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Abstract 
 

To study the influence of dynamic interactions between turbulent vortical structures and 

polymer stress on turbulent friction drag reduction, a series of simulations of channel 

flow is performed. We obtain self-consistent evolution of an initial eddy in the presence 

of polymer stresses by utilizing the finitely extensible nonlinear elastic-Peterlin 

(FENE-P) model. The initial eddy is extracted by the conditional averages for the 

second quadrant event from fully turbulent Newtonian flow and the initial polymer 

conformation fields are given by the solutions of the FENE-P model equations 

corresponding to the mean shear flow in the Newtonian case. At a relatively low 

Weissenberg number, Weτ, (= 50), defined as the ratio of the polymer relaxation time to 

the wall time scale, the generation of new vortices is inhibited by polymer-induced 

counter-torques. Thus, fewer vortices are generated in the buffer layer. However, the 

head of the primary hairpin is unaffected by the polymer stress. At larger Weτ  values ( ≥ 

100), the hairpin head becomes weaker and vortex autogeneration and Reynolds stress 

growth are almost entirely suppressed. The temporal evolution of the vortex strength 

and polymer torque magnitude reveals that polymer extension by the vortical motion 

results in a polymer torque that increases in magnitude with time until a maximum value 

is reached over a time scale comparable to the polymer relaxation time. The polymer 

torque retards the vortical motion and Reynolds stress production, which in turn 

weakens flow-induced chain extension and torque itself. An analysis of the vortex time 

scales reveals that with increasing Weτ, vortical motions associated with a broader range 

of time scales are affected by the polymer stress. This is qualitatively consistent with 

Lumley’s time criterion for the onset of drag reduction. 
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PACS numbers: 

47.57.Ng Polymers and polymer solutions 

47.85.lb  Drag reduction 

47.27.De Coherent structures 

47.27.nd Channel flow 

47.50.-d  Non-Newtonian fluid flows 
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I. Introduction 
 

It has been known for more than six decades that the dissolution of minute amounts 

of high molecular weight polymers in wall-bounded turbulent flows can dramatically 

reduce turbulent skin friction by up to 70% [1, 2]. Experimental studies have revealed 

many complicated features of polymer drag reduction (DR) such as the onset of DR, the 

existence of a maximum DR limit, and differences in the modifications of turbulent 

statistics in the low- and high- DR regimes [3]. However, the mechanism by which the 

addition of a small amount of long-chain polymers to turbulent pipe or channel flows 

produces significant turbulent DR is still not fully resolved. 

Polymers in solution, when subjected to a flow field, undergo flow-orientation, chain 

stretching, tumbling, and relaxation. The net effect of such configurational changes 

manifests as an intrinsic elastic stress. The polymer stress in turn influences the flow 

fields. Flow-configuration coupling in turbulent flows has been numerically investigated 

by performing direct numerical simulations (DNSs) by employing viscoelastic polymer 

models such as Oldroyd-B [4], finitely extensible nonlinear elastic-Peterlin (FENE-P) 

[5-9], and Giesekus [10]. DNS predictions are in qualitative agreement with 

experimental observations of turbulence statistics in polymer-induced DR in turbulent 

channel and pipe flows. 

DNS results have been used to propose plausible mechanisms of turbulent DR by 

polymer additives. Sureshkumar et al. [9] and Dimitropoulos et al. [10, 11] proposed a 

mechanism based on the enhancement of extensional viscosity of the solution caused by 

chain stretching which is primarily contributed by the coupling of the fluctuating 

components of the velocity gradient and conformation tensor. Clear evidence of 

enhanced streamwise velocity correlations and streak spacing were identified in 

polymeric channel flows as compared to the Newtonian case. The correlation between 

velocity fluctuations and polymer-induced body forces was examined by de Angelis et 
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al. [5] to show that polymers extract energy from the turbulent fluctuations except in the 

sublayer, where the viscoelastic force performs positive work on the streamwise 

component of the turbulent kinetic energy. Min et al. [4] derived the transport equation 

for the kinetic and elastic energies. They showed that the elastic energy stored by 

polymers in the viscous sublayer is transported to and released in the buffer and log 

layers when the polymer relaxation time is long enough, thereby significantly reducing 

the power requirements. Dubief et al. [6] explained the positive polymer work 

performed on the streamwise turbulent structures by proposing a modified autonomous 

regeneration cycle [12], in which polymer work damps turbulence above the buffer 

layer and positive polymer work enhances streamwise turbulent intensity in the very 

near-wall region. 

In addition to DNS studies of fully turbulent flows, attempts have been made to 

understand the DR mechanism using simpler model flows with low Reynolds number. 

Graham and co-workers [13-16] have extensively studied modifications of the exact 

coherent state in viscoelastic flows. They suggested that viscoelasticity weakens the 

streamwise vortices and that the coherent structures can be suppressed entirely if the 

elastic effects are sufficiently large. Roy et al. [17] used a low-dimensional model flow 

to show that the self-sustaining process becomes weaker because the streak instability is 

suppressed by polymer forces opposing bi- and uni-axial extension. 

While the aforementioned studies of the DR mechanism have focused on the effects 

of viscoelasticity on the turbulent flow structures in the viscous sublayer and buffer 

layer, turbulent coherent structures associated with Reynolds shear stress production 

also exist above the buffer layer [18, 19] and their contribution to turbulent drag 

increases as the Reynolds number increases. At high Reynolds numbers, hairpin 

vortices are most common in the log layer; they can occur singly but they also occur 

often in packets. The interaction of the hairpins in the hairpin packet enhances the 

Reynolds shear stress, for instance, Ganapathisubramani et al. [20] showed that the 
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vortex packets contribute about 25% to the total Reynolds shear stress in the log layer 

while occupying only 4% of the total area. Regarding the effects of viscoelasticity on 

the outer structures, Kim et al. [21] showed that the counter-torques created by straining 

the polymers inherently oppose the rotation of the legs and heads of the hairpins, i.e. the 

elements responsible for generating much of the Reynolds shear stress in the log layer. 

The vortex retardation by viscoelastic counter-torques has been also observed for 

quasi-streamwise vortices (QSVs) in the buffer layer, and the polymer counter-torque 

concept offers an explanation of the DR mechanism in the outer region of wall 

turbulence, as well as in the buffer layer. 

Recent studies on the Newtonian wall turbulence reveal that large-scale structures in 

the outer layer have significant contribution to the total Reynolds shear stress and thus 

turbulent skin friction [22-27]. The large-scale structures consist of vortex organization, 

i.e., vortex packet in the log layer [18, 20, 28-32]. For a mechanism of vortex packet 

formation, Zhou et al. [33, 34] proposed an auto-generation process in the Newtonian 

channel flow. They examined the evolution of the initial field obtained by conditional 

averages associated with the ejection event. It has been observed that new hairpin 

vortices are generated upstream of the primary hairpin, thereby forming, together with 

the upstream hairpins, a coherent packet of hairpins that propagate coherently; this is 

consistent with the experimental measurements made by high resolution PIV [28]. The 

auto-generation mechanism has been confirmed by testing for higher Reynolds number 

flows [35, 36] and checking its robustness to the background disturbances [37, 38]. 

Recently, the auto-generation mechanism has been tested for the viscoelastic channel 

flows by Kim et al. [39]. They showed that the auto-generation of new vortices and 

vortex packet formation are suppressed by viscoelastic effects; thus, fewer vortices are 

observed in DR flows. Combining the weakening of individual vortices by the polymer 

counter-torques and suppression of vortex packet formation, it has been proposed that 

turbulent DR in viscoelastic flows is caused by decreases in both the coherent and 
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incoherent Reynolds stress. 

Kim et al. [21] examined the polymer counter-torques opposing the vortical motions 

on the basis of the statistical average. Therefore, to better understand the modification 

of the near-wall vortices by the polymer torque, it is necessary to investigate the 

evolution of vortical structures and polymer torques simultaneously. Toward this end, 

we investigated the spatiotemporal evolution of the vortical structures, polymer torque 

distribution, and Reynolds shear stress profile. Owing to the complexity of vortical 

structures in fully turbulent flows, we analyzed the evolution of the vortices and 

polymer torques by tracking the evolution of hairpin vortices, i.e., counter-rotating pairs 

of QSVs whose nonlinear autogeneration, growth, decay, and breakup are central to 

turbulent stress production [34]. 

In this study, we performed a series of dynamical simulations of turbulent channel 

flow at Reτ = 395 in the presence of polymer stresses. By using the FENE-P model, we 

tracked the self-consistent evolution of the initial vortical structure extracted from fully 

turbulent Newtonian flow. We examined the three-dimensional distribution of the 

polymer torque and vortical structures during this evolution at different Weissenberg 

numbers. We also investigated the time history of the vortex strength and polymer 

torque magnitude. These studies were used to develop insights into a self-sustaining 

flow-polymer configuration coupling mechanism that is at the heart of polymer DR. As 

the Weissenberg number is progressively increased, vortex-polymer torque interactions 

were observed to influence a progressively broader range of time scales. This 

observation is used to interpret the time scale criterion for the onset DR proposed by 

Lumley [40] as well as to understand the asymptotic behavior of DR with increasing 

Wiessenberg number.  

 

II. Numerical methods 
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The evolution of an initially isolated vortical structure in a viscoelastic flow is 

tracked by performing a dynamical simulation of the channel flow in which the polymer 

stress is modeled by the FENE-P model. The non-dimensional governing equations of 

unsteady, incompressible, viscoelastic flow of a FENE-P fluid are given by: 

 

 0∇ ⋅ =u , (1) 

 2 1
Re Re xp

t τ τ

β β∂ −+ ⋅∇ = −∇ + ∇ + ∇⋅ +
∂
u u u u τ e , (2) 

 ( )T

t
∂ + ⋅∇ = ⋅∇ + ∇ ⋅ −
∂
c u c c u u c τ , (3) 

 

where u is the velocity, p is the pressure, and τ = ([L2 - 3]/(L2 - tr(c))c - I)/(Weτ/Reτ) is 

the polymer stress [9-11]. The friction velocity uτ and the channel half-height h are used 

as the velocity and length scale, respectively. A constant mean pressure gradient in the 

streamwise direction ex = (1, 0, 0) is imposed in the momentum equation (Eq. 2). The 

Reynolds number defined as Reτ = uτh/ν0, is 395, where ν0 is the zero shear-rate 

kinematic viscosity of the solution. The parameter β is the ratio of the solvent viscosity 

(μs) to the total solution zero-shear-rate viscosity (μ0). The polymer stress τ is obtained 

by solving an evolution equation for the conformation tensor c, which is the average 

second moment of the polymer chain end-to-end distance vector. L is the maximum 

extensibility of the polymer molecules. The Weissenberg number Weτ (= λuτ
2/ν0) is the 

ratio of the polymer relaxation time λ, to the flow time scale based on the friction 

velocity. 

Because the second quadrant (Q2) turbulent events play a dominant role in 

Reynolds shear stress production in wall bounded turbulence [28, 41], we have 

examined the evolution of vortical structures associated with Q2 event vector. The 

initial vortical structure is extracted from the conditional averaged flow field in the Q2 

event in the DNS data for fully developed Newtonian turbulent channel flow at Reτ = 
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395 [38], 

 

 ( , 0) ( ) '( ) | '( ) ( , ,0)m m mt y y u vα= = + =u x u u x u , (4) 

 

where the overbar denotes a time average. The amplification factor α here refers to the 

strength of the Q2 event. The events (um, vm) are chosen as the Q2 event which 

maximize the probability-weighted Reynolds shear stress u’v’ pdf(u’,v’) and thereby 

maximize the contribution to the mean Reynolds shear stress since 

pdf ( , )u v u v u v du dv′ ′ ′ ′ ′ ′ ′ ′= ∫∫ [42]. The conditional average is approximately calculated 

from the linear stochastic estimation procedure described in [43]. The linear stochastic 

approximation of the conditional average |i ju E  is written as  

 ( ) ( ; ) ( )i ij ju L E′ ′=x x x x . (5) 

Choosing Lij to minimize the mean square error yields equations for Lij in terms of 

unconditional, two-point, second-order spatial correlation tensors: 

 ( ) ( ) ( ) ( )j k ij i kE E L u E′ ′ ′=x x x x . (6) 

From Eq. (5), the linear estimate of the conditional average ( ) | ( , ,0)i m mu u vα′ x  in Eq. 

(4) reduces to  

 1 2( ) ( ) ( )i i m m i m mu L u y L v yα α′ = +x ,  (7) 

with i = 1, 2, and 3 and  
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, (8) 

which approximates conditional averages in a form that is computationally convenient, 

since it depends only on two-point correlation tensors. The accuracy of LSE as an 

approximation to conditional average has been confirmed elsewhere [44]. 

The initial polymer conformation field is given by the solutions of the FENE-P model 
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equations for the mean shear flow in the Newtonian case [9], 

 
22

2

21
1
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xx

We dU
C

F y F y dy
= +
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We dUC
F y dy

=
, 

1
( )
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F y
= =

, 
 

0MF MF
xz yzC C= = ,        (9) 

where  

 

3 ( )
( )

2sinh( / 3)
y

F y
φ

Ω
= , 

2
( ) hWe dU
y

L dy
Ω = , ( )1sinh 3 3 / 2φ −= Ω , Weh = λuτ/h = Weτ/Reτ. 

Here, y is the wall normal direction and U(y) is the mean streamwise velocity. 

The governing equations are time-integrated by using a semi-implicit method similar 

to that in Beris et al. [45]. The spatial derivatives are obtained by using a spectral 

method with Fourier representations in the streamwise and spanwise directions, and 

Chebyshev expansion in the wall-normal direction. Periodic boundary conditions are 

applied in the streamwise and spanwise directions, and the no-slip boundary condition is 

imposed on the velocity at the solid walls. More details on the numerical method are 

available in Sureshkumar et al. [9]. The domain size is 4πh × 2h × πh in the streamwise, 

wall-normal, and spanwise directions, respectively. Note that the longer streamwise 

length of the simulation box is necessary to account for enhanced streamwise velocity 

correlations that exist in the viscoelastic cases. After testing several grid resolutions [39, 

46], we chose to use 256 × 128 × 192 spectral modes; as a result, Δx+ = 19.4, Δy+ = 

0.12~9.69, and Δz+ = 6.46, where the superscript + indicates quantities 

non-dimensionalized by wall variables uτ and ν0. 

 

III. Results and Discussion 
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Figure 1 shows several snapshots of the evolution of the initial vortical structure in 

viscoelastic flows at three different Weissenberg numbers (Weτ = 50, 100, and 200). 

Vortices are identified using the swirling strength (λci) defined as the absolute value of 

the imaginary part of the complex conjugate eigenvalues of the local velocity gradient 

tensor [34, 47]. The initial vortex was extracted by the Q2 event of α = 3 specified at y+ 

= 50 from the Newtonian flow simulations. The other rheological parameters of the 

FENE-P model were β = 0.9 and L = 120. Note that the friction velocity used for the 

velocity normalization for the viscoelastic flows is the same as that for Newtonian flow 

because the same constant mean pressure gradient is imposed for both the cases. 

The evolution of the same initial vortex in the Newtonian flow is also displayed in 

Fig. 1a for comparison. The initial vortical structure is changed to an Ω-shaped vortex at 

t+ (= tuτ
2/ν0) = 79 by self-induced motion in the bi-normal direction due to the local 

effect of the curved vortex line [34]. A secondary hairpin vortex (t+ = 158) is generated 

upstream of the primary hairpin vortex, and the vortices move downstream with almost 

the same convection velocity and little dispersion, forming a vortex packet. 

Subsequently, new vortices in the buffer layer are also generated upstream of the 

secondary vortices. 

The autogeneration of new vortices is clearly suppressed in the viscoelastic flows. At 

a relatively low Weissenberg number (Weτ = 50), the generation of new vortices is 

inhibited by the polymer stress; consequently, fewer vortices appear in the buffer layer. 

However, the head of the primary hairpin is unaffected by the polymer stress as 

compared with that in the Newtonian flow (Fig. 1a). At higher Weτ values (=100 and 

200), the hairpin head and legs both weaken, and autogeneration of new vortices are not 

observed. The weakening of the primary hairpin vortex becomes more significant as 

Weτ increases, and thus the time scale over which the vortex disappears is shortened. 

Moreover, the wall normal extent of vortex weakening increases with Weτ. 
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Figure 2 shows profiles of the Reynolds shear stress averaged in the horizontal (x-z) 

plane at several instants. Because the Reynolds shear stress profile is expected to be 

closely related to the vortex evolution, vortical structures in the Newtonian flow are also 

shown for reference. Because the initial flow field is imposed as the conditionally 

averaged velocities with Q2 event specified at y+ = 50 (y/h = 0.13), the Reynolds shear 

stress profiles have a peak at the Q2 event location as shown in Fig. 2a. At t+ = 79 (Fig. 

2b), the peak moves away from the wall since the initial vortex is lifted up with forming 

the Ω-shaped primary hairpin vortex. However, the viscoelastic effects on the Reynolds 

shear stress profile are negligible in this early stage of the evolution (t+ < 79) and the 

effects begin to be clearly observed from t+ = 158 (Fig. 2c). 

In the Newtonian flow, at t+ = 237, a local maximum located near the wall (y/h = 0.1) 

is observed which is associated with new vortices generated upstream of the primary 

hairpin and the strengthening of the primary vortex legs due to vortex stretching near 

the wall. The outer peak at y/h ≈ 0.45 corresponds to the head of the primary hairpin 

vortex. The secondary vortex head is lifted upward with time because of the Q2 

pumping induced by the primary hairpin vortex. The lifted secondary hairpin head 

makes an additional contribution to the Reynolds shear stress associated with the 

primary hairpin, producing a peak near y/h = 0.5 at t+ = 395 (Fig. 2f). At the same time, 

the primary hairpin spreads farther from the wall with decreased strength owing to 

viscous diffusion, causing a diffuse shoulder near y/h = 0.8 in Fig. 2f. The maximum 

observed near y/h = 0.1 at t+ = 237 becomes a larger peak at t+ = 395 because the vortex 

legs near the wall are further strengthened by vortex stretching by the high mean shear. 

At relatively low Weτ (= 50), the variations in the Reynolds shear stress with time are 

similar to those in the Newtonian flow. In Fig. 2f, the near-wall peak value of the 

Reynolds shear stress is lower, whereas the profiles are nearly the same as that for the 

Newtonian flow at y/h > 0.6. This is consistent with the observation in Fig. 1b that 

fewer vortices appear in the buffer layer because the autogeneration process is inhibited 
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by polymer stress, but the head of the primary hairpin is unaffected. At larger Weτ 

values (≥ 100), the near-wall peaks are significantly suppressed compared with those in 

the Newtonian flow. In Fig. 2f, the diffuse shoulder in the outer layer associated with 

the primary hairpin vortex head, observed in both the Newtonian and Weτ = 50 flows, 

disappears. This is consistent with the suppression of the eddies at higher Weissenberg 

numbers as shown in Fig. 1. Overall, the variation in the Reynolds shear stress profiles 

during vortex evolution in viscoelastic flows reported here corroborates DNS and 

experimental results for fully turbulent drag-reduced flows, in that the Reynolds shear 

stress is reduced only in the buffer layer for low DR (LDR), whereas for high DR 

(HDR), it is also reduced in the outer layer [3, 7, 8, 48]. 

Figure 3a shows the volume-averaged Reynolds shear stress normalized with respect 

to its initial value during the evolution of the initial vortex. The growth rate of the 

volume-averaged Reynolds shear stress decreases as Weτ increases owing to the 

inhibited autogeneration mechanism and weakened vortices (Fig. 1). Further, a closer 

examination reveals that the viscoelastic effects are manifested more rapidly in time as 

the Weissenberg number increases. The Reynolds shear stress of the viscoelastic flows 

begin to deviate from that for the Newtonian flow by more than 5% at t+ = 163, 122, and 

98 for Weτ = 50, 100, and 200, respectively. The more rapid manifestation of 

viscoelastic effects in the Reynolds shear stress for higher Weτ is consistent with 

evolution of vortical structures in Fig. 1; with increasing Weτ, the vortical structures are 

weakened more rapidly resulting in decreased production of turbulent stressses. In fully 

turbulent drag-reduced flows, the lower values of Reynolds shear stress compared with 

Newtonian flows have been attributed to weakened vortices because the polymer torque 

due to the polymer stress acts against the vortical motion of the near-wall vortices [21]. 

Figure 3b shows the temporal evolution of the volume-averaged polymer torque 

magnitude. The polymer torque (Tp) is defined as the curl of the polymer force vector 

(fp) as:  
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 1
Rep p

τ

β⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

= ∇× = ∇× ∇⋅T f τ . 

 

Because the initial condition corresponds to polymers pre-stretched by the mean 

shear, the polymer torque begins to affect the flow in the early stages of vortex 

evolution. The polymer torque magnitude increases as Weτ increases, which suggests 

that a higher Weτ induces a larger polymer torque against the vortical motions, and thus 

produces greater vortex weakening. The polymer torque decreases very early on during 

its evolution (t+ < 50); during this phase, the polymer torque is concentrated on the 

initial vortex, which develops into an Ω-shaped vortex by self-induced motion due to 

local curvature effects. The polymer torque subsequently increases, reaching a 

maximum at around t+ = 100; at this time, a secondary vortex is generated upstream of 

the primary hairpin in the Newtonian flow. This large polymer torque inhibits 

autogeneration in the viscoelastic flow by suppressing the vortical motions of the 

primary hairpin. The polymer torque decreases after t+ ≈ 200; which can be attributed to 

the decrease in the vorticity magnitude after autogeneration, since the weakened 

vortices induce less polymer stretching and thus a weaker polymer torque. 

To elucidate the self-consistent interactions between the polymer torque and the 

changes in the Reynolds shear stress during vortex evolution, the temporal variations in 

the maximum values of the Reynolds shear stress and polymer torque magnitude are 

displayed in Fig. 4. The time history of the maximum vortex swirling strength is also 

shown, and the vortical structures at several instants are visualized using the isosurface 

corresponding to 20% of the maximum λci in order to obtain a visual signature of the 

vortex modification process. 

The time histories of the local maximum of the Reynolds shear stress show that 

(–u′v′)max decreases as evolution begins, whereas the volume-averaged values increase 
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monotonically from the initial state (Fig. 3a). The reason is that as the initially confined 

vortex grows and develops into larger-scale flow structures, the cumulative Reynolds 

shear stress produced by vortical motions increases, although the local maximum value 

decreases. When the initial vortex forms an Ω-shaped primary hairpin vortex (t+ ≈ 55), 

the Reynolds shear stress reaches a maximum; it then decreases along with the vortex 

strength because of the increased polymer counter-torques. The maximum values of the 

polymer torque magnitude, |T′p|max increase abruptly from zero and show a subsequent 

decrease; they then increase again, peaking at t+ ≈ 95 and 87 for Weτ = 50 and 100, 

respectively, and then decrease. The overall behaviours of the local maximum |T′p| are 

similar to those of the volume-averaged values, |T′p|vol as shown in Fig. 3b. 

The maximum vortex swirling strength λci,max first increases from its initial value 

until t+ ≈ 55 and then decreases. Note that the increase in the polymer torque magnitude 

follows by an increase in the vortex swirling strength. This suggests that the increase in 

vortex strength produces higher straining motion near the vortices, which results in 

greater polymer stretching and, in turn, an increase in the polymer torque acting on the 

vortices in the direction opposite to the vortical motion. The stronger polymer torque at 

Weτ = 100 causes the vortex swirling strength and Reynolds shear stress to decrease 

more rapidly after the primary hairpin vortex forms (t+ > 55) than at Weτ = 50. 

To identify the regions in which high polymer torque occurs near the vortices, the 

isosurface of 50% of |T′p|max around the vortical structures is shown in dark shades in 

Fig. 4. The initial vortex changes significantly during the polymer relaxation time at 

Weτ = 50 (or earlier at Weτ = 100) and develops to an Ω-shaped vortex at t+ ≈ 55 when 

λci,max becomes largest during the vortex evolution. The isosurface corresponding to 50% 

of |T′p|max reveals that the regions of high polymer torque are concentrated in the vortex 

legs which retards ejection motions between the vortex legs by opposing vortical 

motions of the legs, and thus suppresses the generation of a secondary hairpin vortex. 

Although the vortices at different Weτ values are similar when |T′p|max is the largest 
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during vortex evolution, the distributions of the polymer torque differ. At Weτ = 100, a 

large polymer counter-torque is observed in the hairpin vortex head as well as the legs, 

whereas a strong polymer torque is observed only in the vortex legs at Weτ = 50. 

Because of the large counter-torque in the hairpin head, the head weakens at Weτ =100, 

and is diffused and elongated in the streamwise direction compared with that at Weτ = 

50. Since the polymer torque at Weτ = 50 is confined to the inner layer during vortex 

evolution, the vortices in the outer layer are unaffected by viscoelasticity at Weτ = 50 

compared with those obtained from the Newtonian simulation (Fig. 1). 

According to Lumley’s criterion for the onset of DR, polymers can affect the flow 

only when the polymer relaxation time is larger than a suitably defined flow time scale 

[40]. Because the vortex swirling strength is related to the inverse of the vortex time 

scale, tvortex ~ 2π/λci [47], vortices having a smaller time scale than the polymer 

relaxation time (t+
vortex ~ 2π/λci

+ <Weτ), i.e., vortical motions with sufficiently high 

swirling strength (λci
+ > 2π/Weτ) are expected to be affected by polymers. In other 

words, as Weτ increases, vortices having a wider range of swirling strengths can be 

affected by polymer stress. To observe the relationship between the polymer relaxation 

time and the vortex swirling strength, the spatiotemporal evolution of λci,max in the 

horizontal plane x-z is shown in Fig. 5. Three contour levels for λci
+ are shown over 

which vortices have a time scale smaller than the polymer relaxation time at Weτ = 50, 

100, and 200, respectively. At t+ < 100, the distributions of λci,max in viscoelastic flows 

are nearly the same as in the Newtonian flow; this time interval corresponds to the 

formation of an Ω-shaped vortex from the initial vortex (Fig. 1). However, viscoelastic 

effects appear after t+ ≈ 100. In the Newtonian flow (Fig. 5a), a high swirling strength 

(denoted by black shade) continues to be observed near the wall over time; this is 

associated with the autogenerated vortices. At Weτ = 50 (Fig. 5b), the region in which 

λci
+ is larger than 2π/Weτ (black) disappears entirely at t+ > 200. At Weτ =100 and 200, 

the region at which λci
+ > 2π/Weτ disappears at t+ ≈ 185 and 350, respectively (Fig. 5c 
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and 5d). This suggests that at larger Weissenberg numbers, vortical motions associated 

with a broader range of time scales are affected by the polymer stress, which is 

consistent with Lumley’s time criteria for the onset of DR. Consequently, for a given 

Reynolds number, as the Weissenberg number is increased, the viscoelastic effects 

eventually encompass all dynamically relevant vortex time scales and hence the DR 

saturates, consistent with experimental observations [49]. 

Note that the discussion so far has been based on the spatiotemporal modification by 

viscoelastic torques of a single conditionally averaged hairpin vortex whereas, in real 

turbulent flows, numerous vortices of varying spatial scales at different phases of 

formation, growth, and decay are populated and interact with one another. Further, 

smaller scale motions also exist within the flow field. In order to evaluate whether the 

physical insights gleaned by observing the evolution of the conditional eddy is relevant 

to the entire flow field, dynamical simulations were performed to study the effect of 

polymer-induced stresses on the evolution of the fully turbulent flow field from which 

the initial hairpin eddy was extracted. Specifically, the initial velocity field is given by 

an instantaneous flow field taken from the DNS of fully turbulent Newtonian channel 

flow at Reτ = 395. The initial polymer conformation tensor field is obtained by solving 

Eq. (9) as in the case of single vortex simulations. Domain sizes of 2πh and πh were 

used in the streamwise and spanwise directions, respectively along with a 128 × 129 × 

192 grid. Other simulation parameters are L = 14400, β = 0.9 and Weτ = 50, 100, 200. 

Figure 6 shows several snapshots of vortical structures during the evolution of the 

initial fully turbulent flow field for the Newtonian and viscoelastic cases. The vortical 

structures are identified as colored isosurfaces of the vortex swirling strength and the 

color is progressively changed from blue to red as the distance of the vortex core from 

the wall increases. In the Newtonian flow, relatively weak arch-shaped or spanwise 

vortices are populated in the outer layer while quasi-streamwise vortices become 

dominant close to the wall. On the other hand, in the viscoelastic flows, the vortices 
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become weaker as time progresses and it is clearly observed that inner vortices are 

weakened first and eventually suppressed. Further, within a given time interval, the 

extent in the wall normal direction of vortex weakening due to viscoelastic effects 

increases as Weτ increases. These observations for a fully turbulent flow are consistent 

with those obtained from the dynamics simulations of a conditional eddy (Fig. 1). 

Figure 7 shows temporal changes of the volume-averaged Reynolds shear stress and 

polymer torque magnitude during the evolution of the fully turbulent flow field. As 

shown in Fig. 7a, the volume-averaged Reynolds shear stress decays in the viscoelastic 

flows and the decay rate increases with increasing Weτ, which is consistent with the 

results obtained from the single vortex evolution (Fig. 3a) indicating that viscoelastic 

effects are manifested more rapidly in time as Weτ is increased. Figure 7b shows that the 

temporal changes in the volume-averaged polymer torque magnitude are also similar to 

that observed in the single vortex evolution (Fig. 3b):  |T′p|vol is larger for larger Weτ 

and it increases and reaches a maximum at around t+ ≈ 60, which is somewhat earlier 

than that for the conditionally averaged vortex evolution (t+ ≈ 100). Note that in the 

single vortex evolution |T′p|max occurs at around the time when the secondary vortex is 

generated and this occurs faster for stronger initial vortex [34]. In the fully turbulent 

initial condition, the initial vortex strength is larger than that for the single hairpin eddy, 

i.e., the vortex swirling strength λcih/uτ = 18 and 11 in the fully turbulent flow and 

single hairpin, respectively. Hence, the earlier occurrence of |T′p|max in fully turbulent 

flow evolution is not surprising. After t+ ≈ 60, |T′p|vol decreases monotonically which 

can be attributed to decreased levels of polymer stretch due to the weakened vortices as 

discussed in Fig. 3b. 

DNS and experimental studies of wall-bounded turbulent flows have revealed that 

QSVs are dominant in the inner layer, and hairpin or arch-type vortices are dominant in 

the outer layer [18, 19]. In addition, the vortices in the outer layer are reportedly weaker 

than those in the inner layer. In this context, the present results suggest that in 
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viscoelastic flows with a polymer relaxation time that is small but larger than the vortex 

time scale of the strongest vortices near the wall, near-wall vortices can be affected by 

the polymer stress, whereas weaker vortices in the outer layer remain unaffected. For 

polymer relaxation times larger than the vortex time scale associated with the weak 

outer vortices, entire vortices in the flow can be modified, changing the flow 

characteristics of both the outer and inner layers. The interplay between the vortex time 

scale and polymer relaxation time can help explain the differences in the flow 

characteristics between the LDR regime realized at relatively small Weissenberg 

numbers and the HDR regime observed at larger Weτ; e.g., the mean velocity in the log 

layer has the same slope as in Newtonian flow for LDR but is higher for HDR [48]. 

 

IV. Conclusion 
 

The effect of dynamic interactions between turbulent vortical structures and polymer 

stress on turbulent friction DR was examined by performing a series of spectral 

simulations for channel flow at Reτ = 395. By using the FENE-P model, we obtained 

self-consistent evolution of the initial vortical structure in the presence of polymer 

stresses. 

At a relatively low Weissenberg number (Weτ = 50), the generation of new vortices 

is inhibited by polymer-induced counter-torques, so fewer vortices appear in the buffer 

layer. However, the head of the primary hairpin is unaffected by the polymer stress. At 

larger Weτ values (≥ 100), the hairpin head weakens, and vortex autogeneration is 

almost entirely suppressed. Moreover, as Weτ increases, vortices in both the outer layer 

and the buffer layer are affected by the polymer stress. In agreement with the vortex 

evolution, the Reynolds shear stress profile at low Weτ is affected by the polymer stress 

only in the buffer layer, whereas at higher Weτ, the viscoelastic effects extend to the 

outer layer. 
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We showed that at Weτ = 50, the polymer counter-torque is concentrated on the 

hairpin vortex legs in the buffer layer, which suppresses autogeneration of new vortices. 

With increasing Weissenberg number, a large polymer counter-torque is observed in the 

hairpin head as well as the vortex legs, which weakens the outer layer vortices. The time 

history of the vortex strength and polymer torque magnitude revealed that a strong 

polymer torque is generated by strong vortical motions after a time delay, inducing 

polymer stretching; in turn, the increased polymer torque retards the vortical motions. 

Finally, we examined the changes in the vortex time scales and found that with 

increasing Weissenberg number, vortical motions associated with a wider range of time 

scales are affected by the polymer stress, in agreement with Lumley’s time criteria for 

the onset of DR. 

Although a clear relationship between the nonlinear evolution of the mean and the 

mean of the nonlinear evolution may not exist for highly nonlinear systems, the present 

exploration has led, a posteriori, to the following mechanism that are closely related to 

the evolution of the nonlinear system in itself which has been studied by DNS: in 

viscoelastic flows with a polymer relaxation time that is small but larger than the vortex 

time scale of the strongest vortices near the wall, near-wall vortices can be affected by 

the polymer stress, whereas weaker vortices in the outer layer remain unaffected. As the 

polymer relaxation time is progressively increased, the eddy structures with longer time 

scales interact with the polymer and the outer layer modification becomes more 

pronounced. The interplay between the vortex time scale and polymer relaxation time 

can help explain the differences in the flow characteristics between the LDR regime 

realized at relatively small Weissenberg numbers and the HDR regime observed at 

larger Weissenberg number. Furthermore, the existence of maximum DR limit can be 

explained; for a given Reynolds number, as the Weissenberg number is increased, the 

viscoelastic effects eventually encompass all dynamically relevant vortex time scales 

and hence the DR saturates. 
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Fig. 1 (Color online) Snapshots of the evolution of initial vortical structure extracted by Q2 event vector of strength α = 3 specified 
at y

+
=50 from Newtonian flow in (a) Newtonian and (b)-(d) viscoelastic flows. Vortices are visualized using the iso-surfaces of 20% 

of the maximum swirling strength (λci) of the initial eddy. 
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Fig. 2 (Color online) Profiles of the Reynolds shear stress during the evolution of the initial structure extracted by Q2 event vector of 
strength α = 3 specified at y+ = 50 in the Newtonian flow. Vortical structures in the Newtonian flow are also shown for reference. To 
better visualize the hairpin, the y-direction is scaled up by a factor of 2. Solid line with symbols: Newtonian flow; solid lines: Weτ = 
50; dotted lines: Weτ =100; dashed lines: Weτ =200. 
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Fig. 3 Growth rate of volume-averaged values during the evolution of the initial 
structure extracted by Q2 event vector of strength α = 3 specified at y+=50 in Newtonian 
flow. (a) Reynolds shear stress; (b) polymer torque magnitude. Solid line with symbols: 
Newtonian flow; solid lines: Weτ = 50; dotted lines: Weτ =100; dashed lines: Weτ =200. 
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Fig. 4 (Color online) Temporal variations in maximum values of vortex swirling 
strength and polymer torque magnitude. To visualize the region of large polymer torque, 
the isosurface (dark gray) of 50% of |T’p|max is shown around the vortical structures 
(light gray) described by the isosurface of 20% of λci,max. 
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Fig. 5 Spatiotemporal evolution of maximum swirling strength in the x-z plane, 
max(λci

+)xz. Three contour levels are shown: max(λci
+)xz = 2π/Weτ at Weτ= 50 (black), 

100 (gray), and 200 (light gray).  
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Fig. 6 (Color) Evolution of initially fully turbulent vortical structures in (a) Newtonian and (b)-(d) viscoelastic flows. The vortices are 
shown as colored isosurfaces 5% of the maximum swirling strength (λci) of the initial flow field. Blue and red color indicate vortices 
closer to and farther from the wall, respectively.  
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Fig. 7 Temporal variations of volume-averaged values during the evolution of fully 
turbulent flow field. (a) Reynolds shear stress; (b) polymer torque magnitude. Solid line 
with symbols: Newtonian flow; solid lines: Weτ = 50; dotted lines: Weτ =100; dashed 
lines: Weτ =200. 
 

t+

|T
' p| vo

l

0 100 200 3000

50

100

150

200

250(b)

t+

|-u
'v

'| vo
l
/|

-u
'v

' t=
0| vo

l

0 100 200 3000

0.5

1

1.5(a)


