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Abstract

In this work, the role of the hydrodynamic forces on a swimming microorganism near an air-liquid

interface is studied. The lubrication theory is utilized to analyze hydrodynamic effects within the

narrow gap between a flat interface and a small swimmer. By using an archetypal low-Reynolds-

number swimming model called “squirmer”, we find that the magnitude of the vertical swimming

velocity is in the order of O(ǫ log ǫ), where ǫ is the ratio of the gap width to the swimmer’s body

size. The reduced swimming velocity near an interface can explain experimental observations of

the aggregation of microorganisms near a liquid interface.
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I. INTRODUCTION

Low-Reynolds-number swimming near an air-liquid interface has inspired several inter-

esting works in the recent years [1–4]. This configuration has been used to devise “soft

swimming” [1] which employs the deformation of a free surface to generate either parallel

or perpendicular locomotion relative to the interface even under reciprocal movement, thus

surmounting the constraint of the scallop theorem. In the so-called “bacterial driven mi-

cromotor” [2], a micron-size gear, immersed in an active bacterial bath, is located at an

air-liquid interface to reduce friction. Besides engineering applications, the interaction be-

tween microorganisms and the air-liquid interface is also frequently encountered in nature.

For example, the sea surface microlayer, which is the uppermost tens to hundreds of µm

of the surface of the ocean, contains a large population of microorganisms in marine envi-

ronments [3]. The organisms inhabiting the sea surface microlayer are called “neuston” [5],

e.g. bacterioneuston, phytoneuston and zooneuston [3]. The physicochemical properties of

the air-water interface as a habitat for microorganisms have been extensively studied [6],

however, the hydrodynamic effects of the interface on the locomotion of microorganisms is

poorly understood. Di Leonardo et al. have recently shown that E. coli bacteria exhibit an-

ticlockwise oriented circular trajectories near an air-liquid interface. They have considered

the hydrodynamic coupling of the bacterium and its mirror image to satisfy the “perfect-

slip” boundary condition at the interface [4]. More recently, Ferracci et al. have shown

that Tetrahymena, fresh-water ciliate protozoa, can be trapped at an air-water interface [7]

and form large aggregates. By excluding the potential effects of chemotaxis and gravitaxis,

the entrapment was found to be due to hydrodynamic effects. The present paper utilizes

lubrication theory for an archetypal low-Reynolds-number swimming model “squirmer” to

describe the hydrodynamic effects leading to the entrapment of ciliates near an air-liquid

interface.

A superposition of point force singularities can be used to describe the far field solution

of particles or microorganisms near an interface or a solid surface [8, 9]. The numerical

solution for the motion of a rigid particle shows that this method provides a good approx-

imation when the distance between the particle and the interface is more than 2.5 times

particle radius [9]. Point force singularities combined with Faxén law are also used to study

bacteria swimming near a rigid wall [8]. Even though point force singularities capture the far
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field solution of swimming bacteria near a rigid wall, including wall-induced attraction and

pitching dynamics, the wall effect cannot be accurately captured if the separation distance

is smaller than the microorganism’s body size [8]. Here, we utilize the lubrication theory in

order to capture the low-Reynolds-number swimming of a ciliate near an air-liquid interface

for ǫ ≪ 1, where ǫ is the ratio of the gap width between the swimmer’s surface and the

interface to the swimmer’s body size.

Let us describe the profile of the air-liquid interface as S = z−f(̺, φ, τ), where (̺, φ, z) are

the dimensionless cylindrical coordinates and τ is the dimensionless time, which are scaled

by characteristic length, a (size of the swimmer) and time, a/U , respectively. Characteristic

velocity U is the swimming velocity of the swimmer in an unbounded fluid domain. The

kinematic and dynamic boundary conditions of the interface under negligible gravitational

effects can be written as

DS

Dτ
= −∂f

∂τ
+

1

κ
n · u = 0, (1)

−Ca(n · σ) = n(∇ · n)−∇γ, (2)

where D/Dτ denotes the material time derivative, n = ∇S/‖∇S‖ is the unit direction

vector normal to the interface and κ = 1/‖∇S‖ is the local curvature, u is the dimensionless

velocity field, and σ is the dimensionless stress tensor. The characteristic stress tensor

is µU/a, where µ is fluid viscosity. Hereafter unless otherwise stated, the variables are

written in the dimensionless form. The dimensionless surface tension, γ, can be nonuniform

if surfactants are present. The capillary number, Ca = µU/γs, is defined as the ratio of the

viscous force to the surface tension force, where µ is the fluid viscosity, γs is the interfacial

tension of the clean fluid interface, and U is the swimming velocity in an unbounded fluid

domain. For microorganisms in an aquatic environment, Ca is generally small: for Opalina,

Ca ∼ 10−6 and for Paramecium, Ca ∼ 10−5. Therefore, in the case of constant surface

tension, a perturbation in terms of Ca results in a leading order boundary condition of

n · u(0) = 0 and t.n.σ(0) = 0, where t is the unit tangential vector. The leading order

boundary condition basically corresponds to a flat interface and is referred to as a “perfect-

slip” boundary condition. In order to explore the hydrodynamic mechanism behind the

entrapment of microorganisms near an air-liquid interface, we use a squirmer model [10]

which consists of a spherical cell that swims using wavelike deformations of its surface [11],

approximating ciliates moving by synchronized beating of cilia on their surface [10] or using
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FIG. 1. Schematic of a squirmer and its mirror image

colonies of flagellates such as Volvox [12].

II. MATHEMATICAL MODEL

In the low Reynolds number regime, the pressure and the flow field satisfy the Stokes

equation. We write the governing equations in the dimensionless form,

−∇p+∇2u = 0, (3)

∇ · u = 0, (4)

where p is the pressure. Di Leonardo et al. considered a mirror image at the opposite side

of the interface to satisfy the “perfect-slip” condition in the case of swimming E. coli near

a free surface [4]. The so called “perfect-slip” condition requires zero velocity in z direction

and zero tangential shear stress on the interface. These conditions can be satisfied by adding

a mirror image of the squirmer on the opposite side of the interface, where the mirror image

has the same speed as the real squirmer, but its direction of rotation and translation along

the vertical direction are opposite of the real squirmer. Therefore, the problem of swimming

near a flat interface is analogous to two squirmers generating symmetric surface motion

relative to the interface. As shown in Fig. 1, the z = 0 plane is the interface and we assume

the squirmer is located in the z > 0 region while its mirror image is in the z < 0 region.
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The surfaces of the two spherical squirmers in the narrow gap region can be approximated

as two parabolic surfaces

h1 =

(

ǫ+
̺2

2
+ . . .

)

,

h2 = −
(

ǫ+
̺2

2
+ . . .

)

, (5)

where ̺ is the dimensionless radius in the cylindrical coordinate with its origin at the

midpoint between the two squirmers. The stretched coordinates (X, Y, Z), widely used

in the lubrication theory of nearly touching spheres, are defined as

ǫ1/2X = x, ǫ1/2Y = y, (̺ =
√

x2 + y2, ǫ1/2ρ = ̺),

ǫZ = z. (6)

where (x, y, z) are the cartesian coordinates with an origin at the midpoint between two

squirmers and ρ =
√
X2 + Y 2, is the stretched radius in the cylindrical coordinate. The

surface of both squirmers, h1 and h2, can be simplified using the above stretched coordinates

as H1 = h1/ǫ = 1 + ρ2/2, H2 = −H1. The governing equations (3)-(4) are rewritten using

the stretched coordinates (X, Y, Z) as

(

ǫ

(

∂2

∂X2
+

∂2

∂Y 2

)

+
∂2

∂Z2

)

u = ǫ

(

ǫ1/2
∂p

∂X
, ǫ1/2

∂p

∂Y
,
∂p

∂Z

)

,

(7)

ǫ1/2
(

∂u

∂X
+

∂v

∂Y

)

+
∂w

∂Z
= 0. (8)

Here, we neglect small radial displacements of cilia and following Blake [10], we impose a

tangential velocity, us, on the swimmer’s surface

us = ((e1 · r1)r1 − e1)
∞
∑

n=1

BnWn (e1 · r1) , (9)

where Bn is dimensionless constant. Wn(η) = 2
n(n+1)

dPn

dη
, where Pn is the Legendre poly-

nomial of the first kind of degree n. e1 describes the swimming direction of the squirmer

while e2 is along the swimming direction of the squirmer’s mirror image. e1 = e11ex+e13ez,

where e211+e213 = 1. As shown in Fig. 1, r1 = r− (1+ ǫ)ez is a position vector describing the

surface of the squirmer whose origin is located at the center of the squirmer whereas r is a

position vector measured from the origin of the cylindrical coordinate (midpoint between the
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two squirmers). Following the procedure given by Ishikawa et al. [13], Eq. (9) is expanded

in terms of ǫ1/2 as

us = u(0)
s + ǫ1/2u(1)

s +O(ǫ), (10)

where

u(0)
s = ((e1 · ez)ez − e1)

∞
∑

n=1

BnWn (−e1 · ez) , (11)

u(1)
s = (e1 · ρ)((e1 · ez)ez − e1)

∞
∑

n=1

BnW
′

n (−e1 · ez)

−((e1 · ρ)ez + (e1 · ez)ρ)
∞
∑

n=1

BnWn (−e1 · ez) , (12)

where ρ = ρeρ, eρ is the unit radial vector in the cylindrical coordinate, and W ′

n = dWn

dη
.

It is found that u(0)
s provides a uniform velocity condition while u(1)

s is a linear function of

position, ρ. Similarly the velocity components (u, v, w) and the pressure field are perturbed

in terms of ǫ1/2:

u = u0 + ǫ1/2u1 + . . . ,

v = v0 + ǫ1/2v1 + . . . ,

w = ǫ1/2(w0 + ǫ1/2w1 + . . .),

p = p∞ + ǫ−3/2(p0 + ǫ1/2p1 + . . .), (13)

where p∞ is the reference pressure at the outermost point of the thin lubrication region.

We follow a two-step procedure in order to determine the translational velocity, U, and

angular velocity, Ω, of the squirmer [13]: first we calculate the force and torque due to the

squirming motion, us, generated by a fixed squirmer; in the next step, the translational and

angular velocity of the squirmer due to the calculated force and torque will be determined.

The governing equations for the leading order solution can be obtained by substituting Eqs.

(13) into Eq. (7):

∂2u0

∂Z2
=

∂p0
∂X

,

∂2v0
∂Z2

=
∂p0
∂Y

,

∂p0
∂Z

= 0. (14)
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The leading order solution of Eq. (14) is a uniform flow field independent of position

u0 = u(0)
s · ex, v0 = u(0)

s · ey,

w0 = u(0)
s · ez = 0. (15)

Therefore, the solution to this order provides null pressure (p0 = 0) in the lubrication

region. There is no force or torque acting on the squirmer at the zeroth order. The governing

equations of the next order are identical to the zeroth order, however, the boundary condition

is different since u(1)
s provides nonzero vertical velocity (u(1)

s · ez) and horizontal velocities

(u(1)
s · ex and u(1)

s · ey),

u(1)
s · ex = −

(

e211

∞
∑

n=1

BnW
′

n + e13
∞
∑

n=1

BnWn

)

X,

u(1)
s · ey = −

(

e13
∞
∑

n=1

BnWn

)

Y,

u(1)
s · ez =

(

−
∞
∑

n=1

BnWn

)

ρ(e1 · eρ). (16)

The pressure at this order, p1(X, Y ), is not a function of the vertical position Z. Conse-

quently, momentum equations along X and Y directions give

u1 =
1

2

∂p1
∂X

(Z2 −H2
1 ) + u(1)

s · ex,

v1 =
1

2

∂p1
∂Y

(Z2 −H2
1 ) + u(1)

s · ey. (17)

In order to determine the pressure field, p1, we use the incompressibility condition combined

with the boundary condition on the squirmer’s surface:
∫ H1

−H1

∂w1

∂Z
dZ =

2

3
H3

1

(

∂2p1
∂X2

+
∂2p1
∂Y 2

)

+2H2
1 (X

∂p1
∂X

+ Y
∂p1
∂Y

) + 4CH1, (18)

where w1(H1) = −w1(−H1) = u(1)
s ·ez = (−∑∞

n=1BnWn)ρ(e1·eρ) and C = (e211/2)
∑

∞

n=1BnW
′

n+

e13
∑

∞

n=1BnWn. Consequently, the governing equation for the pressure, p1, can be derived

as:
2

3
H3

1∇2
⊥
p1 + 2H2

1 (ρ · ∇⊥p1) + 4CH1 = 2Bρ(e1 · eρ), (19)

where B = −∑∞

n=1BnWn and ∇⊥ =
(

∂
∂X

, ∂
∂Y

, 0
)

. Since pressure can be written as p1 =

pa + (e1 · eρ)ps, Eq. (19) can be decomposed as:

H3
1

3ρ

∂

∂ρ

(

ρ
∂pa
∂ρ

)

+H2
1 (ρ

∂pa
∂ρ

) + 2CH1 = 0,
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H3
1

3ρ

∂

∂ρ

(

ρ
∂ps
∂ρ

)

− H3
1

3

ps
ρ2

+H2
1 (ρ

∂ps
∂ρ

) = Bρ. (20)

The solution to these equations are:

pa = C

(

3

2H1
+

3

4H2
1

)

, (21)

ps = −3Bρ

5H2
1

. (22)

The pressure field for a swimmer near a flat interface and a rigid wall are dramatically

different; the first non-zero term for the latter case is of order O(ǫ−3/2) instead of O(ǫ−1). In

other words, the pressure of a ciliate swimming near an interface is an order of magnitude

lower than near a rigid wall. Having the pressure field p1, the flow field in the cylindrical

coordinate can be written as:

uρ,1 = eρ ·
(

∇p1
Z2 −H2

1

2
+ u(1)

s

)

,

uφ,1 = eφ ·
(

∇p1
Z2 −H2

1

2
+ u(1)

s

)

. (23)

The vertical component of the velocity field uz,1 can be calculated using the incompressibility

condition. The details of these velocity components are provided in the Appendix. Next, we

evaluate the force acting on the squirmer, Fz. The force element dFz acting on the element

of surface area of the squirmer dA is given as

dFz = ez · (σ · n1)dA

= [−p(ez · n1) + 2(eρ · n1)Eρz + 2(ez · n1)Ezz] dA, (24)

where n1 = − cos θez + sin θeρ and θ is the polar angle shown in Fig. 1, and E = (∇u +

∇uT)/2 is the strain rate tensor. The force Fz is evaluated on the surface of the squirmer

(Z = H1). In the gap region, ǫ1/2ρ = sin θ and dρ = ǫ−1/2
√
1− ǫρ2dθ. The contribution

of shear stress to the force acting on the squirmer is much smaller than the contribution of

pressure. Therefore,

Fz ∼ 3πC
∫

θ

ǫ−1

H1
cos θ sin θdθ = 3πC

∫ ρ0

0

ρ

H1
dρ ∼ 3Cπ log ρ20, (25)

where ρ0 is the radius below which the lubrication theory is valid. ρ0 is of order ρ0 ∼ D/ǫ1/2,

where D ∼ O(1). Consequently, the vertical force can be written as

Fz = 3Cπ (− log ǫ+O(1)) , (26)
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where the leading order force is independent of the exact value of ρ0. The result is consistent

with the numerical prediction of Ishikawa et al. [13]. The O(1) constant can be calculated

by matching the lubrication solution with the solution outside the gap region similar to

the calculation of Jeffery and Corless [14] for a rigid sphere. However, this step is not

done here, since the focus of this paper is on the leading order effect of the interface on

the biolocomotion, where ǫ ≪ 1. For a moderately small ǫ, the O(1) constant cannot be

neglected and can be calculated numerically [13], which is outside the scope of the present

manuscript.

In order to calculate the swimming velocity of the squirmer, the solution for the squeezing

motion of two spherical rigid particles is required. A sphere moving towards a fixed sphere

with constant dimensionless velocity, U , will experience a dimensionless force F ∼ −6π/8ǫ

[15]. This is equivalent of having two spheres moving toward each other with half that

velocity, U/2. Therefore, the squirmer’s velocity perpendicular to the interface is estimated

as

Uz ∼
(

e211

∞
∑

n=1

BnW
′

n + 2e13
∞
∑

n=1

BnWn

)

ǫ log ǫ. (27)

The contribution of the pressure force to the horizontal component of the force, Fx, and

torque Ty is the same order as the contribution of the shear stress to the force and torque.

Therefore, their leading effects are in the order of O(ǫ1/2 log ǫ) (see Appendix) which does

not provide a singular term in the lubrication region and is zero as ǫ → 0. This is equivalent

to saying that the small gap does not have a dominant effect on the horizontal swimming

and pitching behavior of the squirmer.

So far, we have focused on the motion of a squirmer near an air-liquid interface utilizing

a lubrication theory. The far field effect of the interface on the linear and angular velocity

of the squirmer does not follow the discussion above and it has been previously discussed by

Spagnolie and Lauga [8] and is summarized here. The far field solution of a squirmer in an

unbounded domain with Bn = 0 for n > 2 can be approximated by the superposition of a

force dipole (Stresslet, ∼ O(R−2)), potential dipole (∼ O(R−3)), and potential quadrupole

(∼ O(R−4)) [16], where R is the dimensionless distance between a point in the domain and

the center of the squirmer. The leading order velocity field can be approximated as a force

dipole D1 = β
R3

(

1− 3 (e1·R)2

R2

)

[17], where β = B2/B1. Different signs of β describes two

different types of swimmers. β < 0 represents the case where the thrust is generated behind
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the swimmer, called a pusher. β > 0 describes a swimmer that generates thrust in front

of its body, called a puller. In order to consider the effect of the interface, the flow field

generated by the dipole’s mirror image, D2, should be included as well. For a force-free and

torque-free swimmer, the free surface induces a vertical velocity Uz and angular velocity Ωy

on the swimmer that are given as [8]

Uz =
β(1− 3e213)

8d2
, Ωy =

3βe11e13
8d2

, (28)

where d is the dimensionless distant between the center of the squirmer and the interface.

A pusher near an interface rotates until its orientation is parallel to the interface. In this

case, there exist an attractive force between the swimmer and the interface. For a swimmer

with an orientation e11/e13 <
√
2, there is a repulsive force between the swimmer and the

interface, however, the hydrodynamic torque leads to the reorientation of the swimmer until

it is parallel to the interface. A puller will rotate in the opposite direction and its equilibrium

orientation is perpendicular to the interface.Consequently, the far field solution leads to the

attraction of a swimmer towards the interface independent of the swimming type.

III. DEFORMABILITY OF AIR-LIQUID INTERFACE

The discussion above is valid for a flat interface. Here, we estimate the deformability of

the interface due to the motion of the swimmer. For a clean interface, the stress condition

Eq. (2) along the direction normal to the interface is written as σzz = −(1/Ca)∇ · n. The

dimensionless deformation of the interface, δ, is estimated by the balance of viscous and

surface tension forces. For ǫ ∼ O(1), δ ∼ µU/γs(= Ca). For ǫ ≪ 1, the stress σzz can be

written as

σzz = C

(

− 3

2ǫH1
− 3

4ǫH2
1

− 2 +
3ρ2

2H1
+

3ρ2

2H2
1

)

+B(e1 · eρ)
(

3ρ

5ǫH2
1

+
18ρ

5H1
− 6ρ3

5H2
1

)

, (29)

and is of order O(ǫ−1). Therefore, the deformation of the interface is of order δ/ǫ ∼ ǫ−2Ca.

For Tetrahymena in fresh water, Ca ∼ O(10−5)(U ∼ 700 µm/s, µ ∼ 10−3 Pa· s, γs ∼
0.07 N/m) [7]. Consequently, the deformation is negligible even for a gap equal to one tenth

of the swimmer’s body size (ǫ ∼ 0.1).
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IV. ROLE OF SURFACTANTS

Next, we evaluate the role of surfactants on the interface and the swimming behavior of

ciliates near an air-liquid interface. A considerable concentration of surface active dissolved

organic agents (surfactants) are found in the sea surface microlayer [18]. The tangential

interfacial stress condition, Eq. (2), can be rewritten as

Ca(t.n.σ)− t · ∇γ = 0. (30)

For a flat interface, Eq. (30) is simplified as

t.n.σ =
1

ǫ1/2Ca

∂γ

∂ρ
. (31)

Eq. (31) is derived for the axisymmetric case (γ = γ(ρ)), when the swimmer swims perpen-

dicular to the interface. The surface tension is related to the concentration of surfactants at

the interface Γ by means of the Langmuir limit [19], γ = 1+ (RuTΓ∞/γs) log(1− Γ), where

Γ∞ is the maximum surfactant concentration on the interface. T is the temperature and Ru

is the universal gas constant. Eq. (31) can be written as

σrz = −Ma
(

1

1− Γ

)

∂Γ

∂ρ
, (32)

where Ma = RuTΓ∞

ǫ1/2µUs
is the Marangoni number. For Tetrahymena in an aqueous solution

of Tween 20 with concentrations 0.004-0.08 mol/m3 as used in [7], Ma ∼ O(104) where

Ru = 8.314 J/(mol· K), T ∼298 K, Γ∞ ∼ 3.53×10−6 mol/m2, ǫ = 0.1 [20]. This means that

a tiny change in the surfactant concentration leads to a large variation in the shear stress

at the interface.

The leading order effect of the surfactant concentration leads to immobilization of the

interface and invalidates the “perfect-slip” boundary condition. Guided by Eq. (32), the

surfactant concentration Γ can be perturbed in terms of Ma−1 as

Γ = Γ0 +Ma−1Γ1 +O(Ma−2), (33)

where Γ0 is a constant. The transport of surfactant is governed by a convection diffusion

equation. The convection diffusion equation for the leading order term, Γ0, simplifies to a

pure convection equation ∇s · (uΓ0) = 0 on the interface [19]. The solution to this equation,

uρΓ = A/ρ, has to be bounded as ρ → 0; thus, the constant A = 0. Therefore, uρ = 0 which
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means that the leading order effect of the surfactant in a large Marangoni number limit is

to immobilize the interface. For an immobilized interface (rigid wall), the pressure in the

lubrication region is known [13]

p = ǫ−3/2

(

− 6ρ

5H1

∞
∑

n=1

BnWn

)

(e · eρ), (34)

and is in the order of O(ǫ−3/2), while the pressure is in the order of O(ǫ−1) for a clean

interface.

V. CONCLUSION

Ciliate protozoa have been shown to be present in large concentrations in the neuston layer

of both marine and freshwater ecosystems compared to bulk water [21, 22]. In this paper,

we have considered the motion of a model ciliate swimming near an air-liquid interface.

By satisfying the “perfect-slip” boundary condition, the lubrication theory is utilized to

solve the flow field in the gap region. It is found that the pressure in the gap region is an

important factor in determining the swimmer’s velocity perpendicular to the interface. The

vertical swimming velocity is in the order of O(ǫ log ǫ) and is reduced significantly compared

to the vertical swimming velocity of a swimmer in an unbounded domain. This reduced

velocity leads to a long residence time of the model ciliate near an air-liquid interface and

consequently the formation of large aggregates of ciliates.

The pressure field for a swimmer near a flat interface and a rigid wall are dramatically

different; the first non-zero term for the latter case is of order O(ǫ−3/2) instead of O(ǫ−1).

The case of a squirmer moving near a rigid wall has been studied in [13] and here we have

summarized their results and highlighted the differences between squirmer near a wall and

air-liquid interface. According to [13] a squirmer near a rigid wall generates force and torque

given as

F s
x ∼ O(log ǫ), T s

y ∼ O(log ǫ), F s
z ∼ O(log ǫ). (35)

The dimensionless force Fx and torque Ty acting on a particle translating with velocity U

parallel to a wall can be written as

Fx ∼ 6π
(

8

15
log ǫ

)

, Ty ∼ 8π
(

− 1

10
log ǫ

)

. (36)
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The dimensionless force and torque acting on a sphere with angular velocity Ω near a wall

are

Fx ∼ 8πaΩ

U

(

− 1

10
log ǫ

)

, Ty ∼
8πaΩ

U

(

2

5
log ǫ

)

, (37)

and finally, the force acting on a sphere moving perpendicular to a wall is Fz ∼ −6πǫ−1.

Consequently, the translational velocity along the horizontal direction and angular velocity

of a squirmer moving near a rigid wall are in the order Ux ∼ O(1), Ω ∼ O(1), while its

vertical velocity is in the order of Uz ∼ O(ǫ log ǫ).

The vertical velocity of a squirmer near both a rigid wall and air-liquid interface scale

as ǫ log ǫ. For the rigid wall, the leading order pressure scales as ǫ−3/2 and for the air-liquid

interface as ǫ−1. The horizontal force and torque in the lubrication region of a squirmer

near a rigid wall dominate the force and torque calculated outside the lubrication region

and scales as log ǫ but this is not the case for a squirmer moving near an air-liquid interface.
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Appendix

In order to calculate the forces and torque acting on the squirmer, we need to calculate

the velocity field. The expression for the velocity field in terms of cylindrical coordinates

(ρ, φ, Z) are given below,

uρ,1 =
Z2 −H2

1

2

[

(e1 · eρ)
(

− 3B

5H2
1

+
6Bρ2

5H3
1

)

+ C

(

− 3ρ

2H2
1

− 3ρ

2H3
1

)]

− ρ

(

(e1 · eρ)2
∞
∑

n=1

BnW
′

n + e13
∞
∑

n=1

BnWn

)

,

uφ,1 = (eφ · e1)(Z2 −H2
1 )

(

− 3B

10H2
1

)

− (eφ · e1)(eρ · e1)ρ
∞
∑

n=1

BnW
′

n,

uz,1 = (eρ · e1)
[(

9Bρ

5H1

− 3Bρ3

5H2
1

)

Z −
(

4Bρ

5H3
1

− 3Bρ3

5H4
1

)

Z3

]

+

[(

−1 +
3ρ2

4H1

+
3ρ2

4H2
1

)

CZ −
(

− 1

H2
1

+
3ρ2

4H3
1

+
3ρ2

4H4
1

)

CZ3

]

. (A.1)
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The force elements dFρ, dFz, and the torque element dTy acting on the squirmer can be

calculated as follows

dFz = ez · (σ · n)dA,

dFx = ex · (σ · n)dA,

dTy = −n · exdFz + n · ezdFx. (A.2)

Using above equations, all the components of force and torque can be evaluated. Fz is given

in Eq. (25) and Fx and Ty are given as follows:

Ty ∼ πe11B
∫

θ

[

−3
ρ

H1

+
24ρ3

5H2
1

]

cos θ sin2 θdθ

+πe11B
∫

θ

[

ǫ−1/2

(

− 6

5H1

+
6ρ2

5H2
1

)

+ ǫ1/2
(

2 +
3ρ2

5H1

− 6ρ4

5H2
1

)]

cos2 θ sin θdθ

∼ O(ǫ1/2 log ǫ), (A.3)

Fx ∼ 6

5
πBe11

∫

θ

[(

ǫ−1 ρ

2H2
1

)

sin2 θ −
(

− 1

H1
+

ρ2

H2
1

)

ǫ−1/2 cos θ sin θ

]

dθ

+πBe11

∫

θ

[(

9ρ

5H1
− 12ρ3

5H2
1

)

sin2 θ − ǫ1/2
(

2 +
3ρ2

5H1
− 6ρ4

5H2
1

)

sin θ cos θ

]

dθ

∼ O(ǫ1/2 log ǫ). (A.4)
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