important the non-locality

of quantum mechanics is in predicting the evolution of a WPs density using the WTM.

All of the methods used in this article predict wave packet spreading. The non-interacting

WP had the least amount of spreading as measured by the uncertainty in position of the

electron. So the use of constraints on the Gaussian WP width to prevent spreading is un-

physical and the potential energy increases the rate of spreading. Spreading is the combined

result of uncertainty in the WP’s momentum, and density accumulating in as many poten-

tial energy wells as possible. The former effect is illustrated by the non-interacting WP’s

evolution in Figs. 2 and 5 and the latter for the simple case of the Gaussian WP by Fig. 4.

The inability of the Gaussian WP to breakup is the main failure of this variational form.

The SOFT, WTM, and the split WP methods all predicted breakup of the electron’s density
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with higher density near the ions. The breakup occurred as the WP spread and was key to

properly determine the volume taken up by the density as measured by the participation

function (see Fig. 7) at all energies.

Differences in the final density as a function of WP energy were shown in Figs. 2 and

3. We performed the evolution with SOFT, the Gaussian WP, and non-interacting WP

with four different values of 〈p̂〉2/2m: 8.8, 62.5, 250, and 1000 eV. Different temperature

many-body systems would sample these energies differently. Breakup of the WP is most

pronounced at lower energies, but is present at all energies because there are always regions

near each ion for which the magnitude of the potential energy is greater than the kinetic

energy.

Of all the approximate methods, the WTM was best at matching the electron’s density,

as shown in Figs. 3 and 9, despite completely neglecting all but the first derivatives of

the potential energy in Eq. (20) to get Eq. (21). We infer that quantum diffraction and

interference are not as important for obtaining the right density as preserving the uncertainty

in the position and momentum of the electron. The different parts of the phase space density

can then produce approximately the correct spreading and breakup.

The split WP method reproduces breakup as well by allowing that flexibility in the

variational ansatz. Convergence was shown towards the SOFT solution in Figs. 8 and

9. However, diminishing returns were seen in adding additional auxiliary WPs. This is

especially true when the number of WPs used to create the variational form is greater than

the number of regions the exact density has broken into. One is then left with the problem

of fitting a function bearing no resemblance to the isotropic Gaussians, especially at large

times.

The quantum wave function is the complete description of a quantum state and is there-

fore challenging to reproduce accurately by approximate methods. Therefore, the temporal

drift from the SOFT state of the WTM and split WP results seen in Figs. 8 and 9 is

expected. However, these approximations reproduce the breakup of the WPs as shown by

Figs. 2 and 3. This indicates that improvements over classical models can be made at the

particle level that lead to accurate models for scattering and energy exchange between par-

ticles, although such processes have not been studied in this article. In many applications,

only the correct dynamics of average properties is needed. Generalizations of the WTM

and split WP method to many-body systems are likely to yield improvements over WPMD,
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for example, in the averaged screening of ions as expressed by the pair correlation function

between electrons and ions.

In considering which method to use for a many-body simulation, it is important to balance

computational cost with physical accuracy. The SOFT method is much too expensive to

apply to much bigger systems. Table I shows the WTM to be even more expensive for a single

particle. However, a sensical generalization of this method to many bodies is to not retain

the full 6N -dimensional Wigner density, but only the total 6-dimensional Wigner density.

Such a method would add the complexity of simultaneously solving the Poisson equation to

calculate mean field forces and the possible inclusion of a collision term to mimic the effects

of the exact particle-particle scattering. This model is kinetic theory molecular dynamics

(KTMD) [15].

The split WP method is readily generalized to split WPMD in an exactly analogous way to

the generalization of the Gaussian WP method to WPMD. It would be more computationally

expensive than WPMD by about the same amount as the split WP is than the Gaussian WP

(see Tab. I), which is feasible with modern computers. It is still uncertain how to initialize

the quantum state and how to deal with the problem that the exact density will continue

to breakup into more and more pieces as time increases.

The failure of the Gaussian WP to allow breakup leads us to reject WPMD as an ab initio

many-body method for dense plasmas. It can still be treated as an empirical model and as

such has had some success (e.g. the eFF method), but every new calculation in regimes far

from prior successes should be treated with suspicion unless corroborated with experiments

and/or other models. None of this work indicates which approximations to the exact Fermi

statistics are valid nor whether degeneracy effects alter our conclusions about the validity

of WPMD for dense plasmas. At high temperatures (T ≫ TF ) such effects are irrelevant

and WPMD, even fully antisymmetrized would not predict valid electron densities and at

lower temperatures the Gaussian shape is too simple to produce proper electron screening

or atomic physics.
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