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The effect of particles falling under gravity in a weakly turbulent Rayleigh-Bénard gas flow is
studied numerically. The particle Stokes number is varied between 0.01 and 1 and their temperature
is held fixed at the temperature of the cold plate, of the hot plate, or the mean between these values.
Mechanical, thermal and combined mechanical and thermal couplings between the particles and the
fluid are studied separately. It is shown that the mechanical coupling plays a greater and greater
role in the increase of the Nusselt number with increasing particle size. A rather unexpected result
is an unusual kind of “reverse one-way coupling”, in the sense that the fluid is found to be strongly
influenced by the particles, while the particles themselves appear to be little affected by the fluid,
in spite of the relative smallness of the Stokes numbers. It is shown that this result derives from
the very strong constraint on the fluid behavior imposed by the vanishing of the mean fluid vertical
velocity over the cross sections of the cell demanded by continuity.

I. INTRODUCTION

Buoyancy-induced thermal convection, or Rayleigh-
Bénard convection, ranks among the most fundamental
fluid dynamic processes and, as such, it has been exten-
sively investigated. The vast majority of studies address
the single-phase case and several excellent reviews sum-
marize the existing considerable body of knowledge [1–
3]. Much less, however, is known for multiphase ther-
mal convection in spite of its many occurrences, e.g. in
the formation of atmospheric precipitation (see e.g. [4]),
magma chambers (see e.g. [5, 6]), boiling (see e.g. [7]),
counter-flow cooling towers (see e.g. [8]) and others.
In many studies the fluid fills a closed container heated

at the bottom and cooled at the top. This situation
has been investigated experimentally by Zhong et al. [9],
who studied the effect of bubble or drop formation in
an ethane-filled system, and by Wen and Ding [10], who
measured the heat transported by a nanofluid. Schu-
macher and co-workers [11, 12] studied numerically the
effect of condensation and evaporation in a gas-vapor
mixture focusing on the thermal aspects of phase change
but neglecting the mechanical effects of the drops on the
flow.
In several earlier papers we have studied numerically

the thermal and mechanical effects of bubble formation
on the Rayleigh-Bénard problem [13–16]. For this pur-
pose we extended the standard point-bubble model al-
ready used for isothermal bubbly flows by several re-
searchers [see e.g. 17, 18] to deal with the thermal effects
associated with phase change phenomena.
In the present paper we use a similar approach to

model the effect of thermally active particles on the
weakly turbulent Rayleigh-Bénard flow of a gas at a
Rayleigh number of 2×106. We consider a cylindrical
system with an aspect ratio (diameter/height) equal to
1/2 and investigate the effect of the particle size on the
flow in a range of Stokes numbers between approximately

0.01 and 1. The particles are assumed to have a large
heat capacity so that their temperature does not vary
appreciably as they fall through the cell. When the par-
ticles maintain the temperature of the cold upper plate,
we find a considerable increase in the heat transported
which rapidly increases with the particle size. The ef-
fect progressively decreases as the particle temperature
increases, the more slowly the larger the particles.
Other researchers have used a similar mathematical

model to investigate the effect of particles on turbulent
heat transfer in various flows. For example, Shotorban
et al. [19] studied the temperature statistics in a turbu-
lent shear flow, and both Zonta et al. [20] and Arcen et
al. [21] studied the effect of particles on the heat transfer
in a turbulent channel flow. Puragliesi et al. [22] stud-
ied by a similar method Rayleigh-Bénard convection, but
their work assumes one-way coupling, with the fluid un-
affected by the particles. In our case, the full two-way
coupling is considered and is, in fact, one of the main
issues of the work as, in order to elucidate the mecha-
nism underlying the effect of the particles, the mechani-
cal, thermal and combined mechanical-thermal couplings
are separately studied.

II. MATHEMATICAL MODEL

We study the problem in the standard Boussinesq ap-
proximation augmented by the momentum and energy
effects of the particles, treated as points (see section VE
for considerations on the validity of this aspect of the
model).
When the volume occupied by the particles is very

small, the fluid continuity equation retains the standard
incompressible form

∇ · u = 0 , (1)

in which u is the fluid velocity field. We write the mo-
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mentum equation as

ρ
Du

Dt
= −∇p+µ∇2u−βρ(T−Tc)g+

Np
∑

i=1

fiδ(x−xi) , (2)

where D/Dt is the convective derivative, p and T are
the fluid pressure and temperature fields, ρ, µ and β
the fluid density, dynamic viscosity and isobaric thermal
expansion coefficient, g the acceleration of gravity and Tc

the temperature of the cold plate; the summation is over
all the Np particles. In keeping with the point-particle
model, fi represents the force exerted on the fluid by the
point-like particle i located at xi(t):

fi =
π

6
d3pρp

(

g−
dvi

dt

)

(3)

in which ρp is the particle density, dp is the particle diam-
eter, equal for all particles in each simulation, and vi the
particle velocity. Here we have neglected the buoyancy
force which is very small in the case of solid or liquid
particles in a gas.
With the neglect of added mass effects and other small

contributions, after some rearrangement, the particle
equation of motion may be written in the usual form
(see e.g. [23])

dv

dt
=

f(Rep)

τp
(u− v) + g , (4)

where the fluid velocity is evaluated at the particle posi-
tion and the viscous relaxation time τp is given by

τp =
ρpd

2

p

18µ
. (5)

The factor

f(Rep) = 1 + 0.15Re0.687p , (6)

with Rep = dpρ|v − u|/µ the particle Reynolds number,
accounts for deviations from the Stokes drag law.
The approximations involved in the use of (1) to (6)

are standard and are amply discussed in the literature
(see e.g. [24–26]). Some comments on the applicability
of the point particle model to the present simulations are
given below in section VE.
The model for the fluid energy equation is patterned

after that for the momentum equation. We write

ρc
DT

Dt
= k∇2T +

Np
∑

i=1

Qiδ(x− xi) (7)

where k and c are the fluid thermal conductivity and
constant-pressure specific heat and Qi is the energy
source or sink due to the thermal exchange with the i-
th particle. We model this quantity by means of a heat
transfer coefficient hp,i writing

Qi = πd2php,i[Tp,i − T (xi)] , (8)

where Tp,i is the temperature of the particle (here and in
the following the subscript p refers to particle quantities).
The heat transfer coefficient is expressed in terms of a
single-particle Nusselt number

Nup =
dphp

k
, (9)

for which we use the standard correlation (see e.g. Incr-
opera et al. 2007)

Nup = 2 + 0.6Re1/2p Pr1/3 , (10)

with Pr = ν/κ the Prandtl number given by the ratio
of the fluid kinematic viscosity ν = µ/ρ to its thermal
diffusivity κ = k/ρc.
In the present work we assume that the particles main-

tain the temperature with which they are injected in the
fluid. Generally speaking, this approximation is justified
in the presence of phase change, or when the residence
time of the particles in the flow is short, in view of the
fact that their volumetric heat capacity is usually much
higher than that of the fluid; more quantitative consider-
ations on the validity of this approximation are presented
in section VE.
It order to better understand the effect of the parti-

cles, in addition to simulations based on the complete
mathematical model just described, we also describe the
results of simulations in which the particles are coupled
only mechanically, but not thermally, with the fluid and,
conversely, simulations with thermal, but no mechanical,
coupling. These “single-effect” simulations are based on
equations (2) and (7) in which the terms including sum-
mations over Qi and fi, respectively, are dropped.

III. CONTROL AND RESPONSE

PARAMETERS

The standard single-phase natural convection in the
Boussinesq approximation is controlled by the Rayleigh
number

Ra =
gβ(Th − Tc)H

3

νκ
, (11)

where g = |g|, Th and Tc are the temperatures of the hot
(bottom) and cold (top) plates, respectively, and H is the
height of the cell, by the fluid Prandtl number, and by the
geometry of the cell, which here is taken to be cylindrical
with radius R and aspect ratio Γ = 2R/H = 1/2.

We consider as our base case a situation in which, with-
out particles, Ra = 2×106 and Pr = 0.68, a value appro-
priate, for example, for air at 0 oC. With these parame-
ter values, in the absence of particles, the cell contains a
single convection roll with fluid rising along one side and
descending along the opposite side and a Nusselt number
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Parameter Value

Aspect ratio, 2R/H 1/2

Prandtl number, Pr 0.678

Rayleigh number, Ra 2 ×106

Particle number, Np 25,000

Cell height, H 0.116 m

Cell diameter, 2R 0.058 m

Temperature difference, Th − Tc 10 ◦C

Particle density, ρp 917 kg/m3

Fluid density, ρ 1.29 kg/m3

Kinematic viscosity, ν 1.37 ×10−5 m2/s

Thermal diffusivity, κ 2.02 ×10−5 m2/s

Thermal expansion coefficient, β 3.67 ×10−3 K−1

Constant-pressure fluid specific heat, c 1,000 J/kg

Free fall velocity, Uf 2.04 ×10−1 m/s

TABLE I: Summary of the fluid and particle properties used
in the simulations.

Nu approximately equal to 12. The dimensional values
of the parameters used in the simulations are shown in
Table I; the particle physical properties are close to those
of ice.
We keep the number of particles fixed at Np = 25,000

and focus on the dependence of the Nusselt number on
the particle diameter dp and, consequently, on the mean
particle volume fraction 〈αp〉 = 1

6
πd3pNp/(πR

2H), and

on the mass loading Mp = Npmp/(πR
2Hρ), with mp the

particle mass given by mp = 1

6
πd3pρp. Other important

quantities that depend on the particle diameter are the
terminal velocity vt, given by (4) with dv/dt = 0:

vt =
τp

f(Ret)
g , (12)

with Ret = dpvt/ν, and the characteristic dimensionless
residence time

θ =
H/vt
H/Uf

=
Uf

vt
, (13)

in which

Uf =
√

gβ(Th − Tc)H , (14)

is the free-fall velocity. Non-dimensional times are con-
sistently expressed in terms of H/Uf .
Two Stokes numbers can be defined, one based on the

fluid free-fall velocity

Stf =
τpUf

H
, (15)

and one based on the Kolmogorov time scale
√

ν/ǫ:

StK = τp

√

ǫ

ν
, (16)

dp 105〈αp〉V,t vt H/vt τp mp

(µm) (mm/s) (s) (ms) (ng)

25 0.067 17.4 6.62 1.80 7.50

50 0.534 66.6 1.72 7.14 60.0

75 1.80 141 0.815 16.2 202

100 4.27 232 0.495 28.8 480

125 8.34 334 0.344 44.9 937

150 14.4 438 0.262 64.7 1620

175 22.9 550 0.209 88.1 2572

200 34.2 658 0.175 115 3839

TABLE II: Mean volume fraction 〈αp〉V,t, particle terminal
velocity vt, residence time scale H/vt, characteristic particle
time scale τp and particle mass mp corresponding to the par-
ticle diameters used in the simulations.

dp 102Mp vt/Uf 102vtτp/H Ret Pet 103StK 103Stf

(µm)

25 0.049 0.0852 0.027 0.0318 0.0216 12.6 3.17

50 0.395 0.327 0.415 0.244 0.165 50.4 12.7

75 1.33 0.692 1.98 0.775 0.525 113 28.6

100 3.16 1.14 5.79 1.70 1.15 201 50.8

125 6.17 1.64 13.0 3.06 2.07 315 79.4

150 10.7 2.15 24.5 4.81 3.26 452 114

175 16.9 2.70 42.1 7.05 4.78 619 156

200 25.3 3.23 65.6 9.64 6.54 805 203

TABLE III: Dimensionless particle parameters as func-
tions of the particle diameter dp: mass loading Mp =
π
6
d3pρpNp/(πR

2Hρ); dimensionless terminal velocity (or in-
verse dimensionless residence time in the cell) vt/Uf ;
Reynolds and Péclet numbers based on the terminal velocity,
Ret and Pet; Kolmogorov-scale Stokes number StK ; large-
scale Stokes number Stf .

with ǫ the energy dissipation rate. This latter quan-
tity can be estimated from the well-known exact rela-
tion valid for single-phase Rayleigh-Bénard convection
(see e.g. Ref. [2])

ǫ =
ν3

H4

Ra

Pr2
(Nu− 1) . (17)

With the present parameter values, for single-phase con-
vection, we find approximately

√

ν/ǫ ≃ 0.157 s. Dimen-
sional numerical values for various particle quantities of
interest are given in Table II and non-dimensional ones
in Table III.
We consider three different particle temperatures,

“cold” particles, with Tp = Tc, “hot” particles, for which
Tp = Th, and “warm” particles with Tp = Tm, where

Tm ≡
1

2
(Th + Tc) , (18)

is the mean of the hot and cold plate temperatures.
The full parameter space of the problem is large and

it is not possible to explore it fully in a project of rea-
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sonable scope. While the situation we have chosen is
rather far from what might be considered as fully devel-
oped turbulent Rayleigh-Bénard convection, this choice
permits us to explore in detail the effect of the particle
size and temperature, which are parameters of primary
importance in the problem.
In steady single-phase natural convection the heat flux

into the base of the cell (located at z = 0) equals that
out of the top (located at x = H). The corresponding
Nusselt numbers Nuh and Nuc at the hot and cold plates
are equal and can be calculated from

Nuh = Nuc = −
H

Th − Tc
〈∂zT 〉A,t|z=0,H . (19)

Here ∂z denotes the derivative in the upward vertical di-
rection and 〈(. . .)〉 indicates mean values with the average
taken over the subscripted quantities, i.e., here, the cross-
sectional area A and the time t. The same convention is
followed consistently in this paper to indicate averages of
fluid quantities.
In the presence of particles the equality between Nuh

and Nuc no longer holds as part of the energy is taken up
or released by the particles. By integration of the energy
equation over the cell volume it was shown in Ref. 13
that

Nuh = 1 +
H

κ(Th − Tc)
〈uz(T − Tc)〉V,t

−
1

πR2k(Th − Tc)

〈

∑

i

(H − zi)Qi

〉

t

,(20)

and

Nuc = 1 +
H

κ(Th − Tc)
〈uz(T − Tc)〉V,t

+
1

πR2k(Th − Tc)

〈

∑

i

ziQi

〉

t

. (21)

In the case of single-phase flow, Qi = 0 and these two ex-
pressions become equal, as expected, and they give an al-
ternative, although equivalent, form for the single-phase
Nusselt number, namely

Nuh = Nuc = 1 +
H

κ(Th − Tc)
〈uz(T − Tc)〉V,t .

The first term in the right-hand sides of (20) and (21) is
due to conduction, the second one to convection, and the
last one is the particle contribution.
In order to understand the effect of the particles on

the convection in the cell it is also useful to consider the
azimuthal Fourier modes En of the fluid kinetic energy
distribution. These quantities are defined by

En =
π

βgH4(Th − Tc)

∫ R

0

rdr

∫ H

0

dz〈|un|
2〉t , (22)

in which un is the n−th Fourier coefficient of the vector
velocity field in the angular variable. The mode n = 0

corresponds to a toroidal circulation symmetric around
the vertical axis of the cylinder, while the mode n = 1
has the form of a vortex around a horizontal axis. In the
particle-free case it is found that the circulation transi-
tions from a dominant n = 0 state to an n = 1 state
as the Rayleigh number is increased. In this sense, we
can think of the n = 0 mode as a lower-energy mode
compared with the n = 1 mode.

IV. NUMERICAL METHOD AND PROCEDURE

The numerical method used in this work has been de-
scribed in our previous publications (see especially [13])
and only the essential aspects will be summarized here.
We solve the continuity, momentum and energy equa-

tions in a cylindrical domain of radius R and height H .
No-slip conditions are applied on all the solid surfaces.
The temperature of the top and bottom surfaces is kept
constant at Tc and Th, respectively, while the lateral
boundary is assumed to be adiabatic.
The Navier-Stokes equations are solved in a cylindrical

coordinate system using a second-order, finite difference,
fractional-step method on a staggered grid. The advec-
tive terms are treated explicitly, the viscous terms im-
plicitly and the Runge-Kutta third order scheme is used
for time marching.
According to the Kolmogorov theory (see e.g. [2]), the

size of the dissipative length scales η can be estimated

as η/H = Re−3/4 where Re is the Reynolds number
based on the cell height and the root-mean-square fluid
velocity. With a maximum Re of order 800, we find
η/H ≃ 6.6 × 10−3, which is adequately resolved by our
grid of 193× 49× 193 nodes in the azimuthal, radial and
axial directions, respectively, as shown in our previous
work [13, 16]. We have used the same number of nodes
for all the simulations described in this paper clustering
them near the top and bottom plates and the side wall.
As a result of this clustering, at least 10 nodes fall in the
viscous boundary layers on the side walls (estimated as
the cell radius divided by the square root of the largest
value of the Reynolds number encountered in the present
simulations) and at least 15 in the thermal layers adjacent
to the plates (estimated as the cell height divided by the
largest value of the Nusselt number, since the strongest
circulation takes place with cold particles, which bring
the temperature at the edge of the hot boundary layer
close to Tc rather than Tm as in ordinary Boussinesq
single-phase convection, see figure 5).
Once the flow fields of the fluid phase have been cal-

culated, the new particle velocity is found by an implicit
integration of the particle momentum equation (4) by the
trapezoidal rule; the particle position is updated by the
third-order Runge-Kutta method.
The (dimensionless) time step ∆t is smaller than the

lesser between the Stokes number and the time required
for a particle to cross a computational cell. For mechani-
cally coupled 200 µm particles we have run tests halving
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FIG. 1: (Color on line) Area- and time-averaged normalized
number density of thermally and mechanically coupled “cold”
particles as a function of height in the cell; dp = 25 µm (trian-
gles, red), dp = 100 µm (circles, blue), dp = 175 µm (squares,
green) and dp = 200 µm (crosses, purple). These are the only
simulations described in this paper in which particles are in-
jected at the top plate with the local fluid velocity.

∆t from 10−3 to 0.5×10−3 finding differences of less than
1%.

Upon integration of the fluid momentum and energy
equations over a computational cell, the contribution of
the particles is localized at their position and this effect
must be replaced by an equivalent one localized at the
computational nodes. This objective is achieved by a
second-order-accurate interpolation as described in [13].
The interpolation preserves the resultant and the couple
of the particle forces, as well as the total amount of heat
that each particle exchanges with the fluid.

When a particle reaches the bottom of the cell, it
is removed from the calculation and a new particle is
re-injected at a random position on the top plate. If
this particle is given a velocity equal to that of the sur-
rounding fluid (which, near the plate, is very small),
it takes some time to accelerate. As a consequence, a
thick, particle-rich layer forms near the top plate, the
thicker the smaller the settling velocity. This feature
is demonstrated in figure 1 which shows the time- and
area-averaged particle number density 〈n〉A,t normalized
by the volumetric number density, n0 = Np/(πR

2H), for
dp = 25, 100, 175 and 200 µm. This particle accumu-
lation would obscure the comparison among the effects
of different particle radii. To avoid this shortcoming, we
re-inject the particles with a downward velocity equal to
the settling velocity. In practice, this may model a liq-
uid spray falling through the gas. As shown later after
(26), the mean fraction of particles Ninj/Np re-injected
per unit dimensionless time is about vt/Uf .

At injection, the particle temperature is set to Tc, Th

or Tm = 1

2
(Th + Tc) as noted before. We found that the

“hot” particles with Tp = Th result in a nearly complete
suppression of convection in the cell. Accordingly, we
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FIG. 2: (Color on line) Hot plate Nusselt number as a function
of the particle diameter dp for “cold” (circles and blue lines)
and “warm” (diamonds and red lines) particles (Tp = Tc,
Tp = Tm, respectively). The dashed lines (open symbols,
label Q) show results with thermal coupling only and the solid
lines (filled symbols, label f +Q) with combined thermal and
mechanical coupling. The lowest, green line (open squares,
label f) show results for mechanical coupling only, which are
independent of the particle temperature.

show only very limited results for this case.

V. RESULTS

Figure 2 summarizes the results of the present study
in the form of a graph showing the dependence of the
bottom-plate Nusselt number, Nuh, vs. the particle di-
ameter with mechanical, thermal, or combined mechan-
ical and thermal couplings. The blue lines (circles) are
for the case of “cold” particles, i.e., with Tp = Tc, and
the red lines (diamonds) for “warm” particles, i.e., with
Tp = 1

2
(Th + Tc). Here and in the following, filled sym-

bols denote results with combined thermal and mechani-
cal fluid-particle coupling while open symbols refer to ei-
ther thermal or mechanical coupling only. The case with
“hot” particles, i.e., Tp = Th will be dealt with briefly
later.
These results become clearer if we consider at the same

time the Reynolds number Re of the fluid flow, which is
shown in figure 3 with the same symbols and line types.
This quantity is calculated on the basis of the cell height
and of the r.m.s. velocity

√

〈u2〉V,t which provides a good
estimate of the mean velocity in the cell.

A. Mechanical coupling

In order to understand the results of figures 2 and 3 it
is useful to start by neglecting the fluid-particles heat ex-
change focusing only on the mechanical coupling shown,
here and in the following figures, by squares (and green
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FIG. 3: (Color on line) Fluid Reynolds number (based the
volume- and time-averaged r.m.s. velocity) as a function of
the particle diameter dp for “cold” (circles and blue lines)
and “warm” (diamonds and red lines) particles (Tp = Tc,
Tp = Tm, respectively). See the caption to figure 2 for further
details.

lines). It is seen that, as the particle diameter increases,
both the Nusselt and the Reynolds numbers initially de-
crease and then increase. The decrease is due to the drag
that the particles exert on the fluid, especially in the cold
and hot boundary layers near the top and bottom plates
where their velocity tends to be approximately perpen-
dicular to that of fluid. In principle, this effect could be
counteracted by an accumulation of lighter particles in
the descending stream, which would increase its velocity,
as one might expect on the basis of the behavior of bub-
bles in Rayleigh-Bénard convection, which are swept up
and accumulate in the ascending stream [16]. However,
with the present parameter values, this phenomenon does
not occur even for the 25 µm particles as we have found
by calculating the position of the center of mass of the
particle distribution over the cross sections throughout
the cell height. For all particle diameters, we have con-
sistently found that the center of the particle distribu-
tion coincides with the axis of the cell to within less than
10−3H . Thus the particles can be considered to be uni-
formly distributed over the horizontal cross section so
that the acceleration that they impart to the colder, de-
scending fluid stream is balanced by the retardation that
they cause on the warmer, ascending stream. What re-
mains is the drag they impose on the flow in the thermal
boundary layers, which is responsible for the decline of
both Nuh and Re caused by the smaller particles shown
in figures 2 and 3.

The marked increase of the Reynolds number with par-
ticle size after the minimum at around dp ≃ 50 µm is due
to the gradual prevailing of an opposing mechanism. As
the particles fall, they drag fluid with them, the more
the bigger their diameter (see also figure 10 below). The
consequences of this effect are evident in figure 4 which
shows instantaneous snapshots of the vertical velocity on

FIG. 4: (Color on line) Vertical fluid velocity on the mid-plane
cross section at z = 1

2
H for purely mechanical coupling; (a)

single-phase, (b) dp = 25 µm, (c) dp = 100 µm, (d) dp = 200
µm; note the enlarged scale for the last case.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50  75  100  125  150  175  200

<
 (

 T
 -

 T
c 

) 
>

V
,t
 /

 (
 T

h
 -

 T
c 

)

dp (µm)

Tc

Tm

f+Q
   Q
f     
f+Q
   Q

FIG. 5: (Color on line) Volume- and time-averaged fluid tem-
perature as a function of the particle diameter dp for “cold”
(circles and blue lines) and “warm” (diamonds and red lines)
particles (Tp = Tc, Tp = Tm, respectively). See the caption
to figure 2 for further details.
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FIG. 6: (Color on line) Volume-averaged convective contribu-
tion to the hot-plate Nusselt number, Eq. (20), as a function
of the particle diameter dp for “cold” (circles and blue lines)
and “warm” (diamonds and red lines) particles (Tp = Tc,
Tp = Tm, respectively). See the caption to figure 2 for further
details.

the cross section at the mid-plane of the cell, z = 1

2
H , for

the single-phase case and for dp = 25, 100 and 200 µm. It
can be seen here that, as the particle size increases, the
fraction of area occupied by descending fluid increases.
Since, by continuity, the mean fluid vertical velocity on
each cross section must vanish, the narrowing of the as-
cending stream causes the ascending fluid to increase its
speed and both the heat flux and Re increase. (A care-
ful analysis of the numerical results shows that the very
slight anomaly visible near the center of figure 4d is a
plotting artifact and not the manifestation of an insuffi-
ciently accurate treatment of the singularity on the axis
of the cell.)

These conclusions are corroborated by figures 5 and 6
which show, respectively, the time- and volume-averaged
temperature in the cell and the contribution of the con-
vective term to the Nusselt number, both as functions
of the particle diameter dp. It is well known that, in
the Boussinesq approximation, in the single-phase case
the mean temperature in the cell is very close to Tm =
1

2
(Th+Tc) (see e.g. [2]). Again focusing on the results for

purely mechanical coupling (squares, green lines), we see
that the temperature is close to this value for the smaller
particles, but then decreases slightly with dp as the de-
scent of the colder fluid is aided by the falling particles.
The convective contribution to the Nusselt number (sec-
ond term in Eq. 20) follows a trend similar to that of
figure 3 for the Reynolds number.

Further insight into the nature of the flow in the cell
can be gained by considering the distribution of the
mean fluid kinetic energy among the different azimuthal
Fourier modes defined in (22). Figure 7 shows the ra-
tio E1/E0 vs. the particle diameter. Without parti-
cles this ratio is close to 3, indicating a flow structure
dominated by an annular mode with an approximately
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FIG. 7: (Color on line) Ratio E1/E0 of the first two angu-
lar Fourier modes of the kinetic energy defined in (22) as a
function of the particle diameter dp for “cold” (circles and
blue lines) and “warm” (diamonds and red lines) particles
(Tp = Tc, Tp = Tm, respectively). See the caption to figure 2
for further details.

FIG. 8: (Color on line) Trajectories of randomly selected fluid
particles with the color keyed to the local vertical velocity for
purely mechanical coupling. Instantaneous vertical velocities
on the cross sections at 0.05H , 0.5H and 0.95H are shown
similarly to figure 4; (a) single-phase, (b) dp = 25 µm, (c)
dp = 100 µm, (d) dp = 200 µm; note the enlarged scale for
the last case.
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horizontal axis as explained after (22). As the parti-
cle diameter increases, this mode is weakened and the
nearly axisymmetric toroidal vortex structure becomes
more prominent, until the annular mode returns to dom-
inate for large particles. These features can be recog-
nized in the sample fluid particle trajectories shown in
the three-dimensional views of figure 8; here the verti-
cal velocity distributions in the cross sections located at
z/H = 0.05, 0.5 and 0.95 are also shown.
The lines in figure 7 show local maxima for several val-

ues of the particle diameter in the different cases but not
too much can be read in these features as modes 0 and 1
are insufficient to fully characterize the flow in the cell.
Indeed, while the energy of some higher modes, and espe-
cially modes 2 and 3, is smaller, it is comparable to that
of modes 0 and 1. These local features (which we con-
firmed by averaging over significantly longer simulations
in several cases) are due to subtle redistributions of the
energy among the various modes. For example, the max-
imum at dp = 75 µm in the mechanical coupling case
(squares, green line) is found to correspond to a slight
decrease of E2 and E3 to the benefit of E1.

B. Thermal coupling

Let us now turn to the converse case in which mechan-
ical coupling is absent and only the thermal interaction
between fluid and particles is considered (dashed lines,
open symbols). The important physical process to keep
in mind is embodied in the last term of (20):

−
1

πR2k(Th − Tc)

〈

∑

i

(H − zi)Qi

〉

t

=
d2p

R2k(Th − Tc)

〈

∑

i

(H − zi)hp,i[Ti − Tp]

〉

t

.(23)

For “cold” particles (Tp = Tc, blue lines and circles), the
local fluid temperature Ti is mostly higher than the par-
ticle temperature Tp, the fluid loses heat and this term
gives a positive contribution to the Nusselt number (fig-
ure 2) the larger H − zi, i.e., the closer the particle is
to the hot base of the cell. It is evident that cooling the
fluid in this region will increase the heat subtracted from
the hot plate, and all the more as the heat is subtracted
closer to it. This is the origin of the strong increase in the
Nusselt number with dp visible in figure 2. For particles
smaller than about 125 µm this effect is actually dom-
inant with respect to the mechanical forcing, the addi-
tion of which gives nearly indistinguishable results (solid
line, filled symbols). For “warm” particles (Tp = Tm,
red lines and diamonds), the effect portrayed by (23) is
much weaker as the local fluid temperature over most
of the fluid volume is very close to Tm as is also shown
in figure 5. The cause of the increase in Nuh as dp ex-
ceeds about 50 µm in this case is due to the fact that the
fluid-particle temperature difference in (23) is weighted

by H − zi: the cooling of the fluid where Ti < Tm = Tp

occurs near the upper cold surface, where H−zi is small,
while heating occurs near the hot base, where H − zi is
larger. For both “cold” and “warm” particles the increase
with dp is approximately linear as d2php = kdpNup and
the dependence of Nup on dp is fairly weak.
With thermal coupling only, the Reynolds number

quickly becomes unimportant (figure 3) as the particles
tend to render the fluid temperature approximately uni-
form over the cell thus weakening the very cause of the
circulatory flow. For the same reason, the convective
contribution to the Nusselt number becomes less and less
important with dp (figure 6) as, with an approximately
uniform T , 〈uz(T − Tc)〉V,t ≃ 〈T − Tc〉V,t〈uz〉V,t = 0.
This strong effect of the thermal coupling on the fluid
temperature is demonstrated by the near-equality of the
mean fluid temperature with or without the addition of
mechanical coupling (figure 5).

C. Mechanical and thermal coupling

It is now easier to understand the results for the com-
bined thermal and mechanical couplings. Figure 2 shows
that, in the case of cold particles, Nuh is always greater
than for the single-phase case. Up to dp ≃ 125 µm this
is the result of the thermal coupling only. For larger par-
ticles the increased circulation described before proves
beneficial and gives a further strengthening of the heat
subtracted from the hot plate. At the same time, the
convective contribution to Nuh strengthens considerably
(figure 6). The increased circulation also proves bene-
ficial for “warm” particles, although to a lesser extent.
In both cases the Reynolds number is found to be little
affected by the thermal coupling due to the mechanical
strengthening of the circulation.

D. Further aspects

The previous considerations can be complemented by
analyzing several other aspects of the phenomena of
present interest with combined thermal and mechanical
coupling.
Figure 9 shows the area-averaged particle vertical ve-

locity as a function of height for particles with diameters
of 25 (red line, triangles), 100 (blue line, circles), 175
(green line, squares) and 200 µm (purple line, crosses).
The vertical component of the particle momentum equa-
tion (4) averaged over time and all the particles in a
cross section (indicated by an overline with superscript
A, t) may be written as

vz
A,t = uz

A,t − vt
f(Ret)

f(Rep)

(

1 +
1

g

dvz
dt

)A,t

, (24)

in which vt is the terminal velocity defined in (12). If the
particles sampled all points of the cross section equally



9

 0

 0.2

 0.4

 0.6

 0.8

 1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

z 
/ 

H

––
vz

A,t
 / [gβ (Th-Tc)H]

1/2

dp=  25
dp=100
dp=175
dp=200

FIG. 9: (Color on line) Average vertical velocity of thermally
and mechanically coupled “cold” particles as a function of
height in the cell for dp = 25 µm (triangles, red), dp = 100
µm (circles, blue), dp = 175 µm (squares, green) and dp = 200
µm (crosses, purple).

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.16 -0.12 -0.08 -0.04  0

z 
/ 

H

––
uz

A,t
 / [gβ (Th-Tc)H]

1/2

dp=  25
dp=100
dp=175
dp=200

FIG. 10: (Color on line) Average fluid vertical velocity at the
particle position as a function of height in the cell. The results
refer to thermally and mechanically coupled “cold” particles;
dp = 25 µm (triangles, red), dp = 100 µm (circles, blue),
dp = 175 µm (squares, green) and dp = 200 µm (crosses,
purple).

and had a small effect on the fluid velocity, we would
have uz

A,t = 〈uz〉A,t = 0. For small particles inertia
is unimportant and f(Ret) ≃ f(Rep) = 1 so that one
expects that vz

A,t = −vt, which is indeed the result
shown in figure 9 for dp = 25 µm.

The results for larger particles deviate more and more
from this prediction. The origin of this feature can be
seen in figure 10 which shows uz

A,t, namely the mean of
the fluid velocity at the particle position. As the figure
shows, this mean value becomes more and more nega-
tive as the particle size increases and contributes to the
particle downward velocity as (24) shows. This result
might seem unexpected since, as mentioned before, our
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FIG. 11: (Color on line) Vertical (circles, blue) and horizontal
(triangles, red) mean accelerations of thermally and mechan-
ically coupled “ cold” particles as functions of the particle
diameter dp. The squares (green line) show the mean of the
modulus of the vertical acceleration. All accelerations are
normalized by division by g.

particles are very nearly uniformly distributed over the
cross section, and the mean fluid velocity over any cross
section must vanish. By averaging over a considerably
longer time we have satisfied ourselves that this result
is not an artifact of an insufficient sampling of the cross
section. Rather, its origin must be sought in the fact
that larger particles drag down the surrounding fluid with
them. The effect is a marked reduction in the cross sec-
tion occupied by the ascending fluid, an increase in its
upward velocity, and a consequent increase in the con-
vective transport as mentioned before.
As shown in (24), two other factors contribute to a dif-

ference between the mean settling velocity vz
A,t and the

terminal velocity vt. The first one is the particle accel-
eration, the importance of which can be estimated from
figure 11, which shows the volume- and time-averaged
normalized particle accelerations:

1

g

∣

∣

∣

∣

dvz
dt

∣

∣

∣

∣

V,t

,
1

g

dvz
dt

V,t

,
1

g

∣

∣

∣

∣

dvh
dt

∣

∣

∣

∣

V,t

, (25)

with vh the horizontal velocity. For dp < 100 µm all
acceleration components are virtually zero. Inertia be-
comes more important for larger particles, although the
accelerations are still only a few percent of gravity at the
most. Interestingly, the mean of dvz/dt is negative, which
implies a mean downward acceleration, and is smaller in
modulus than the mean of |dvz/dt| so that there are re-
gions where the acceleration is upward.
Conservation of the particle number in steady-state

conditions dictates that the area- and time-averaged ver-
tical particle flux 〈nvz〉A,t be independent of z. We have
verified that constancy of the vertical particle flux holds
to better than 0.5% in all our simulations. Since, as
shown in figure 9, the particle velocity increases slightly
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FIG. 12: (Color on line) Area- and time-averaged normalized
number density of thermally and mechanically coupled “cold”
particles as a function of height in the cell; dp = 25 µm (trian-
gles, red), dp = 100 µm (circles, blue), dp = 175 µm (squares,
green) and dp = 200 µm (crosses, purple).

with depth (particularly for the larger particles), we then
expect the particle concentration to decrease as indeed is
found in figure 12 (although, of course, 〈nvz〉A,t is not
precisely equal to to the product 〈n〉A,t〈vz〉A,t).

Introducing the particles at their terminal velocity has
the consequence that 〈nvz〉A,t|H = 〈n〉A,t|H vt, where
〈n〉A,t|H is the mean number density at the upper plate.
Figure 13 shows the normalized flux

F ∗

z =
〈nvz〉A,t|z=0

n0vt
, (26)

as a function of the particle diameter. It is seen that
this quantity is essentially 1, rising to just short of 1.03
for dp = 200 µm. These data are for “cold” particles
with full mechanical and thermal coupling, but results
with either coupling and different temperatures are ba-
sically indistinguishable. If the particles maintained a
uniform number density equal to n0, the volume aver-
age, and fell undisturbed at their terminal velocity, we
would have 〈nvz〉A,t = n0vt and F ∗

z = 1. The closeness
of the computed F ∗

z to 1 is a further indication of the
apparent decoupling of the particles from the fluid dis-
cussed in section VE.

We can use this result for a further consistency check
on the calculation as the number of particles introduced
per unit time at the top of the cell must be given by the
product of the cross-sectional area times 〈nvz〉A,t. The
result of this calculation matches the direct counting of
particles introduced per unit time. Figure 13 shows that
this number is very close to πR2n0vt = Npvt/H or, in
dimensionless form Npvt/Uf .
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FIG. 13: (Color on line) Normalized particle flux, defined in
equation (26), at the bottom plate as a function of particle di-
ameter for mechanically and thermally coupled cold particles,
Tp = Tc.
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FIG. 14: (Color on line) Area- and time-averaged normalized
fluid temperature at the particle location for thermally and
mechanically coupled “cold” particles as a function of height
in the cell; dp = 25 µm (triangles, red), dp = 100 µm (cir-
cles, blue), dp = 175 µm (squares, green) and dp = 200 µm
(crosses, purple).

E. Discussion

The results shown, and in particular those in figure
13 for F ∗

z , suggest a very unusual sort of “one-way cou-
pling” between the fluid and the particles, which is ex-
actly the opposite of what this denomination usually im-
plies. Indeed, we have found that the particles seem to
be little influenced by the flow of the fluid, while they
have a very strong effect on it. This conclusion is un-
expected and appears inconsistent with the smallness of
both large-scale and Kolmogorov-scale Stokes numbers
shown in Table III. The resolution of the paradox lies in
the very strong constraint that the vanishing of the area-
averaged fluid vertical velocity imposes on the system.
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As noted in connection with the expression (24) for the
mean particle velocity, particles so small as to be nearly
passive tracers might well follow the fluid’s fluctuating
velocity but nevertheless, on average, they must fall at
their terminal velocity. Very heavy particles would not
follow the fluid but would also essentially fall at their ter-
minal velocity. Thus vz

A,t must equal vt for both small
and large particles so that its behavior in between these
limits is severely constrained. The situation would be
different for particles or bubbles in a liquid, where the
acceleration term in (24) might be expected to play a
much stronger role.

Two major aspects of the particle model used in this
work are worth discussing, the point-like approximation
and the assumption of a constant temperature. The for-
mer is justified provided the particles are smaller than the
smallest fluid scale. With the estimate of the Kolmogorov
scale given in section IV, we find that the smallest value
of η in our simulations is nearly a factor of 4 larger than
the largest particles. This circumstance justifies the ap-
plicability of the point-particle model to these particles
and, a fortiori, to the smaller ones. In any event, a care-
ful examination of this aspect of the present work must
await further improvement of the current state of the art.

As for the assumption of a constant particle temper-
ature we may note that, at a qualitative level, it may
be expected that allowing “cold” particles to heat up
would give results intermediate between those found for
“cold” and “warm” particles, and similarly for “warm”
particles. At a more quantitative level, one may compare
the duration of the particles’ exposure to the fluid with
the time scale for a change in their temperature, namely
cpmp/(πd

2

php), with cp the particle specific heat (close to
2050 J/kg for ice at the melting point). For this anal-
ysis to be meaningful, it must be based on the effective
particle-fluid temperature difference, rather than on the
temperature difference Th−Tc between the hot and cold
plates. Figure 14 shows the mean fluid temperature at
the particle position as a function of height in the cell
for mechanically and thermally coupled “cold” particles
with diameters of 25, 100, 175 and 200 µm. Aside for
the smallest particles, a significant temperature differ-
ence only exists near the bottom plate over a thickness
of a few percent of the cell height. If we estimate the
exposure time as 4% of the cell height divided by the
terminal velocity, the ratio of the two time scales ranges
from about 20 for dp = 25 µm to 0.01 for dp = 200 µm,
with an approximately inverse proportionality to d4p. The
temperature change may therefore be expected to be neg-
ligible for particles larger than about 50 µm, but not nec-
essarily so for smaller particles. For ice particles, heating
up will be preceded by melting. The dimensionless ratio
relevant here is the energy that a particle receives during
its exposure to the warmest fluid, namely πd2php(Th−Tc),
multiplied by the exposure time, to the energy necessary
to melt it, mphfg (with hfg the latent heat of fusion, ap-
proximately 334 kJ/kg for ice). With the maximum tem-
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FIG. 15: (Color on line) Hot plate Nusselt number as a func-
tion of the particle diameter dp for “hot” particles, Tp = Th.
The dashed line (label Q) shows results with thermal coupling
only and the solid line (label f + Q) with combined thermal
and mechanical coupling.

perature difference lasting the time to fall through 4% of
the cell height, this ratio, which is also approximately
inversely proportional to d4p, varies between about 6 and
0.003. Thus, again, smaller particles may be expected to
melt and heat up. The situation is similar for “warm”
particles, whose exposure to a temperature very different
from their own is also limited as suggested by figure 5.
The precise consequences of the thermal response of small
particles remains therefore an interesting point which we
plan to address in future studies.

F. “Hot” particles

As the temperature of the settling particles increases,
the mean temperature difference between the lower and
upper parts of the cell decreases and the buoyant con-
vection becomes weaker and weaker. In the case of “hot”
particles, with Tp = Th, the effect is to essentially com-
pletely stop the convection except for the smallest par-
ticles. This is demonstrated in figure 15 which shows
the Nusselt number at the hot plate as a function of
the particle diameter for both mechanical and combined
mechanical-thermal couplings. The difference between
the two cases is minimal, and Nuh is very close to 0 in
spite of the fact that the Reynolds number (figure 16)
and the convective contribution (figure 17) increase for
larger particles. The figures clearly show that this in-
crease is a purely mechanical effect that has no bearing
on the heat transfer.

VI. SUMMARY AND CONCLUSIONS

We have studied the effect of particles with a pre-
scribed temperature falling under gravity in a Rayleigh-
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FIG. 16: (Color on line) Fluid Reynolds number calculated
with the volume- and time-averaged r.m.s. velocity as a func-
tion of the particle diameter dp for “hot” particles, Tp = Th.
The dashed line (label Q) shows results with thermal coupling
only and the solid line (label f + Q) with combined thermal
and mechanical coupling.

Bénard cell filled with a much lighter fluid (gas). We
have considered different particle diameters and cases
in which the particle temperature equals either one of
the prescribed temperatures at the hot or cold bases of
the cell, or their average. We have also investigated the
separate effects of purely mechanical, purely thermal, or
combined mechanical and thermal couplings between the
particles and the fluid. We have found a very strong ef-
fect of the mechanical coupling with increasing particle
diameter: the falling particles tend to drag fluid down,
which constrains the ascending stream to a smaller and
smaller fraction of the cross section thus increasing its
velocity.
A rather unexpected result has been a very unusual

kind of reverse “one-way coupling” between the particles
and the fluid, in the sense that the results show a very
small effect of the fluid on the particles, but a large ef-
fect of the particles on the fluid, in spite of the smallness
of the Stokes numbers. This result is the consequence
of the very strong constraint on the fluid behavior that

is imposed by the vanishing of the fluid vertical velocity
averaged over the cross section of the cell. The fact that
similar features are found also for “warm” and “hot” par-
ticles suggests that it is a robust outcome of the physics
of the process investigated that would persist even if the
particles were allowed to change their temperature in re-
sponse to heat exchange with the fluid.

Acknowledgments

The authors are grateful to Professors D. Lohse and R.
Verzicco for several useful suggestions. We acknowledge
the kind support provided by the IT staff of the Cen-
tro Cultura Innovativa d’Impresa, University of Salento,

 0

 2

 4

 6

 8

 10

 12

 0  25  50  75  100  125  150  175  200<
 u

z 
(T

 -
 T

c)
 >

V
,t
 H

/[
κ 

( 
T

h
 -

 T
c 

)]

dp (µm)

f+Q
   Q

FIG. 17: (Color on line) Convective contribution to the hot-
plate Nusselt number, Eq. (20), as a function of the particle
diameter dp for “hot” particles, Tp = Th. The dashed line
(label Q) shows results with thermal coupling only and the
solid line (label f+Q) with combined thermal and mechanical
coupling.

where the computations where carried out. PO and
AP gratefully acknowledge support by FIRB under grant
RBFR08QIP5 001 and NSF under grant CBET 1258398,
respectively.

[1] E. Bodenschatz, W. Pesch, and G. Ahlers, Ann. Rev.
Fluid Mech. 32, 709 (2000).

[2] G. Ahlers, S. Grossmann, and D. Lohse, Revs. Mod.
Phys. 81, 503 (2009).

[3] D. Lohse and K.-Q. Xia, Ann. Rev. Fluid Mech. 42, 335
(2010).

[4] R. A. Shaw, Ann. Rev. Fluid Mech. 35, 183 (2003).
[5] A. M. Jellinek and R. C. Kerr, J. Volcanol. Geotherm.

Res. 110, 253 (2001).
[6] I. Molina, A. Burgisser, and C. Oppenheimer, J. Geo-

phys. Res. Solid Earth 117, B07209 (2012).
[7] V. K. Dhir, Ann. Rev. Fluid Mech. 30, 365 (1998).

[8] J.-K. Kim and R. Smith, Chem. Eng. Sci. 56, 3641
(2001).

[9] J. Q. Zhong, D. Funfschilling, and G. Ahlers, Phys. Rev.
Lett. 102, 124501 (2009).

[10] D. S. Wen and Y. L. Ding, IEEE Trans. Nanotech. 5, 220
(2996).

[11] J. Schumacher and O. Pauluis, J. Fluid Mech. 648, 509
(2010).

[12] T. Weidauer, O. Pauluis, and J. Schumacher, Phys. Rev
E84, 046303 (2011).

[13] P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti,
Phys. Rev. E80, 026304 (2009).



13

[14] L. E. Schmidt et al., New J. Phys. 13, 025002 (2011).
[15] R. Lakkaraju et al., Phys. Rev. E84, 036312 (2011).
[16] R. Lakkaraju et al., Proc. Nat. Acad. Sci. , in press

(2013).
[17] E. Climent and J. Magnaudet, Phys. Fluids 18, 103304

(2006).
[18] I. M. Mazzitelli and D. Lohse, Phys. Rev. E79, 066317

(2009).
[19] B. Shotorban, F. Mashayek, and R. V. R. Pandya, Int.

J. Multiphase Flow 29, 1333 (2003).
[20] F. Zonta, C. Marchioli, and A. Soldati, Acta Mechanica

218, 357 (2011).

[21] B. Arcen, A. Taniere, and M. Khalij, Int. J. Heat Mass
Transfer 55, 6519 (2012).

[22] R. Puragliesi et al., Int. J. Heat Fluid Flow 32, 915
(2011).

[23] J. K. Eaton, Intl. J. Multlphase Flow 35, 792 (2009).
[24] S. Elghobashi, Appl. Sci. Res. 52, 309 (1994).
[25] A. Ferrante and S. Elghobashi, Phys. Fluids 15, 315

(2003).
[26] S. Balachandar and J. K. Eaton, Ann. Rev. Fluid Mech.

42, 111 (2010).


