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We study the statistical properties of the impedance matrix (related to the scattering matrix)
describing the input/ouput properties of waves in cavities in which ray trajectories that are reg-
ular and chaotic coexist (i.e., ‘mixed’ systems). The impedance can be written as a summation
over eigenmodes where the eigenmodes can typically be classified as either regular or chaotic. By
appropriate characterizations of regular and chaotic contributions, we obtain statistical predictions
for the impedance. We then test these predictions by comparison with numerical calculations for a
specific cavity shape, obtaining good agreement.

I. INTRODUCTION

In principle, for a given configuration, properties of
wave systems are completely determined, and thus are
not random. However, at short wavelength, these prop-
erties can be very sensitively dependent on small con-
figurational changes or changes of the free space wave-
length. If the configuration or free space wavelength is
regarded as slightly uncertain within some small range
and the wave properties vary wildly in this range, then
a statistical approach may be warranted. This type of
approach was originally introduced by E. Wigner in ref-
erence to the energy levels of large nuclei [1–3], and
later employed to study classically chaotic quantum sys-
tems [2, 4]. Here we focus on quasi-two-dimensional mi-
crowave cavities and quantum dots which couple to an
external environment through suitable openings (called
‘leads’ or ‘ports’). The statistical properties in chaotic
cavities with external connections have been well studied
using various approaches, e.g., the ‘Poisson Kernel’ [5, 6]
or the ‘Random Coupling Model’ (RCM) [7]. The RCM
(employed in the present paper) focuses on impedance
matrices (related to scattering matrices through an ele-
mentary transformation) and replaces the eigenfunctions
and eigenenvalues in the impedance formula by suitably
choosen random quantities. Past work has shown that
the RCM, and ,equivalently, the Poisson Kernel yield re-
sults that agree well with statistical data obtained from
experiments and numerical computations on microwave
cavities [6, 8–10]. However, in general, such systems may
have not only either all chaotic or all regular orbits, but
also typically have a mixture of coexisting chaotic and
regular orbits. We called such systems ‘mixed’. The sta-
tistical properties of impedance matrices in mixed sys-
tems is the subject of this paper.

For specificity we focus on a particular mixed system,
a ‘mushroom’ cavity (Fig. 1(a)) [11], which has a clearly
divided phase space [12]. For most modes of this sys-
tem, we find that it is possible to separate them into
two classes, regular and chaotic (this may not hold for
other systems). Using this separation, we decompose the
impedance formula into chaotic and regular parts. We
then derive the probability distribution associated with

the chaotic part of the impedance, while, for the regular
part we utilize exact (numerically calculated) or approx-
imate theoretical eigenmodes. To test our theory, we nu-
merically solve for eigenvalues and eigenfunctions of our
mushroom cavity and insert them into the exact formula.

This paper is organized as follows. In Sec. II we review
the impedance formula in two dimensional cavities, in-
troduce the random coupling model, generalize the RCM
to mixed systems, introduce the mushroom cavity (an
example of a mixed system), and apply our generalized
RCM to this cavity. In Sec. III we numerically calcu-
late the impedance matrix of the mushroom cavity and
compare the numerical results with results from our sta-
tistical theory. Conclusions and discussion are presented
in Sec. IV.

The general problem of wave properties of systems
whose ray equations have a mixed phase space was first
addressed by Berry and Robnik [13] who studied the
spectra of mixed closed systems. Subsequently, many
other researchers have investigated spectra and wave-
functions of closed systems with mixed ray orbit phase
space (e.g., [14, 15]). The problem of characterizing the
input/output properties of mixed open systems, how-
ever, has, to our knowledge, been addressed relatively
little [16–18].

II. REVIEW OF THEORY

A. Impedance of a cavity

In the presentation that follows, we consider the con-
text of electromagnetic waves. However, we emphasized
that, with appropriate notational changes, these consid-
erations apply equally well to quantum waves, acoustic
waves, elastic waves, etc.

We consider a vacuum-filled, quasi-two-dimensional
(vertically thin) microwave cavity with cavity height h
and M ports as shown in Fig. 1. We denote the two
dimensional interior of the cavity by Ω ∈ R

2. If the fre-
quency is not too high (i.e., the wavelength is greater
than 2h), then only vertical electric fields are excited in-
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FIG. 1. (a) Top view of the quasi-two dimensional cavity cou-
pling with M = 2 ports (fed by coaxial transmission lines),
where the region interior to the cavity is denoted Ω. (b)
Sideview of the cavity at a port. In some previous works, a
mushroom billiard similar to that in (a) was used [11], but the
billiard section below the quarder circular cap being a rect-
angle of width ρ0. This, however, introduced neutrally stable
ray orbits that bounce back and forth horizontally between
the vertical walls of the rectangle. By using the above triangu-
lar bottom part (as in Ref. [19]) (a) we avoid the non-generic
effects of such orbits.

side the cavity,

~E = Ez(~x, t)ẑ, (1)

where ~x ∈ Ω is a two dimensional position vector. The
surface charge density on the bottom plate of such a cav-
ity is ρs = −ǫ0Ez, and the voltage difference between the
two plates is

VT (~x, t) = hEz(~x, t). (2)

The surface current density on the bottom plate is related

to the magnetic field, ~H , which is perpendicular to ~E, by

~Js = ~H × ẑ. (3)

We assume that the fields are excited by M localized
current sources, which inject surface charge density on
the bottom plate

ρ̇s(~x, t) =

M
∑

j=1

Ij(t)uj(~x), (4)

where uj(~x) is the normalized profile function of port j,
∫

d2~xuj(~x) = 1, and we regard Eq. (4) as modeling the
currents induced by the transmission line fed ports shown
in Fig. 1. With Eq. (3), the continuity equation for the
surface charge can be written as

∂

∂t
(−ǫ0Ez) + ~∇ · ( ~H × ẑ) = ρ̇s =

M
∑

j=1

Ijuj . (5)

Differentiating Eq. (5), using Faraday’s law, ∇ × ~E =

−µ0∂ ~H/∂t, and expressing Ez by Eq. (2), we obtain

1

c2
∂2

∂t2
VT −∇2VT = hµ0

M
∑

j=1

uj
∂

∂t
Ij , (6)

where c = 1/
√
µ0ǫ0 is the speed of light. Assuming

that VT (~x, t) = V̂T (~x)e
jωt, Ii(t) = Îie

jωt, Eq. (6) can
be rewritten as

(∇2 + k2)V̂T = −jkhη0

M
∑

j=1

uj Îj , (7)

where k = ω/c, and η0 =
√

µ0/ǫ0 is the free space
impedance.
We expand V̂T in the basis of the eigenfunctions of the

closed cavity, i.e.,

V̂T =

∞
∑

n=1

cnφn, (8)

where φn satisfies the Helmholtz equation with Dirichlet
boundary condition and a proper normalization condi-
tion, i.e.,

(∇2 + k2n)φn(~x) = 0 ~x ∈ Ω, (9)

φn(~x) = 0 ~x ∈ ∂Ω, (10)
∫

Ω

φiφjd
2~x = δij , (11)

and we order the mode labeling according to the conven-
tion, k2n+1 ≥ k2n. Inserting Eq. (8) into Eq. (7), multiply-
ing φm(~x) and integrating over Ω, we obtain

cm = −jkhη0

M
∑

j=1

〈ujφm〉Îj
k2 − k2m

, (12)
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where 〈· · · 〉 ≡
∫

Ω · · · d2~x. The voltage at port i is defined
as

V̂i = 〈uiV̂T 〉, (13)

where the port voltages Vi are expressed in phaser form,
Vi = V̂ie

jωt. Using Eqs. (8), (12) and (13), we obtain

V̂i =

M
∑

j=1

Zij Îj , (14)

where the i, j element of the impedance matrix Z is given
by

Zij = −jkhη0

∞
∑

n=1

〈uiφn〉〈ujφn〉
k2 − k2n

. (15)

Equation (15) states that, in a lossless cavity, the
impedance is purely imaginary, since the eigenfunctions
for Eqs. (9) and (10) are real. It also states that, if we
know all the eigenfunctions and eigenvalues of the closed
cavity, we can calculate the matrix elements of Z exactly.
Note that 〈uiφn〉 → 0 as the port size becomes much
greater than several wavelengths. Thus, the infinite sum
in Eq. (15) can be replaced by a finite sum, i.e.,

Zij = −jkhη0

N
∑

n=1

〈uiφn〉〈ujφn〉
k2 − k2n

, (16)

where N satisfies the condition, 2π/kN ≪ (size of ports).
For systems that are large compared to a wavelength
(2π/k) and may have some uncertainty in their speci-
fication, it is often of practical interest to dispense with
the neccessity of numerically calculating all N eigenfunc-
tions and to instead look for a statistical description. The
later will be our goal.

B. Random Coupling Model

The Random Coupling Model (RCM) treats the case
where typical ray orbits are all chaotic and is based on
the supposition that, in the short wavelength limit, the
statistical properties of the impedance of a chaotic cavity
can be obtained from Eq. (16) by replacing k2n and 〈uiφn〉
by suitable random variables.
According to the Weyl’s formula [20] for a two dimen-

sional cavity of area A, the mean spacing between two
adjacent eigenvalues, k2n − k2n−1, is 4π/A, i.e.,

∆ ≡ 〈k2n − k2n−1〉 =
4π

A
. (17)

References [1, 2, 21] state that the normalized eigenvalue
spacing, sn ≡ (k2n−k2n−1)/∆, of a time-reversible chaotic
system has similar statistical properties to the spacings of
the eigenvalues of large matrices randomly drawn from
the Gaussian Orthogonal Ensemble (GOE) of random

matrices with unit mean eigenvalue spacing. In this pa-
per, our eigenfunctions are always real, as appropriate to
time reversible systems, and, henceforth, GOE is auto-
matically assumed when we mention random matrices.
Berry [22] argues that the wavefunction at any point

in a chaotic billiard has similar statistical properties to a
random superposition of many plane waves,

φn(~x) ≈ Re







J
∑

j=1

αj exp (ikn~ej · ~x+ iβj)







, J ≫ 1,

(18)
where it is assumed that ~x is not too close to the billiard
boundary, the wavenumber kn is fixed, but propagation
directions ~ej, amplitudes αj , and phases βj are random
variables. To be more specific, directions and phases are
uniformly distributed in [0, 2π], and all amplitudes have
the same distribution. By the central limit theorem, for
J ≫ 1, φn(~x) evaluated at the point ~x is a Gaussian
random variable with zero mean, and its variance can be
determined by the normalization condition, i.e.,

∫

Ω

φ2
nd

2~x = 1, (19)

which implies

E{φ2
n} = 1/A. (20)

The probability distribution function of the overlap
integral 〈uiφn〉 is Gaussian with expectation value zero
(since φn is a Gaussian with expection value zero), and
by Eq. (18) the variance of 〈uiφn〉 is

E{〈uiφn〉2} =
1

A

∫ 2π

0

dθ

2π
|ū(~kn)|2, (21)

where ~kn = (kn cos θ, kn sin θ), and ū(~kn) is the Fourier
transform of the profile function u(~x),

ū(~kn) =

∫

d2~xu(~x) exp (−i~kn · ~x). (22)

Note that, the variance of 〈uiφn〉 depends on the eigen-

value k2n through Eq. (22) where |~kn| = kn. If 2π/kn ≫
(size of the port), the profile function of the port can be
approximated by a delta function, i.e., 〈uiφn〉 = φn(~xi);
if 2π/kn is comparable to the port size, we need to con-
sider the variations of φn over the ports. Eventually,
for short enough wavelength we have E{〈uiφn〉} → 0 as
kn → ∞.
For an M port system, we need to consider the same

wavefunction at different positions; e.g., if 2π/k ≫
(size of the port), for two ports located at ~xi and ~xj , we
need to consider 〈uiφn〉 ∼= φn(~xi) and 〈ujφn〉 ∼= φn(~xj),
which are not, in general, independent, although inde-
pendence can be approximately assumed if the ports are
many wavelengths apart. In the RCM, we build in this
relation by writing

Φn ≡ [〈u1φn〉, . . . , 〈uMφn〉]T =
1√
A
wn, (23)
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where the 1/
√
A factor is based on the expectation value

of φ2
n, andwn(n = 1, 2, . . . , N) is anM -dimensional, zero

mean, standard Gaussian random vectors whose covari-
ance matrix may have nonzero non-diagonal elements re-
flecting correlation between nearby ports. We can rewrite
the impedance matrix as

Z = −jkhη0
∆

4π

N
∑

n=1

wnw
T
n

k2 − k2n
. (24)

where we have used Eq. (17) to replace A.
In the case of identical transmission line inputs that

are far enough apart, we can neglect correlations between
the ports and the covariance matrix of wn is 1M×M ; i.e.,
E(wiwj) = δij for i, j = 1, 2, . . . ,M . In this case, we
introduce the normalized reactance matrix,

Ξ = − 1

π

∑

n

wnw
T
n

k̃2 − k̃2n
, (25)

where k̃2 = k2/∆ and the mean spacing, k̃2n − k̃2n−1, be-
tween normalized eigenvalues is one. In this case the
impedance matrix becomes

Z = j
khη0
4

Ξ. (26)

Note that the normalized reactance matrix, Ξ, is inde-
pendent of all system specific information, such as the
cavity shape, area, etc.; namely, it is universal for all
chaotic cavities with widely separated ports.

C. Impedance in Mixed Systems

For a generic two dimensional billiard, both regular
and chaotic phase space regions coexist, and we call such
a system mixed. Percival’s conjecture [23] states that
semiclassical eigenmodes in mixed systems live either in
regular or chaotic regions. Our numerical computations
support this conjecture (see Fig. 2). At short wavelength,
the number of regular and chaotic eigenstates can be ap-
proximately counted by the Partial Weyl law [24],

N̄Γ(k
2) =

AΓ

4π
k2 +O(k), (27)

where Γ = R denotes regular trajectories and Γ = C de-
notes chaotic trajectories, AΓ/A is the ratio of the phase
space volume occupied by Γ, and AΓ is given by

AΓ =

∫

Ω

d2~x
1

2π

∫ 2π

0

dθζΓ(~x, θ). (28)

Here, ζΓ(~x, θ) is the characteristic function of Γ at (~x, θ),
i.e., ζΓ(~x, θ) = 1 if the trajectory running through ~x at θ
angle belongs to Γ and ζΓ(~x, θ) = 0, otherwise.
Following the above approach, we decompose (16) into

the contributions ZR and ZC to the impedance from the
regular eigenmodes and chaotic eigenmodes, as follows,

Z = ZR + ZC , (29a)

and

ZR,ij = −jkhη0

NR
∑

r

〈uiφr〉〈ujφr〉
k2 − k2r

, (29b)

ZC,ij = −jkhη0

NC
∑

c

〈uiφc〉〈ujφc〉
k2 − k2c

, (29c)

where φr(φc) denotes regular (chaotic) wavefunctions,
r = 1, 2, . . . , NR(c = 1, 2, . . . , NC), and NR +NC = N .
The semiclassical wavefunction distribution for chaotic

eigenfunctions in mixed systems can be described by the
so-called Restricted Random Wave Model [25],

P~x(φ) =
1

√

2πσ2(~x)
exp

[

− φ2

2σ2(~x)

]

, (30)

where

σ2(~x) =
1

2πAC

∫ 2π

0

dθζC(~x, θ). (31)

In a two dimensional pure chaotic cavity, σ2 = 1/A is
independent of ~x.
The statistics of k2c in mixed systems is hypothesized

to be similiar to the statistics of k2n in chaotic systems,
but the mean of the spacing between chaotic eigenvalues,
k2c+1 − k2c , is given by 4π/AC , as opposed to 4π/A in the
purely chaotic case. Thus, the statistics of the chaotic
normalized reactance in mixed systems should be identi-
cal to the statistics of the normalized reactance in chaotic
systems.
We do not expect to find explicit universal statistics for

the regular eigenfunctions φr as they are dependent on
the cavity shape. However, the regular normalized reac-
tance in mixed systems is always Lorentzian distributed
(see Appendix A).

D. Mushroom Billiard

The mushroom billiard [11, 26] was first introduced by
Bunimovich. Since the cap of the mushroom is a quar-
ter circle, there are orbits that never leave the cap region
and are the same as the orbits in a complete quarter circle
billiard having the same radius R (see Fig. 2(a)). These
orbits are tangent to a circular caustic with a radius Cr.
If the caustic radius Cr > ρ0, (see Fig. 1) this orbit is
trapped in the cap, and is integrable. There are also
chaotic orbits that travel throughout the whole billiard
(Fig. 2(b)), visiting both the cap region and the triangu-
lar region below the cap. Thus, the mushroom billiard is
an example of a mixed system.
The eigenmodes of the Helmholtz equation in a quar-

ter circle with radius R can be described by two quantum
number, (m,n) ↔ r, and the corresponding eigenfunc-
tion is

φr
∼= φ(0)

mn(ρ, θ) = NmnJm(kmnρ) sinmθ, (32)
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with normalization constant

Nmn =
2
√
2√

πRJ ′

m(kmnR)
, (33)

and φ
(0)
mn ≡ 0 outside the quarter circle. Here Jm is m-th

order Bessel function of the first kind, kmn is the eigen-
wavenumber such that kmnR is the n-th zero of Jm.
To relate the quantum eigenmodes to the classical mo-

tion [27], we first define the classical probability distri-
bution for position ρ,

PCL(ρ) =
ρ

√

R2 − C2
r

√

ρ2 − C2
r

, (34)

where PCL(ρ)dρ represents the fraction of time a classi-
cal trajectory spends in the interval dρ at ρ, R > ρ > Cr.
The classical caustic radius Cr is defined in terms of the
angle of incidence φ that the trajectory makes with re-
spect to the boundary at R, Cr/R = sinφ. The anal-
ogous caustic radius Cr from the wavefunction (32) is
identified by equating the Bessel function order to its ar-
gument,

Cr = Rmn ≡ m

kmn
R. (35)

For eigenmodes with Rmn < ρ0, the classical orbit in
the full, quarter-circle billiard will travel to the root of
the mushroom so the orbit in the mushroom is no longer

integrable, and the corresponding φ
(0)
mn modes in (32) are

not present in our system. Thus, we can approximate

(29b) using the quarter circle eigenfunctions φ
(0)
mn given

by Eq. (32),

Zij,R = −jkhη0
∑

m,n
ρ0<Rmn<R

〈uiφ
(0)
mn〉〈ujφ

(0)
mn〉

k2 − k2mn

. (36)

In order to apply the RCM for the chaotic contribution
to the mushroom cavity, we need the statistics of k2c (the
eigenvalues of the chaotic modes) and φc(~x) (the corre-
sponding eigenmodes). The distribution of k2c is taken to
be the same as that of the eigenvalues of a random ma-
trix with same mean spacing ∆C = 〈k2c+1−k2c〉 = 4π/AC .
Using Eq. (28), we can calculate the equivalent chaotic
area of the mushroom cavity,

AC =

√
3

2
ρ20+

1

2

[

ρ0

√

R2 − ρ20 +R2 arcsin
(ρ0
R

)

]

. (37)

To develop a random coupling model in a mixed sys-
tem, we need to rewrite Eq. (23) as

Φn = Qwn, (38)

where Q is a M × M diagonal matrix, which describes
the classical chaotic probability at each port

Q2
ii =

∫

Ω

ui(~x)σ
2(~x)d2~x, (39)

(a) (b)

(c) (d)

FIG. 2. (a) Two regular orbits with slightly different initial
conditions. (b) Two chaotic orbits with slightly different ini-
tial conditions. (c) Magnitude squared of the n ≈ 10, 002-th
eigenmode (regular) and kn ≈ 253.496413. (d) n ≈ 10, 003-th
eigenmode (chaotic) and kn ≈ 253.501722.

where σ(~x) has been defined in Eq. (31). Thus in the case
where all transmission lines are identical, the chaotic con-
tribution to the impedance matrix (29c) can be written

ZC,ij(k
2) = j

khη0
4

ACQiiQjjΞij . (40)

Figures 2(c) and 2(d), respectively, show representa-
tive, numerically computed, regular and chaotic eigen-
functions. These figures and others (not shown) demon-
strate that, consistent with Percival’s conjecture [23],
the eigenfunctions concentrate either in the regular or
chaotic phase space regions thus justifying the decom-
position (29). We next test the statistics predicted by
Eq. (40) by comparison with direct numerical computa-
tions on our mushroom billiard example.
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III. NUMERICAL EXPERIMENT

In order to test our theory for the impedance in
mixed system, we numerically solve the Helmholtz equa-
tion for its eigenfunctions and eigenenvalues to calcu-
late Eq. (29) and compare with our statistical model,
Eqs. (36) and. (40). We use about 10, 000 eigenmodes for
the sum in Eq. (16). For our numerical eigenmode solu-
tions, we use the scaling method introduced by Vergini
and Saraceno [19, 28] which facilitates relatively fast solu-
tions. It has already been shown that this method yields
accurate results for the eigenmodes of the Mushroom bil-
liard [26]. We use α = 3/4 (see Fig. 1(a)) rather than
the value α = 2/3 employed in Ref. [26], in order to allow
application of Steed’s Method [29] for efficient evaluation
of the Besssel function.

After solving for all eigenmodes, we classify these
eigenfunctions by examining the magnitude of their nor-
mal derivative as a function of the boundary coordinate
s (see Fig. 3). By this means we can associate all our

(a)

0.0

0.2

0.4

0.6

0.8

1.0

s

|∂
nφ

|
m

ax
|∂

nφ
|

0 (π/2)R (π/2+1)R−ρ0

(b)

FIG. 3. (a)Regular eigenmode, φ14,3(~x), in Ω.
(b)Corresponding magnitude of the normal derivative
of φ14,3(~x)versus s.

numerically calculated regular eigenmodes with one of
the analytically predicted approximate eigenmodes (32).
Moreover, we have also compared the regular eigen-
functions and eigenenvalues determined by our numer-
ical solutions with the approximate analytic solutions;
they agree well. Thus, the regular contribution to the
impedance matrix (29b) is very well-approximated by
Eq. (36) with our approximate analytic regular eigen-
functions (32). [Alternatively, one can also characterize
the regular contribution to Z in a more universal man-
ner, independent of specific geometry, as described in Ap-
pendix A.]
Our first goal is to test our statistical model for the

chaotic contribution to ZC = Z−ZR, where our model re-
quires only simple system information (cavity area, phase
space distribution) rather than all numerical eigenfunc-
tions. For simplicity, we choose all ports to be identical,
uncorrelated and point-like, i.e., ui(~x) = δ(~x− ~xi); thus,
Qii = σ(~xi) and Eq. (16) becomes

Zij(k
2) = jkhη0ξij(k

2), (41)

where

ξij(k
2) =

N
∑

n=1

φn(~xi)φn(~xj)

k2 − k2n
, (42)

and we similiarly define ξC and ξR.
We choose the cutoff NC = N × AC/A = 2k2/∆C .

With this definition, the expectation value of

ξC,ij(k
2) =

2k2/∆C
∑

c=1

φc(~xi)φc(~xj)

k2 − k2c
, (43)

is zero since we expect equal number of k2c such that
k2c > k2 and k2c < k2. Our goal is to find the probability
density functions of ξC,ij if we randomly choose a k2 (see
Fig. 4).

10 11 12 13 14 15

−4

−2

0

2

4

ξ C
,ij

k2

FIG. 4. Numerical calculation of ξC,ii (red triangle) and ξC,ij

(black square) in the mushroom cavity vs. energy (k2).

We use a Monte Carlo method to generate real-
izations of Eq. (43). In each realization, we generate
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k21 , k
2
2 , . . . , k

2
NC

by calculating the eigenvalues of a
GOE random matrix and unfold the spectra [2] such
that the mean spacing is 4π/AC ; we also generate
(φ1(~xi), φ1(~xj)), (φ2(~xi), φ2(~xj)), . . . , (φNC

(~xi), φNC
(~xj))

according to Eqs. (30) and (31); then, we calculate ξC,ij

at each value of k2; finally, we construct a probability
density function for ξC,ij . After NR realizations, we
have NR probability density functions for ξC,ij , i.e,
pn(ξ), n = 1, . . . , NR. We then calculate the mean and
variance of the probability density at each ξ, i.e,

p̄(ξ) =
1

NR

NR
∑

n=1

pn(ξ), (44)

σ2
p(ξ) =

1

NR

NR
∑

n=1

[pn(ξ)− p̄(ξ)]
2
. (45)

We also calculate Eq. (43) numerically for different
port positons from the numerically determined eigenfunc-
tions and eigenvalues and compare with our statistical
model Monte Carlo method (see Fig. 5). Our statis-
tical model of impedance in different port positions is
the statistical model of the same normalized impedance
(Eq. (25)) with a position dependent factor, ACQiiQjj ,
defined in Eqs. (28), (31), (39) and (40). The agreement
between the numerical result and our statistical model
for the different cases in Fig. 5 shows that the chaotic
contribution to the impedance in a mixed system has the
same statistics as the impedance in a purely chaotic sys-
tem, provided one accounts for variations in the size of
the chaotic portion of phase space accesible at the loca-
tions of the ports.
Our second goal is to compare the previous statistical

model of ξij in Ref. [7] (which assumes that the classical
trajectories are all chaotic) with our statistical model of
ξij [which includes chaotic contributions (ξC,ij) and an
approximated formula for regular contributions (ξR,ij)
defined in Eq. (42)]. Figure 6 shows that our statistical
model (red solid curves) predicts the probability density
function of ξij much better than the previous result (blue
dashed curves) that one would obtain by supposing that
the entire phase space was chaotic.
Note that, in our formulation in Eq. (32), φmn(~xi) = 0

if ~xi is located in the stem of the mushroom. Therefore,
if at least one port, say port i, is located in the stem of
the mushroom, then ξR,ij = 0 and only chaotic modes
contribute to the impedance, i.e., ξij = ξC,ij . In the in-
sets of Fig. 6, we show probability density functions of
ξR,ij calculated from numerically obtained regular eigen-
modes and the probability density function of ξR,ij cal-
culated from our approximate regular eigenmodes (delta
function (red) at ξR,ij = 0 for the insets to Figs. 6(a and
b) and red curve in the inset to Fig. 6 (c)). In particular,
we observe that the pdf widths in the insets to Figs. 6 (a
and b) are much less than for the inset to Fig. 6(c). The
small pdf widths in the insets to Figs. 6 (a and b) can per-
haps be explained by dynamical tunneling (see [33, 34]);
however, this effect is not significant in the probability
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FIG. 5. Plot of the probability density function from nu-
merical solution (black histogram) and mean probability den-
sity function from Monte Carlo simulation (red solid curve),
Eq. (44), with root mean squared error bounds (blue dashed
curve), Eq. (45). The black and red dots are the position
of coaxial transmission lines (ports) in case (a) one port in
chaotic region and the other in mixed region (b) both pots in
chaotic region (c) both ports in mixed region.

density function of ξij = ξR,ij + ξC,ij which is the con-
volution of the probability density function of ξC,ij and
ξR,ij .
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FIG. 6. Plot of the probability density function of ξij =
ξR,ij + ξC,ij from numerical eigenmode solution (black his-
togram), our statistical model that treats regular and chaotic
contributions separately (red solid curve), and previous sta-
tistical model that assumes that all eigenmodes are chaotic
(blue dashed curve). The black and red dots are the position
of coaxial transmission lines (ports) in case (a) one port in
chaotic region and the other in mixed region (b) both pots
in chaotic region (c) both ports in mixed region. The insets
show the probability density function of the regular contri-
bution, ξR,ij , for numerical eigenmode solutions (black his-
togram) and for the approximate eigenmode in Eq. (32) (red
solid curve).

IV. DISCUSSION

In this paper, we develop a method for obtaining the
short wavelength statistical properties of the impedance
matrix of wave systems whose ray equations yield a
‘mixed’ phase space with coexisting chaotic and regular
orbits.
In obtaining our results for the mushroom billiard, we

assume that the regular eigenmodes are approximately
the same as the eigenmodes in a quarter circle cavity.
In formulating our theory, we have neglected the possi-
bility that there may be some modes where the regular
and chaotic phase space regions are coupled by dynami-
cal tunneling, thus changing both the eigenfunctions and
eigenenergies. These mixed modes, whose eigenfunctions
show characteristic of both regular and choatic behav-
ior, can change the wave scattering properties at k2 near
these resonances and this effect can be treated semiclassi-
cally for the particular modes under consideration. How-
ever, in our formulation, we are not interested in specific
k2 values but rather the pdf for a randomly chosen k2

values. In our system the number of these chaos/regular
mixed modes appears to be relatively small compared
with modes that are predominantly confined to either
the regular or the chaotic phase space regions. Thus, we
expect mixed chaos/regular modes do not make a sig-
nificant contribution to the mode counting formula in
Eq. (27), and this expectation is confirmed by the good
agreement between our numerical results and theory.
In our model, appropriate to the situation that we nu-

merically tested, we assume that φn(~xi) and φn(~xj) are
independent gaussian random variables for chaotic wave-
functions, which only applies if ports i and j are far apart,
k|~xi−~xj| ≫ 1, and both ports are not close to the cavity
boundary. This assumption, however, is not essential:
two-point correlations in the random wave model have
been previously studied [31, 32] and can be accounted
for by regarding φn(~xi) and φn(~xj) as correlated bivari-
ate Gaussian random variables with a correlation that
takes into account direct and indirect ray paths between
~xi and ~xj [35].
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Appendix A: Lorentzian Distribution of the Regular

Normalized Impedance

Consider the normalized impedance,

Ξij = − 1

π

N
∑

n=1

wniwnj

k̃2 − k̃2n
, (A1)
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where (wni, wnj) are birvariate random variables with

probability density funtion (PDF) fij(wni, wnj), and k̃2n
are independent random variables distributed uniformly
on (0, k̃2N ), i.e., the PDF is fk̃2(k̃2) = 1/k̃2N . Let

ξn,ij = − 1

π

wniwnj

k̃2 − k̃2n
, (A2)

such that

Ξij =
∑

n

ξn,ij . (A3)

The PDF, fΞ(z), and the characteristic function of Ξ,
ΦΞ(t) are given by

fΞ(z) =

∫

dξ1...dξN

N
∏

n=1

fξ(ξn)δ(z −
∑

n′

ξn′), (A4)

ΦΞ(t) =

∫

dξ1...dξN

N
∏

n=1

fξ(ξn) exp(it
∑

n′

ξn′) = [Φξ(t)]
N ,

(A5)

where fξ(ξn) is the PDF of ξ and Φξ(t) =
∫

dξn exp(itξn)fξ(ξn) is the characteristic function of ξ.
We can calculate Φξ(t) by directly evaluating the inte-
gral,

Φξ(t) =

∫

dwnidwnjfij(wni, wnj)

×
∫ k̃2

N

0

dk̃2n
1

k̃2N
exp

(

−it
1

π

wniwnj

k̃2 − k̃2n

)

.

(A6)

For small values of t, relevant in the limit N ≫ 1, the
second integral of (A6) is

1

k̃2N

∫ k̃2

N

0

dk̃2n exp

(

−it
1

π

wniwnj

k̃2 − k̃2n

)

=1 +
|t||wniwnj |

k̃2N
− it

1

π

wniwnj

k̃2N
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+O(t2),

(A7)

which to first order in t yields

Φξ(t) ≈
∫

dwnidwnjfij(wni, wnj)

×
(

1 +
|t||wniwnj |

k̃2N
− it

1

π

wniwnj

k̃2N
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

)

= 1− 1

k̃2N

(

−it
E{wniwnj}

π
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+ |t|E{|wniwnj |}
)

, (A8)

where E{· · · } =
∫

· · · fij(wni, wnj)dwnidwnj . Now, we
calculate ΦΞ(t); since the mean spacing between adjacent
k̃2n is normalized to unity, we can replace k̃2N in (A8) by
N and insert it into (A5). As N → ∞, we obtain

ΦΞ(t) =

[

1− 1

N

(

−it
E{wniwnj}

π
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

+ |t|E{|wniwnj |}
)]N

→ exp

(

it
E{wniwnj}

π
log

∣

∣

∣

∣

∣

k̃2

k̃2N − k̃2

∣

∣

∣

∣

∣

− |t|E{|wniwnj |}
)

.

(A9)

Comparing with the characteristic function of a
Lorentzian RV with mode x0 and width W , Φ(t) =
exp (itx0 −W |t|), we know Ξij is Lorentzian distributed

with mode E{wniwnj}(log |k̃2| − log |k̃2N − k̃2|)/π and
width E{|wniwnj |}. Since the spacing distribution of

k̃2n for regular systems is exponential distributed, as

N → ∞, the distribution of k̃2n is uniformly distributed
in (0, N); thus, the normalized impedance of regular sys-
tems are also Lorentzian distributed and all the system
specific informations are included in mode and width of
the Lorentzian.
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