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The majority of dynamical studies in power systems focus on the high voltage transmission grids where
models consider large generators interacting with crude aggregations of individual small loads. However, new
phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of
these small loads in the low-voltage distribution grid is crucial to outcome of these dynamical transients. To elu-
cidate the phenomenon, we study the dynamics of voltage and power flows in a spatially-extended distribution
feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1
(space+time) dimensional system exhibits a plethora of nontrivial spatio-temporal effects, some of which may
be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and
electrical power flows result in coexistence and segregation of spatially-extended phases defined by individual
motor states–a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the
nominal frequency of the basic AC flows and a “stalled” state where the mechanical frequency is small. Transi-
tions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the
distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional
model shows many other properties of a first-order phase transition with the spatial distribution of the motors’
mechanical frequency playing the role of the order parameter. In particular we observe (a) propagation of the
phase-transition front with the constant speed (in very long feeders); and (b) hysteresis in transitions between
the normal and stalled (or partially stalled) phases.

Popular Summary: Large electrical generators interacting
over national-scale electrical transmission grids constitute a
well-studied dynamical system. Rarely discussed and poorly
understood are the dynamics of neighborhood-scale distribu-
tion grids extending from transmission substations to the mul-
titude of individual customers. However, the changing na-
ture of electrical loads, e.g. the increasing prevalence of in-
duction motors in residential air conditioning units, is creat-
ing distribution-grid dynamical processes that, when excited
by unremarkable transmission-grid disturbances, lead to ir-
reversible transitions with major impact on the reliability of
transmission grids. Here, we present a unique model and anal-
ysis of these dynamics that allow analogy with other physical
systems enabling rapid progress by leveraging knowledge de-
veloped in physics.

In contrast to usual approaches, we develop a spatially-
continuous model of distribution-grid dynamics to investi-
gate the collective dynamics that arise when many induc-
tion motors, which are individually nonlinear and hysteretic
(bi-stable), are coupled via power flows and voltage evolu-
tion within a distribution grid. Normal-size perturbations ex-
cite these collective dynamics initiating soliton-like fronts that
travel though the distribution grids where passage of the fronts
results in transitions of individual motors between a normal
state and an undesirable stalled state. Individual bi-stability of
each motor promotes globally hysteric behavior that is remi-
niscent of well-known first-order phase transition dynamics
found in other physical systems.

Important extensions of this physics-based understanding
include the ability to model the dynamics of the billions ac-
tive ”smart grid” loads predicted to revolutionize the electrical
power system.

I. INTRODUCTION

Power systems are used to generate and transfer energy
to electrical loads. In today’s grid, generation is primarily
done at large, centralized power stations (∼100’s of MW)
and the transfer primarily occurs via alternating currents (AC)
in national-scale, highly-meshed, high-voltage transmission
grids. A subset of nodes (substations) in the transmission
grid transform the high voltage to a medium voltage level and
interface to distribution grids, however, another change oc-
curs at the substation. The meshed network of national-scale
transmission changes to many radial or tree-like structures in
the distribution system whose spatial extent is only ∼ 1-10
km. Each radial circuit, also called a “feeder”, distributes the
power delivered to the substation by the transmission system
to the thousands of small electrical loads (∼ 1 kW) spatially
spread along its length.

Even though AC electrical generation and transmission
grids are extended over large spatial scales, they are syn-
chronized, i.e. power flows over the transmission lines cre-
ate dynamical coupling between the large rotating generators
forcing them to rotating in unison. Perturbations to this syn-
chronized system results in dynamics and transients spanning
a large range of temporal scales from milliseconds to many
minutes. Many studies have addressed the dynamics of these
large-scale transmission grids. Although many unresolved dy-
namic problems in the transmission grid remain, recent years
have witnessed new phenomena that have refocused our at-
tention on dynamics and transients occurring in the smaller-
scale distribution circuits[1, 2]. Although these phenomena
occur on smaller scales, they involve collective behavior of
many individual small nonlinear loads, and even coupling sev-
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eral distribution circuits, creating a significant impact on the
larger-scale transmission system.

Perhaps the most drastic of these phenomena is voltage col-
lapse [3–8]. Here, a quasi-static increase in loading pushes the
distribution feeder to a bifurcation where the stationary nor-
mal/high voltage solution is lost and the feeder “collapses”
to an undesirable low voltage solution that is dangerous for
power system stability. However, even for moderately loaded
feeders that are far from this critical point, the nonlinearity of
electrical loads may result in the emergence of multiple sta-
tionary solutions. In contrast to the case just described, these
solutions cannot be reached via quasi-static evolution of the
electrical loads. Instead, a significant and nonlinear pertur-
bation to the feeder creates a dynamical trajectory that ter-
minates in one of these additional solutions that may also be
a “bad solution” from the standpoint of voltage level, power
system losses, stability, and equipment damage. To under-
stand the possibility of this unwelcome outcome one needs to
go beyond the traditional static description and analyze dy-
namics of the distribution system.

The spatio-temporal dynamics we seek to describe occur
within an individual radial distribution feeder that connects
many (∼ thousands) small loads to a substation. We con-
sider electro-mechanical dynamics occurring on scales rang-
ing from fractions of a second to tens of seconds and analyze
the spatial distribution of power flows along the circuit and
the spatio-temporal transients stimulated by exogenous distur-
bances in the voltage and base frequency at the head of the dis-
tribution feeder. Such disturbances, which primarily originate
from faults and/or irregularities in the high-voltage transmis-
sion system, propagate through from load to load via power
flows in the distribution feeder. The propagation is affected
by the electro-mechanical response of individual loads, and
here we focus on the effects of nonlinear loads such as asyn-
chronous (i.e. induction) motors. Typical electro-dynamic
transients propagate with speed comparable to the speed of
light and damp out in tens of milliseconds and thus are not
important in our analysis. On the other hand, composition
of loads connected to a distribution feeder changes on much
longer time scales (∼ minutes) and are taken as fixed on the
time scale of electro-mechanical dynamics of interest in this
work.

An interesting and key feature of the dynamics is the long-
range coupling between the spatially distributed loads created
by power flows along the feeder. These coupled dynamics
are nontrivial to model and investigate, however, they are also
extremely important for practical power engineering because
our model solutions reveal serious problems for control and
operation of power systems. One such problem that motivates
our study is the phenomenon of the Fault-Induced Delayed
Voltage Recovery (FIDVR) [1, 2, 9–11]. A FIDVR event is
typically initiated by a fault on the transmission grid near a
substation creating large fault currents that temporarily de-
press the voltage at the substation, perhaps for as little at
two cycles of the nominally 50/60 Hz AC frequency (∼ 30
msec). The voltage depression propagates into the substa-
tion’s distribution feeders causing an almost instantaneous re-
duction in the electrical torque generated by the connected

induction motors, however, the mechanical torque on the mo-
tors does not change instantaneously and the motors begin
to decelerate. If the transmission fault and voltage depres-
sion last long enough, many of the induction motors along
the feeder may stall. When the fault on the transmission grid
is cleared, the voltage at the substation returns to near nor-
mal levels, however, a stalled induction motor draws large in-
rush currents while at near zero rotation speed (mechanical
frequency). The time synchronization of these in-rush cur-
rents cause large voltage drops in the distribution feeder and
may hold the voltage at locations remote from the substation
below a critical voltage for restarting. Crucially, these remote
motors remain stalled (near zero mechanical frequency), and
their large current draw stabilizes this spatially-extended, par-
tially stalled state.

The tendency for a transmission fault to result in FIDVR
may depend on many fault, distribution feeder, and motor pa-
rameters, e.g: voltage drop magnitude and duration; length,
resistance, and reactance of the feeder; type, rotational inertia,
and density of the induction motor loading; and possible post-
fault corrective control actions. The qualitative description
of FIDVR given above provides an intuitive understanding
of how some of these parameters affect the dynamics leading
to the undesirable and potentially dangerous partially-stalled
state. It certainly indicates that, without some sort of cor-
rective actions, FIDVR will become more and more frequent
because of the recent trends to more air conditioning driven
by easy-to-stall, low inertia motors. However, the dynam-
ics that lead to FIDVR are not generally understood and thus
presumed somewhat mysterious in power engineering prac-
tice. The goal of this manuscript is to provide understanding
of these interesting and practically important distribution grid
dynamics.

FIDVR is an example of a broader class of problems where
physics and dynamical systems modeling can provide signif-
icant insight and predictive power that are generally lacking.
Another example is given by electro-mechanical waves prop-
agating through transmission grids [12, 13], as well as tran-
sients associated with the loss of synchrony in power sys-
tems [14, 15]. The key unifying feature of all these phenom-
ena is in the nontrivial interplay of spatial coupling of indi-
vidual (possibly nonlinear) dynamics via power flows over
the electrical network. We believe that important insights
into these complex dynamics can be gained by approach-
ing such spatio-temporal phenomena from a homogenized
prospective, i.e. studying the electrical grid not as a set of
individual devices but rather as a spatially extended and con-
tinuous medium in the limit where the number of individ-
ual elements of the power system becomes infinite. This ab-
stract continuous-medium approach, pioneered for the case
of electro-mechanical waves over transmission systems in
[12, 13] and for the case of a radial/linear distribution system
in [16] is advantageous as it enables (a) a simpler analysis and
deep qualitative physical understanding of the underlying phe-
nomena (e.g. of FIDVR and electro-mechanical waves); (b)
flexibility in simulations; and (c) developing model reduction
algorithms for faster state estimation and system simulation.

Motivated by the discussion above, the main goal of this
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manuscript is to formulate the simplest but still realistic 1+1
(space+time continuous) model that predicts and explains in-
teresting and important spatio-temporal phenomena in a dis-
tribution feeder loaded with induction motors which can be in
a normal or stalled state. The most important results reported
in this manuscript are

• Extending the previous works [1, 11, 17–20], we show
that if the local voltage falls sufficiently low, an indi-
vidual asynchronous motor can be in either of the fol-
lowing two states: (1) a normal state characterized by
mechanical frequency ω which is slightly lower than
the base electrical frequency ω0 of the system; (2) a
stalled state characterized by low or zero mechanical
frequency. Both states are locally stable but can evolve
into each other under sufficiently large perturbations.

• In sufficiently long feeders, a partially stalled phase can
emerge where the feeder splits into head and tail parts
with the motors of the head (tail) being in the normal
(stalled) state. Motors in the stalled state may occupy
the entire distribution feeder or, if the feeder is very
long, stalled portion can co-exist with the normally run-
ning one. In the latter case, there exist multiple, par-
tially stalled phases characterized by different propor-
tions of the head (normal) and tail (stalled) parts.

• The steady partially stalled phases can be interpreted as
showing coexistence of the two states where the local
mechanical frequency (of the motors) play the role of
”order parameter”. Transitions between the phases are
classified as first order, using standard physics termi-
nology.

• These transitions are hysteretic (not reversible), i.e. a
perturbation leading to transition from the normal phase
to the stalled phase is not an inverse of the perturba-
tion leading from the stalled phase to the normal phase.
The dynamics of the two transitions are also different, in
particular fronts of the phase transitions have different
shapes, and to stabilize one transition can take signifi-
cantly longer than the other.

Material in the manuscript is organized as follows. Static
models of single induction motor, two-bus system, and the
DistFlow equations of [21, 22] are discussed in Sections
II A,II B and III A, respectively. A dynamic model of a dis-
tribution feeder loaded with induction motors and 1+1 space-
time continuous model of this feeder are introduced and dis-
cussed in Sections III B and III C. Section IV A discusses how
single-motor bi-stability translates into the emergence of mul-
tiple phases of the feeder with supporting numerical experi-
ments in Section IV B and special features of the phase tran-
sitions in Section IV C. Section V is devoted to in-depth dis-
cussion of the results of our numerical experiments. Section
V A discusses the dynamics following a fault at the head of
the feeder. Section V B analyzes the recovery from a stalled
state. Section V C explores the phase space of parameters that
governs whether or not a feeder will enter a stalled or normal
state following a fault. Finally, we summarize and describe a

path forward in Section VI. Auxiliary information explaining
details of our simulations can be found in Appendix A. Ap-
pendix B provides captions for the illustrative movies of the
phase transition and fault recovery processes available in the
Supplemental Materials [URL will be inserted by publisher].

II. SINGLE INDUCTION MOTOR MODELS

A. Static Motor Model

Induction motors play a significant role in FIDVR, as it is
currently understood. Here, we describe the features of in-
ductions motors that are important for the rest of our work.
Although motor dynamics will be added later, we first adopt a
simple static electrical model of an induction (asynchronous)
motor rotating at mechanical frequency ω and connected to a
distribution circuit being driven at a base frequency ω0,[11]

P =
sRmv

2

R2
m + s2X2

m

, (1)

Q =
s2Xmv

2

R2
m + s2X2

m

. (2)

Here, P and Q are real and reactive powers drawn by the
motor; s = 1 − ω/ω0 is the slip parameter of the motor,
0 ≤ s < 1; v is the voltage at the motor terminals; Xm, Rm
are internal reactance and resistance of the motor, usually
Rm/Xm = 0.1 ÷ 0.5. For steady rotation frequency at ω,
the balance of electric and mechanical torques for the induc-
tion motor is

P

ω0
= T (ω/ω0), (3)

where T (ω/ω0) is the rotation speed-dependent torque ap-
plied to the motor shaft by the mechanical load, which is typ-
ically parameterized by

T (ω/ω0) = T0

(
ω

ω0

)α
. (4)

Here, T0 is a reference mechanical torque and α is indica-
tive of different types of mechanical loads with α = 1 typical
of fan loads and α < 1 typical of air-conditioning loads. If
α < αc ' 1 and T0 is fixed, one observes the emergence
of three solutions when v is in a range between two spinodal
voltages v−c and v+c , i.e. for v−c < v < v+c (see Fig. 1). These
solutions have widely different ω which leads to hysteresis
and the interesting dynamical behavior explored in the rest of
this manuscript.

Stability analysis (see Section II B for details) shows that
the two extreme solutions (ω ≈ 0 and ω ≈ ω0) are both stable
while the solution in the middle is unstable. The consequence
is hysteretic behavior of the motor frequency ω as a function
of the voltage v, as displayed in Fig. 2. Starting in the high-
voltage normal state (say v ∼ 1), we decrease v slowly along
the dashed red curve passing through state d. If we further
decrease v to state c, the normal state suddenly disappears, and
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FIG. 1: Electric and mechanical torques as functions of the mechan-
ical frequency ω/ω0 for a range of motor terminal voltages v, refer-
ence mechanical torque T0 = 0.32, and α = 0.1. For the v = 0.86
electrical torque curve (red triangles), there are three equilibrium so-
lutions indicated by intersections with the mechanical torque curve
(black solid line). The solution with the highest ω/ω0 is the “nor-
mal” stable solution with the induction motor rotating near the grid
frequency ω0. The “stalled-state” with ω/ω0 ' 0 is also stable while
the intermediate solution is unstable. For v > v+c = 0.9 (light blue
line with plus signs), there is only one solution corresponding to the
normal state. For v < v−c = 0.83 (green dashed line), there is only
one solution corresponding to the stalled state. The points (a, b, c, d)
correspond to the same labels in Fig. 2.

the motor makes a transition to the stalled state at a. Similarly,
if we start from the low-voltage stalled state (say v ∼ 0.75 on
the black curve) and v is increased slowly through state a to
b, the stalled state disappears and the motor makes a transition
to the normal state at d. The states (a, b, c, d) are also marked
in Fig. 1, and the same hysteresis loop can be traced out there.

After elimination of the auxiliary variable ω, Eqs. (1,2,3,4)
describe the dependence of the power flows (P,Q) on
terminal-voltage. If the reactance-to-resistance ratio of the
motor, Xm/Rm, is sufficiently small, the hysteresis observed
for mechanical frequency in Fig. 2 translates into hysteresis of
real and reactive powers as seen by the multi-valued depen-
dence of (P,Q) on v in Fig. 3. Between the spinodal voltages
v−c and v+c , there exists three solutions with different values of
(P,Q) for the same value of voltage. Of the three solutions,
the top and bottom are stable while the middle solution is un-
stable. Similar to Fig. 2, we can follow an adiabatic evolution
of the motor terminal voltage. Following the reactive power
curve (red) and starting in the normal state with v ∼ 1, we
decrease the voltage through state d and to state c. Any fur-
ther reduction of v forces the motor to make a discontinuous
jump to state a which is accompanied by a large increase in
reactive power Q. Alternatively, we may start in the stalled
state with v ∼ 0.7 and slowly increase v through state a to
b where the motor is forced to jump to state d accompanied
by a discontinuous decrease in Q. As discussed later, these
discontinuous jumps in Q play a significant role is stabilizing
the spatially extended stalled state and in the recovery from

FIG. 2: Hysteretic behavior of an induction motor in Fig. 1 as the
voltage v at its terminals is varied. The dashed red (solid black)
curves indicate the path of equilibrium states as the voltage v is
decreased (increased) starting from the high-voltage normal (low-
voltage stalled) state. The vertical lines at the spinodal voltages v±c
indicated the abrupt hysteretic transitions between states. v±c corre-
spond to the same labels in the legend of Fig. 1 and in Fig. 3. The
points (a, b, c, d) correspond to the states where the motor must make
transitions from normal to stalled (c→ a) and from stalled to normal
(b→ d).

the stalled state to normal state.

B. Dynamical Motor Model

To study the important yet generic aspects of the dynam-
ics in distribution circuits, we generalize Eqs. (1-3) to include
induction motor dynamics. Considering for the moment a sin-
gle induction motor, an imbalance in electrical and mechani-
cal torques will cause a change in the motor’s rotational fre-
quency given by

M
d

dt
ω =

P

ω0
− T0

(
ω

ω0

)α
, (5)

whereM is the motor’s moment of inertia. Torque imbalances
in Eq. (5) can be driven in two ways: directly via changes in
the base frequency ω0 in Eq. (5) or indirectly via changes P
driven by changes in v in Eq. (1). The coupling of Eq. (5) to
ω0 will not be strong because ω0 is determined by the global
balance of generation and load across the entire transmission
system. We would not expect the local distribution dynam-
ics under consideration here to affect ω0 to a degree that we
would have to consider its effect back on the distribution dy-
namics via Eq. (5). Therefore, we can generally ignore the
dynamics of ω0 and consider it an imposed exogenous param-
eter.

In contrast, changes in local voltage are strongly coupled to
changes in the local flow of real and reactive power. As we
have seen in Sec. II A, changes in voltage can lead to dras-
tic and hysteretic changes in a motor’s frequency ω resulting
in a strong coupling back to the dynamics in Eq. (5). There-
fore, we must consider the possibility that voltage dynamics
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FIG. 3: Typical (P,Q) versus v curves for the same motor as in
Fig. 1 and 2 and described by Eqs. (1,2,3,4). Three solutions (two
stable and one unstable) are observed between the spinodal voltages,
i.e. v−c < v < v+c . Solid and dashed curves (the latter partially cov-
ered by solid) show trajectory of the system under adiabatic evolution
starting from low-voltage and high-voltage regimes respectively. The
points (a, b, c, d) label the reactive power curve (red in color and dark
gray in black and white) and correspond to the same labels in Fig. 1
and Fig. 2. Here, Xm/Rm = 0.375.

are important for distribution feeder dynamics. However, the
dynamics of v are fundamentally different than ω because the
relaxation of v is entirely electrical as opposed to the mechan-
ical dynamics of ω, i.e.

Q =
s2Xm

R2
m + s2X2

m

(
v2 + (τ/2)

d

dt
v2
)
, (6)

where τ is the characteristic time of this purely electrical pro-
cess (See e.g. the Appendix of Pereira et al[17]). In our nu-
merical experiments, we observe that the important basic phe-
nomena discussed in the manuscript are much more sensitive
to variations in the moment of inertia M than to variations in
τ and that setting τ = 0 still reveals the dynamical processes
important for understanding FIDVR. With τ = 0, Eq. (6) is
now equivalent to its static version in Eq. (2).

With the dynamics now fully specified by Eq. (5), we can
now justify the local (single motor) stability claims made in
Section II A by simple inspection of the equilibrium states in
Fig. 1. Here stability/instability is understood in terms of the
temporal decay/growth of small perturbations to the dynam-
ics of Eq. (5). The black curve in this Fig. 1 represents the
mechanical torque on the motor while the colored curves are
the electrical torques (each representing a different v). Con-
sider state d in Fig. 1 which is representative of the normal
states with ω/ω0 ∼ 1. If the motor speeds up slightly (moves
to the right along the light blue curve), the mechanical torque
becomes larger than the electrical torque and the motor de-
celerates returning to d. If the motor slows slightly (moves
left), the electrical torque becomes larger while the mechani-
cal torque decreases returning the motor to state d. All of the
normal states, i.e. those like d with ω/ω0 ∼ 1, have similar

behavior and are therefore stable. State a in Fig. 1 is represen-
tative of the stalled states, and following the same logic, we
find that the mechanical torque is larger for a higher ω (and
smaller for a lower ω) showing that all of the stalled states
are stable. Following the same logic, we find the the states in
between the normal and stalled states (e.g. the state given the
intersection of red and black curves in Fig. 1) are unstable.

III. SPATIALLY-CONTINUOUS FEEDER POWER FLOW
MODEL

In Section II, we described the dynamics of isolated induc-
tion motors, i.e. motors whose terminal voltage v is specified
and not determined in part by interactions with other induction
motors or electrical loads. In this Section, we consider power
flow models responsible for creating the long-range coupling
between the individual, local induction motor dynamics. We
start with a well-known discrete power flow model which we
then homogenize into a spatially continuous ODE represen-
tation. We then incorporate a homogenized version of the
individual induction motor dynamics to create a PDE repre-
sentation of electrical feeder dynamics.

A. Discrete Power Flow Model–Dist Flow Equations

The flow of electric power in the quasi-static approximation
is controlled by the Kirchoff laws. The DistFlow equations
[21, 22] are these equations, written in terms of power flows
and in a convenient form for the radial or tree-like distribu-
tion circuit with a discrete set of loads shown schematically in
Fig. 4a,

ρn+1 − ρn = Pn − rn
ρ2n + φ2n
v2n

, (7)

φn+1 − φn = Qn − xn
ρ2n + φ2n
v2n

, (8)

v2n+1 − v2n = −2(rnρn + xnφn)

−(r2n + x2n)
ρ2n + φ2n
v2n

. (9)

Here, n = 0, · · · , N − 1 enumerates the sequentially-
connected buses of the circuit, and ρn, φn are the real and
reactive power flowing from bus n to n + 1. vn is the bus
voltage, while Pn and Qn are the overall consumption of real
and reactive powers by the discrete load at bus n. The values
of rn and xn are the resistance and reactance of the discrete
line element connecting n and n+ 1 buses. The voltage v0 at
the beginning of the line is nominally fixed by control equip-
ment, and there can be no flow of real or reactive power out
of the end of the circuit. These two observations provide the
following boundary conditions:

v0 = v0, ρN+1 = φN+1 = 0. (10)

Eqs. (7,8,9,10) combined with the given real and reactive con-
sumption pattern, Pn, Qn for n = 1, · · · , N , uniquely define
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FIG. 4: A feeder line modeled with a) a discrete set of electrical loads
and with b) a continuous distribution of loads.

profile of voltage, vn, and power flows, ρn, φn, along the cir-
cuit.

We note that the dynamical relaxation of distribution cir-
cuit power flows ρn and φn will also occur on electrical time
scales, i.e. much faster than the mechanical dynamics in
Eq. (5). Therefore, the quasi-static power flows described in
the DistFlow formulation[21–25] in Eqs. (7,8,9) is a sufficient
starting point for the phenomena discussed in the manuscript.

B. Continuous Power Flow Model

Following [16], the continuous form of the DistFlow equa-
tions is

∂zρ = −p− r ρ
2 + φ2

v2
, (11)

∂zφ = −q − xρ
2 + φ2

v2
, (12)

where z is the coordinate along the distribution circuit, r, x
are the per-unit-length resistance and reactance densities of
the lines (assumed independent of z) and p(z) and q(z) are
the local densities of real and reactive powers consumed by
the density of the spatially continuous distribution of motors
[16] at the position z ∈ [0;L]. The power flows ρ and φ are
related to the voltage at the same position according to [16]

∂zv = −rρ+ xφ

v
. (13)

C. PDE Model of Feeder Dynamics

Instead of the standard voltage-independent (p, q) model
of distributed loads, discussed in [16], we consider the more
complex dynamical loads described above. The load densities
p(z) and q(z) are related to ω(z) and v(z) through the density

versions of Eqs. (1,5,6)

µ
d

dt
ω =

p

ω0
− t0

(
ω

ω0

)α
, (14)

p =
srmv

2

r2m + s2x2m
, (15)

q =
s2xm

r2m + s2x2m
v2. (16)

where the conversion to continuous form consists of replacing
Xm, Rm and P,Q, T0,M by the respective densities xm, rm
and p, q, t0, and µ. The new boundary conditions are

v(0) = v0, ρ(L) = φ(L) = 0. (17)

Equations (11-17) form our PDE model of a distribution
feeder loaded with induction motors. We assume that the dis-
tributions of all the density parameters along the circuit are
known, and in this initial work, we assume these densities are
constant. Note that evolution in the model occurs solely due
to temporal derivatives in Eq. (14) representing mechanical
relaxation of the spatial distribution of motors.

IV. PHASE TRANSITIONS AND HYSTERESIS IN A
FEEDER

In this Section, we discuss the physical picture of phase
transitions and hysteresis that emerges from analysis and sim-
ulations of the 1+1 space-time PDE model of Eqs. (11-17). In
Section IV A, we begin with a qualitative description of the
hysteretic, phase transition-like behavior of the distribution
feeder. Section IV B discusses numerical results in the frame-
work of the qualitative arguments of Section IV A. Then, in
Section IV C we regress again to provide general physics dis-
cussion of the phase transition special features observed in the
simulations.

A. From Local (Motor) to Global (Feeder): Qualitative Picture

From the qualitative description of distribution circuit and
induction motor dynamics and FIDVR events given in Sec-
tion I, we make an analogy between FIDVR and a first-order
phase transition [26] where the z-dependent motor frequency
ω(z) plays the role of the order parameter, i.e. ω ' ω0 in the
“normal phase” and ω ≈ 0 in the “stalled phase”. Recasting
Eq. (14) in terms of an ω-dependent potential U , we find

∂ω

∂t
= −∂U

∂ω
, (18)

where U =
1

µ

ω∫
0

(
t0

(
ω′

ω0

)α
− p(ω′; v)

ω0

)
dω′, (19)

and p(ω; v) is defined by Eq. (15). The resulting effective
potential U(ω; v) is shown graphically in Fig. 5 for different
values of v.
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We identify three different regimes in Fig. 5: (a) high
voltage v > v+c (purple curve with squares) where the nor-
mal state is the only stable solution, (b) intermediate voltage
v−c < v < v+c (red curve with triangles) where the normal
state and the stalled state coexist, i.e. motors can be in either
of the two states, and (c) low voltage v < v−c (dark blue solid
line) where the stalled state is the only stable solution. The
boundaries between these regions occur at the spinodal volt-
ages v+c (light blue line with plus signs) where the state jumps
from c to a in Figs. 1-3 and at v−c (green dashed line) where
the state jumps from b to d in Figs. 1-3

The high-voltage case (a) where the motors can only be in
the normal state is the desired regime for electrical grid oper-
ations. The low-voltage case (c) is undesirable and is a result
of the electrical torque at low voltage not being able to over-
come the mechanical torque with the subsequent decline of ω
to very small values. Case (b) also allows for the motors to
be in the normal state, but the existence of two minima in the
intermediate voltage range v−c < v < v+c (see Fig. 5) is as-
sociated with the overlapping high and low voltage states in
Fig. 2 which can lead to local hysteretic behavior. For exam-
ple, a small voltage perturbation can kick a motor from the
normal state over the potential barrier (see red curve in Fig. 5)
where Eq. (18) shows that it subsequently relaxes to the stalled
state. A simple reversal of the perturbation does not necessar-
ily lead to the reverse transition. This entirely local hysteresis
is important because it defines the possible states of motor
operation, however, it is the long range interactions between
the local motor behavior that creates phase transition-like be-
havior with a phase boundary between separate normal and
stalled phases.

When a motor undergoes the local transition from a normal
to a stalled state, its rotational frequency ω changes signifi-
cantly. Motors distributed along the circuit do not interact via
ω, however, changes in ω drive large changes in local reactive
power density q (see Fig. 3) which couples to all of the other
motors via the power flows (ρ, φ) and voltages in Eqs. (11-
13). Crucially, if a perturbation causes a group of motors in
the tail segment of the feeder (z ∼ L) to enter the stalled
states (ω ≈ 0 or s ≈ 1), the increase in the local reactive load
density q drives an increase in the power flow φ all along the
feeder, and Eq. (13) shows that v will be depressed at all z
along the feeder. The voltage depression will be the largest
at the tail (z ∼ L), and if the depression is severe enough,
the terminal voltage of the normal-state motors neighboring
the stalled tail section will drop below v−c and the local po-
tential U(ω) changes from the purple (squares) or light blue
(plus signs) curves of Fig. 5 to the green (dashed) or dark blue
(solid) curves. Equation (18) shows that these motors relax
into the stalled state, further increasing the power flows φ ev-
erywhere along feeder. This phase transition front continues
to propagate toward z = 0 as the increases in local q drive in-
creases in the non-local φ which depress the non-local v. The
voltage boundary condition at the head of the feeder (Eq. (17))
may stop the the front before its reaches all the way back to
z = 0, however, the establishment of a globally stalled or par-
tially stalled phase is hysteretic because simply reversing the
original spatially-local perturbation, i.e. returning the small

FIG. 5: Local potentialU(ω) for different values of the voltage v and
α = 0.1 demonstrating the continuous evolution of the normal and
stalled states from only the normal state at high voltage (purple curve
with squares), coexisting normal and stalled states at intermediate
voltages (red curve with triangles), and only the stalled state at low
voltage (dark blue solid line). The light blue curve with plus signs
is for the spinodal voltage v+c – the boundary between the high and
intermediate voltage cases. The green dashed line is for spinodal
voltage v−c – the boundary between the low and intermediate voltage
cases. The inset is a view of the region near ω = 0 showing the
emergence of a stalled ω ≈ 0 minimum of the potential for v < v+c .
The states labelled (a, b, c, d) are the same as those in Figs. 1-3

section of motors in the tail to the running state, will not be
able to overcome the globally-stalled state once it has become
established.

B. From Local to Global: Numerical Experiments

Next, we perform numerical simulations of Eqs. (11-17) to
explore the qualitative dynamical description given above. We
examine how one property of the feeder, i.e. its length L,
affects the qualitative description given above by performing
two identical simulations except L = 0.45 in Fig. 6 and is
only slightly longer at L = 0.5 in Fig. 7. Although the change
in length is relatively minor, the final states of the two feeders
are radically different. In both simulations, we start with all
the induction motors (the only type of load considered here) in
the normal state, i.e. ω ∼ ω0. Time in all our simulations dis-
cussed below is measured, according to Eq. (5), in the units of
Mω0. At t = 0, a perturbation is applied where v0 is abruptly
lowered to 0.8 and held there long enough so that all of the
motors stall. Subsequently, v0 is restored to 1.0 and the evo-
lution of the motors and feeder variables are monitored. The
forced evolution of v0 emulates the behavior that would be
driven by a nearby fault on the transmission system supplying
the feeder and its substation.

Figure 6a shows the state of the L = 0.45 feeder immedi-
ately after the fault is applied. The voltage (black line with
plus signs) starts at v(0) = 0.8 and droops only slightly. Al-
though v < v−c , the inertia of the motors (although small)
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FIG. 6: Sequence of snapshots of a simulation for a feeder with L = 0.45 < Lc that undergoes a short voltage fault. In this case L is
short enough so that the long-range interactions via power flows and voltage are insufficient to promote the local hysteresis at each motor into
globally hysteretic behavior. Snapshot (a) shows the beginning of the sequence (immediately post fault) where the small inertia of the motors
maintains ω/ω0 ∼ 1 (blue dots) so that the the reactive power load density q (pink right-pointing triangles) and reactive power flow φ (red
line with circles) are low and the voltage profile (black line with plus signs) relatively flat, although near 0.8. Snapshot (b) shows the feeder at
a time after the reduction of electrical torque has decelerated all of motors to ω/ω0 ∼ 0 (blue) with an associated rise in reactive load density
q (pink right-pointing triangles) and reactive power flow φ (red line with circles) causing the voltage profile (black line with plus signs) to
droop more than in (a). Snapshot (c) shows the situation after the fault is cleared with v0 restored to 1.0. Although the reactive power flow φ
is still high, it is insufficient to force v < v+c and the motors relax back to the normal state as the phase front propagates from left to right. The
dynamical nature of this transition is evident from the real power load density p (yellow squares). The peak in p at the front is a result of the
acceleration of the motors as they transition from the stalled to normal state (see Eq. (14)). The motors shown accelerating in (c) eventually
reach ω/ω0 ∼ 1, and the feeder relaxes to a globally-normal state. See Appendix B and Movie 4 of the Supplemental Materials [URL will be
inserted by publisher] for respective dynamical illustration.

keeps them temporarily at ω/ω0 ∼ 1 (blue dots) so that their
local reactive loads q (pink right-pointing triangles) remain
low as does the non-local reactive power flow (red curve with
circles). However, because v < v−c the motors no longer have
an equilibrium state at ω/ω0 ∼ 1 (see dark blue solid line in
Fig. 5) and Eq. (18) forces them to relax to the stalled state
which is evident in Fig. 6b where ω/ω0 ∼ 0 (blue dots) all
along the feeder. All of the induction motors have now made
the transition to the upper branch of the reactive power curve
in Fig. 3 near to state a which is reflected by the increase in q
(pink right-pointing triangles) and the reactive power flow φ
(red curve with circles). Subsequent to Fig. 6b, v0 is restored
to 1.0, and a left-to-right propagating phase front is formed
(see blue dots in Fig. 6c) where the normal and stalled phases
are segregated with all the motors to the left of the front in the
normal state while those to the right are in the stalled state.
The motion of the finite-thickness phase front is evident from
the local real power load density (yellow squares in Fig. 6c).
The peak in p (above the steady-state values observed far to
the left or right of the front) is associated with the accelera-
tion of the motors within the front, and as the motors in front
accelerate to ω/ω0 ∼ 1, the front advances to the right. A
left-propagating front would show a downward peak in p. Af-
ter v0 has been restored to 1.0, the reactive power q drawn
by the stalled motors along this feeder is insufficient to cre-
ate a large enough φ to lower v into the intermediate range
v−c < v < v+c , and the feeder completely recovers to its ini-
tial state, i.e. the reversal of the initial perturbation restores the
feeder state. Alternatively, the implicit long-range power flow
interactions, expressed in a globally depressed voltage profile,

are insufficient to turn the local hysteresis into global hystere-
sis. The dynamic version of this simulation is provided as
Movie 4 of the Supplemental Materials [URL will be inserted
by publisher].

In Fig. 7, we show the final steady state of the exact same
simulation as in Fig. 6 except that we have slightly increased
the feeder length, L = 0.50. After restoration of v0 = 1.0,
phase front (blue dots) still forms and propagates into the
feeder, however, it becomes stationary at z ∼ 0.22. The
lack of a peak in the real power load density (yellow squares)
shows that there is no motor acceleration in the front imply-
ing that it is stationary. In this case, the reversal of the initial
perturbation does not restore the original state and the feeder
displays significant hysteresis. The added reactive power load
density q between z = 0.45 and 0.50 interacts with the
impedance over the entire length of the feeder to create con-
ditions (i.e. v < v+c ) near z ∼ 0.25 that enable the local
motor hysteresis to make the feeder globally hysteretic. The
dynamic version of this simulation is provided as Movie 2
of the Supplemental Materials [URL will be inserted by pub-
lisher]. We note that a large section of motors to the right of
the stationary phase front have v−c < v < v+c and therefore
also have a stable normal state (see Figs. 2 and 5). Additional
small perturbations could result in local transitions to the nor-
mal state and subsequent global recovery.

In between L = 0.45 and 0.50 is a critical length Lc where
the hysteresis first appears. Feeders operating with L > Lc
can be called “dangerous” because they are operating nor-
mally until a voltage fault occurs. Post fault, a fraction of the
feeder does not recover to normal operation and this fraction
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FIG. 7: Voltage fault and subsequent hysteretic recovery for L =
0.50 > Lc. The sequence of events (fault, transient and initial re-
covery) are identical to the one shown in Fig. 6, however the recov-
ery is not complete. The additional loading from the motors between
z = 0.45 and z = 0.50 generate long-range interactions that force
v < v+c for z > 0.22. Although v0 has been restored to 1.0, the
motors with v < v+c do not recover to a normal state, even though
many of them do have such a stable state. In this case, the long-range
interactions are are sufficiently strong to promote the local hysteretic
behavior of each motor into globally hysteretic behavior. See Ap-
pendix B and Movie 3 of the Supplemental Materials [URL will be
inserted by publisher] for dynamical illustration.

of induction motors remains stalled, i.e. the feeder has just
undergone a FIDVR event. Over a period of one to several
minutes, the stalled motors will get disconnected by tripping
of thermal protection systems, however, this uncontrolled re-
covery may also lead to overvoltages that are equally trouble-
some.

C. Special Features of the Phase Transition

Although the dynamical behavior described above is remi-
niscent of many of phase transitions in physics, it also displays
some very unique features, e.g. its lack of explicit spatial lo-
cality and the instantaneous nature of the global voltage ad-
justment. In the Ginzburg-Landau (GL) theory of first-order
phase transitions, we also have a potential with two minima,
however, the spatio-temporal dynamics of the phase transition
are different. In contrast to the spatio-temporal dynamics of
the current problem (as given in Eq. (18)), GL dynamics are
typically driven by a dispersion term, i.e. by adding a term
such as ∂2zω to the right hand side of Eq. (18) which effectively
couples the order parameter ω at different spatial locations.
The resulting GL dynamics is a phase transition front with a
shape and speed defined by the local balance (i.e. within the
front) of the added dispersion term against the existing non-
linearity (rhs of Eq. (18)) and dynamics (lhs of Eq. (18)). In
contrast, the transition front dynamics of the present problem
is driven by the globally-superimposed spatial inhomogene-

ity of the voltage profile v(z). During short periods of time
when there are not abrupt global changes, the voltage pro-
file remains relatively frozen and the motors respond locally
(Eqs. (18,19)) to the mismatch between their current rotational
state ω and minimum U(ω) as determined by the local voltage
v(z). These adjustments occur most rapidly in the vicinity of
the phase front where the state mismatch is the largest. The
adjustment of v(z) to the evolving motor loads is instanta-
neous (Eqs. (11-13,15-17)), but the evolution is actually tem-
porally slow because the motor states are only adjusting in the
small region of the phase transition front.

Another point of comparison is the so-called Stefan prob-
lem (see [27, 28] and references therein) describing a phase
transition driven by heat released at the interface between the
two phases. In its one dimensional formulation, the Stefan
problem considers two sub-domains with their outer bound-
aries (the boundaries away from the phase front) maintained
at different conditions, e.g. one at a constant temperature flux
and another at different temperature. Within each of the sub-
domains temperature plays the role of the order parameter,
and it obeys simple thermal diffusion (possibly with differ-
ent diffusion coefficients in the two sub-domains). The sharp
phase-phase interface is subject to a boundary condition that
relates its speed to the temperature at the interface. If the in-
terface progresses, heat is released locally and it is then trans-
ported via diffusion. Different versions of the problem show
many interesting behaviors. In a semi-infinite domain, self-
similar continually slowing fronts emerge. In finite domains,
the fronts may become stationary. This behavior is similar to
what we observe in the present problem – the analogy with the
Stefan problem is the emergence of a global solution with an
inhomogeneous order parameter profile and sharp interfacial
boundary. However, the physics and interplay of the mecha-
nisms that creates the behavior in the two problems are sig-
nificantly different – thermal diffusion vs heat release in the
Stefan problem, and local frequency transformations vs volt-
age profile and rearrangement. Moreover, the latter point also
emphasizes the difference – voltage profile plays the role of
the heat injection but it does it globally along the feeder, also
changing instantaneously, i.e. voltage rearrangement takes
place with an infinite speed (electro-dynamic effects are in-
stantaneous in our electro-mechanical model) while the heat
injection condition is modified gracefully in the Stefan case,
as the heat propagates along the domain with a finite speed
controlled by thermal diffusion.

V. SIMULATING AND EXPLAINING FAULT INDUCED
DELAYED VOLTAGE RECOVERY (FIDVR)

In the previous Sections, we built up an understanding of
the different types of dynamical behavior of an induction
motor-loaded distribution feeder and the different final states
that may result. In this Section, we discuss in more detail
the processes specific to FIDVR. Although we discussed the
anatomy of a FIDVR event in the introduction, we repeat it
here to motivate the following study of FIDVR dynamics.
Prior to the transmission fault, the voltages v0 at the head of all
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the distribution feeders extending from the substation served
by the transmission line are 1.0, and all the feeders are in the
normal phase, i.e. all the induction motors are in the normal
state. During a transmission fault, the large fault currents in
the transmission lines locally depress the transmission voltage
which in turn depresses v0. v0 remains depressed below 1.0
until the transmission fault has cleared, i.e. automatic protec-
tion circuit breakers have opened to de-energize the faulted
line to extinguish the ionized air supporting the fault current
and then reclosed to re-energize the transmission line. During
the fault-clearing process, one transmission line (out of typ-
ically two or more) serving the substation is briefly removed
from service so which also tends to depress v0. It is during this
period of v0 depression that the induction motors on the dis-
tribution feeders undergo “collapse dynamics” and may stall.
If the transmission fault is cleared normally, the voltage at the
the substation returns to near normal levels after the circuit
breakers reclose. If there is significant motor stalling, v0 may
not fully recover to 1.0 , but we approximate the post-fault
voltage as v0 = 1.0. The induction motor-loaded feeders then
undergo “recovery dynamics” which evolve to a final steady
state.

In Section V A, we first discuss the collapse dynamics dur-
ing a period of the fault when v0 is depressed. This is followed
by Section V B where we discuss the recovery dynamics (or
partial recovery) after v0 is restored. Finally, in Section V C,
we analyze the two periods in combination asking the ques-
tion: under which conditions does a fault result in a FIDVR
event?

A. Dynamics During a Fault–Collapse to Stalled Sates

If the voltage drop during the fault is large enough, i.e. if
v0 < v−c (see Figs. 1,2,5), all the motors will rapidly deceler-
ate to ω/ω0 ≈ 0 and the entire feeder will eventually end up in
the stalled state. Figure 8 (and Movie 1 of the Supplemental
material [URL will be inserted by publisher]) illustrates the
details of this process which are consistent with our interpre-
tation in terms of an “overdamped fall” down the the v < v−c
energy landscape of Fig. 5 (dark blue solid line) governed by
Eq. (18). We note that the long-range spatial coupling forces
the motors farther down the feeder to collapse to ω/ω0 ∼ 0
faster and reinforces the collapse after it starts. Specifically,
the cumulative effect of the induction motors loads reduces the
voltage at the remote locations of the feeder (black curve with
plus signs) resulting in a steeper local potential U(ω) (dark
blue solid line in Fig. 5). Eq. (18) shows that these remote
motors stall sooner, which is borne out in Fig. 8c (blue dots).
Additionally, as the remote motors decelerate, their local re-
active load density q (pink right-pointing triangles) increases
which increases φ (red line with circles) further lowering v(z)
((black curve with plus signs) and increasing the slope of the
local potential U(ω). The result is an even faster collapse into
a pure stalled phase. Moreover, we observe that the more se-
vere the voltage drop or the lower the motor rotational inertia
µ, the earlier these motors will be stalled.

Next we consider a less severe fault where v−c < v0 < 1.0

(see Fig. 9 and the full movie, Movie 2 of the Supplemental
Materials [URL will be inserted by publisher]. Although v0 >
v−c , the immediate post-fault voltage drops along the feeder
to a point z0 where v(z0) < v−c . If the voltage profile was
subsequently frozen in time, we would expect the motors with
z > z0 to behave very much as in Fig. 8, i.e. a deceleration
to ω/ω0 ∼ 0, although somewhat slower in the previous case
because the local v(z) is slightly higher. In Fig. 9b, we do
observe this initial behavior, however, the local reactive power
loading q (pink right-pointing triangles) again increases as the
motors stall increasing φ (red) and lowering the local v(z).
Via this spatial coupling, the feeder power flows reinforce the
collapsing wave allowing it to propagate to z < z0.

Although the reinforcement process can be significant, it
cannot overcome the boundary condition at z = 0 that main-
tains v0 > v−c . As shown in Fig. 9d, the phase front finally
stops at location 0 < z < z0 where the local voltage fi-
nally stabilizes at v(z) = v−c . As this occurs, local motor
accelerations cease and the phase front in ω, p, and q steepen
creating a sharp demarcation between the two pure phases of
normal and stalled states. One common and possibly univer-
sal feature in the two scenarios discussed above is emergence
of a “collapse” transient which can be interpreted as a quasi-
stationary phase transition front of a slowly evolving “soliton”
shape propagating with the speed and shape controlled by in-
stantaneous voltage at the point of the front which defines the
slope of the energy landscape U(ω) in Eq. (19) and Fig. 5.

B. Post-Fault Dynamics–Recovery from Stalled (or Partially
Stalled) States

The severity of the v0 depression during the fault deter-
mines the final state that will be reached if the collapse dy-
namics are allowed to evolve to steady state. The transmis-
sion fault may be cleared (v0 returns to 1.0) before this steady
state is reached, and we explore the dependence of the recov-
ery dynamics on the fault time duration in Section V C. For
simplicity of the present discussion, here we assume we are
starting from a post-collapse steady state. Whether the feeder
starts in a partially or fully-stalled post-collapse steady state,
the perturbation of v0 returning abruptly to 1.0 has the chance
of restoring the feeder to the fully normal phase.

We have performed a range of simulations starting from
both partially and fully-stalled steady states resulting from
simulation of a depressed of v0. We then restore v0 = 1.0 and
monitor the recovery dynamics. One such case for a fully-
stalled initial condition that fully recovers is shown in Fig. 10.
When restoring v0 = 1.0 is sufficient to drive a full recovery
(as in Fig. 10), we observe a rather rich dynamics which can
be split, roughly, into the following three stages:

• Figures 10a→b: The abrupt change of v0 instanta-
neously creates a smooth voltage profile dependent
upon the instantaneous adjustment of real p and reac-
tive q load densities to the higher voltage, but at their
motor’s stalled rotation speed. Motors with v(z) > v+c
start to accelerate, and the phase transition front is set
up in the vicinity of the feeder head.



11

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.001

position along the feeder z

va
ria

bl
es

 

 

ρ
φ
v
ω
p
q

(a)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.14

position along the feeder z

va
ria

bl
es

 

 

ρ
φ
v
ω
p
q

(b)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.32

position along the feeder z

va
ria

bl
es

 

 

ρ
φ
v
ω
p
q

(c)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=1.04

position along the feeder z

va
ria

bl
es

 

 

ρ
φ
v
ω
p
q

(d)

FIG. 8: Sequence of snapshots illustrating the collapse dynamics during a large voltage fault with v0 < v−c and L = 0.6 > Lc. Snapshot
(a) shows the situation just after the application of the fault – although the v(z) < v−c , the motors continue to rotate with ω/ω0 ∼ 1 because
of their inertia. Snapshot (b) corresponds to a short time after the application of the fault when the motors are just starting to decelerate. The
more remote motors experience smaller v and steeper U(ω). Their faster deceleration results in smaller ω/ω0 at these remote locations. The
collapse is reinforced by an increase in q (pink right-pointing triangles) as the motors reach lower ω. Snapshot (c) is taken later in the process:
the end of the line is completely stalled, the wave of deceleration starts to propagate backwards, from the tail to the head. Snapshot (d) shows
the final phase: all the motors are stalled. Note a significant increase in the reactive power drawn by the stalled feeder. See Movie 1 of the
Supplemental Materials [URL will be inserted by publisher].
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FIG. 9: Collapse dynamics caused by a small voltage fault with v0 > v−c and L = 0.6 > Lc. The collapse proceeds slower than in Fig. 8
because the higher voltages result in shallower U(ω). Snapshot (a) corresponds to a short time after the fault as the motors have just begun to
decelerate, however, the rise in q (pink right-pointing triangles) is already reinforcing the collapse. Snapshot (b) corresponds to later during the
fault where the end of the line is stalled and the deceleration front is starting to feel the influence of the boundary condition at z = 0. Snapshot
(c) the deceleration front has become nearly stationary as the long-range interactions can no longer overcome the boundary condition at z = 0.
Snapshot (d) show the feeder in the stabilized, partially-stalled steady state. See Movie 2 of the Supplemental Materials [URL will be inserted
by publisher].

• Figures 10c→e: The recovery front matures and sharp-
ens while propagating into the feeder. The narrow re-
covery front is always located near to v(z) = v+c where
the fast dynamics of motor acceleration and state tran-
sition occur. These fast transitions are accompanied by
jumps in p and q which act in a non-local manner to
push the location of v(z) = v+c to larger z thus driving
the transition front farther into the feeder. The propa-
gation, although driven by the fast dynamics of motor
state transitions, comprises a slow dynamics because
the state transitions occur in a phase front that is nar-
row compared to the feeder length. Also part of the
phase front is a peak in p above the steady-state values
on either side of the front. This peak is associated with
the acceleration of the motors from a stalled to a nor-
mal state. If the feeder is long enough, the phase front
appears to reach a time-invariant shape that propagates
much like a soliton.

• Figures 10f→h: The slow dynamics of the recovery ap-

proaches to within about one or two phase front widths
of the end of feeder. With fewer motors to acceler-
ate, the voltage adjusts faster and the front propagation
speed increases until is has consumed the entire feeder
and the feeder reaches a uniform normal phase. See Fig.
10f-h for illustration.

See Movie 4 of the Supplemental Materials [URL will be in-
serted by publisher] for the full movie of the recovery phe-
nomenon.

Perhaps the most remarkable feature of the recovery pro-
cess is formation, at the intermediate stage, of a “soliton” –
a quasi-stationary shape moving with roughly constant speed
from the head to the tail. The emergence of the “soliton” is
due to the long-range interaction of the fast but local changes
in p in q in the phase front to the slower but global changes in
voltage v(z).

As we will see in the following Section, the feeder does not
always fully recover simply because v0 is restored to 1.0. In
these cases, we have explored the effects of temporarily (or
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FIG. 10: Eight snapshots of the evolution of a feeder from a steady-state, fully-stalled phase to the fully-normal phase following the restoration
of v0 = 1.0. (a) The final fully-stalled steady state reached after simulating the feeder for a v0 = 0.8 fault voltage depression. (b) v0 is
restored to 1.0 and the motors at the head of the feeder start to accelerate. (c) A recovery front is built which starts to propagate into the feeder.
(d) The front continues to propagate at roughly constant speed and also showing a universal “soliton”-like shape. (e) The front continues to
propagate with roughly the same speed and a universal “soliton”-like shape. (f) Completion of the recovery process where interaction with the
end of the feeder accelerates the recovery front. (g) The recovery front still propagates while the shape of the front starts to change because
of interactions with the end of the feeder. (h) End of the recovery process: the entire feeder is back to the normal state. See Movie 4 of the
Supplemental Materials [URL will be inserted by publisher] for dynamical illustration.

permanently) raising v0 above 1.0 and found this approach to
be quite effective in restoring feeders that would have other-
wise remained stalled. However, such intelligent control ac-
tion requires reliable detection of the entry into a FIDVR event
and fast switching and/or device control to increase v0 to a
sufficient level. We postpone full analysis of such a control to
future work.

C. Dynamic Transition: Will a Feeder Enter a FIDVR State?

Our simulation results suggest that the normal phase, the
fully stalled phase, and any of the partially stalled phases (with
the feeder split in the normal head and stalled tail) can be the
final stationary and stable point of a dynamical evolution. In
this Section, we explore the properties of the final state as the
properties of the feeder (length L and motor inertia µ) and
the fault (magnitude of voltage depression ∆v and duration
Tpertu) are varied. Our goal is to develop an initial under-
standing of the “non-equilibrium phase diagram” that controls
whether or not the feeder recovers to a fully normal phase. In
the test discussed below, we consider a feeder with L > Lc
because those with L < Lc are known to always recover to a
fully normal phase no matter the size or duration of the pertur-
bation. In our study of the phase diagram, we dissect the four-
parameter space, (L, µ,∆v, Tpertu) in six different ways:

1. fixing µ and Tpertu and exploring the (L,∆v) subspace,
see Fig. 11;

2. fixing µ and ∆v and exploring the (L, Tpertu) subspace,
see Fig. 12;

3. fixing ∆v and Tpertu and exploring the (L, µ) subspace,
see Fig. 13;

4. fixingL and µ and exploring the (Tpertu,∆v) subspace,
see Fig. 14;

5. fixing the values of L > Lc and (sufficiently large) ∆v

and exploring the (µ, Tpertu) subspace, see Fig. 15;

6. fixingL and Tpertu and exploring the (µ,∆v) subspace,
see Fig. 16.

Starting as usual with the feeder in a normal state with v0 = 1,
we apply a v0 depression of magnitude ∆v and duration
Tpertu with subsequent recovery to v0 = 1 and then integrate
the dynamics until the feeder reaches a steady state. Unless
all of the motors on the feeder recover to a normal state, the
feeder final state is classified as partially stalled. In all of the
subsequent Figures, the filled red circles indicate this bound-
ary between a fully normal phase feeder and a partially-stalled
feeder.

From our studies of the subspaces and the following Fig-
ures, we can make the following conclusions:

• From Figs. 11-13, it is apparent that the feeder becomes
less resilient to perturbations as it grows in length and
that there is an upper feeder length L∗ ≈ 0.63 that
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requires an infinitesimal perturbation to force it into
a partially-stalled phase. In fact, if the feeder is too
long (i.e. L > L∗), the normal phase is no longer
stable (v(L) ≤ v−c ) and the feeder always has a par-
tially stalled phase. Therefore, for the remainder of this
study, feeder with Lc < L < L∗ are of interest because
feeders with L outside this range are either robust to
all perturbations or always unstable to a partially-stalled
phase.

• From Fig. 14, it is apparent that there is value of
∆v ≈ 0.05 such that the feeder will never stall no mat-
ter how long the perturbation is applied. At ∆v = 0.05,
v0 = 0.95 and the static voltage drop at these reduced
voltages would make v(L) ≈ 0.83 = v−c . From this in-
terpretation, this lower bound on the ∆v for extremely
long Tpertu can be computed from the static power flow
equations by looking for the v0 that forces v(L) = v−c .

• The two previous conditions can be computed from
static considerations. The interesting dynamics be-
hind the transition to a partially-stalled state is then ex-
pressed in Figs. 15 and 16 which can be understood
by considering the decline of the motor rotational fre-
quency that occurs at the far end of the feeder dur-
ing the time Tpertu of the fault. We can crudely ap-
proximate this decline by the product of fault dura-
tion and the rate of frequency decline immediately after
the application of the fault, i.e. ∆(ω/ω0)|t=Tpertu ≈
−(2P/v0ω

2
0)(Tpertu∆v/µ) where we have used Eq. 14

and a linear expansion of Eq. 15. It is reasonable to ex-
pect that the boundary between a feeder that fully recov-
ers and one that is partially stalled would be expressed
by ∆(ω/ω0)|t=Tpertu ≈ constant. If such a relationship
is found to hold, it would imply (Tpertu∆v/µ) ≈ con-
stant, which within scope of our parametric study, is in
rough agreement with the results in Figs. 15 and 16, es-
pecially if we account for the minimum required value
of ∆v discussed immediately above.

The approximate analysis above provides a good qualitative
understanding of the fault and feeder parameters that lead to
a feeder with a partially-stalled phase. However, more rigor-
ous analytical analysis of Eqs. 11-17 is required to put these
conclusions on firm footing.

Beyond just determining the boundary between a fully-
normal and partially-stalled feeder final states, the character-
istics of the voltage fault also determine the number of mo-
tors that will be stalled after the fault is cleared. The more
severe the fault (in duration Tpertu or in amplitude ∆v), the
more motors will get stalled, up to a point. If the fault is se-
vere enough (∆v ≥ ∆v∗ or Tpertu ≥ T ∗pertu), the number of
stalled motors will not increase any more. For example, the
maximum number of stalled motors is reached in Fig. 17d for
a given set of parameters of the feeder line, and an even more
severe fault will end up in this same state after it is cleared.

On the other hand, the less severe the fault the less the
number of stalled motors, and the system can reach a con-
tinuous set of stable partially-stalled phases between the max-
imum number of stalled motors and none of the motors stalled.

FIG. 11: Phase diagram of the dynamic transition from the normal
phase to a partially stalled phase. All the points above the curve lead
to a partially stalled phase, all the points under the curve result in a
normal state. For L ≤ Lc ' 0.46, there is no hysteresis and the
system always ends in a fully running phase.

FIG. 12: Phase diagram of the dynamic transition from the normal
phase to a partially stalled phase. All the points above the curve lead
to a partially stalled phase, all the points under the curve result in a
normal phase. For L ≤ Lc ' 0.46, there is no hysteresis and the
system always ends in a fully running phase.

Fig. 17 shows examples of the different phases the system
can reach, and the Movies 5-9 in the Supplemental Materials
[URL will be inserted by publisher] illustrate the dynamics
leading to these final states.

VI. DISCUSSIONS & PATH FORWARD

In this manuscript, we have modeled, simulated, analyzed
and explained how the electro-mechanical dynamics of in-
duction motor-loaded distribution feeders can lead to Fault-
Induced Delayed Voltage Recovery (FIDVR), an effect ob-
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FIG. 13: Phase diagram of the dynamic transition from the normal
phase to a partially stalled phase. All the points above the curve lead
to a partially stalled phase, all the points under the curve result in a
normal phase. For L ≤ Lc ' 0.46, there is no hysteresis and the
system always ends in a fully running phase.

FIG. 14: Phase diagram of the dynamic transition from the normal
phase to a partially stalled phase. All the points above the curve lead
to a partially stalled phase, all the points under the curve result in a
normal phase.

served recently in power distribution feeders. We approached
these dynamics and the FIDVR events from the stand-point
of physics – explaining and interpreting them as an instance
of a broader class of nonlinear electro-mechanical phenomena
in power distribution systems. The main ideas and questions
discussed in this work can be summarized as follows:

• The 1+1 (space+time) continuous model, introduced in
[16] and developed here, offers a computationally effi-
cient framework for analysis of nonlinear and dynami-
cal phenomena in distribution feeders, and crucially, the
PDE model enables analogies with other known spatio-
temporal dynamical systems and solutions to help build

FIG. 15: Phase diagram of the dynamic transition from the normal
state to a partially stalled state. All points under the curve lead to a
partially stalled regime, all points above the curve result in the nor-
mal final state.

FIG. 16: Phase diagram of the dynamic transition from the normal
state to a partially stalled phase. All the points above the curve lead
to a partially stalled phase, all the points under the curve result in a
normal phase.

intuition about the dynamical behavior of the electrical
grid’s electro-mechanical dynamics.

• By coupling a spatially local model of an individual
motor – that describes its nonlinear, bi-stable and hys-
teretic switching between normal and the stalled states –
to a continuum version of the electrical power flow
equations, we are able to explain the coexistence of a
spatially-extended normal phase with a stalled phase
(motors at the head portion of the feeder are in the nor-
mal state, while motors in the tail portion of the feeder
are stalled).

• The emergence of the multiple spatially-extended states
is interpreted in terms of a first-order phase transition
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(a)Tpertu = 0.221 and ∆v = 0.15
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(b)Tpertu = 0.23 and ∆v = 0.15
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(c)Tpertu = 0.3 and ∆v = 0.15
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(d)Tpertu = 0.5 and ∆v = 0.15

FIG. 17: Different final states can be achieved by manipulating the duration of the perturbation (Tpertu), while its amplitude ∆v remains
constant. From left to right, the fault is longer and longer and the number of stalled motors increases. See five movies, Movies 5-9 in the
Supplemental Materials [URL will be inserted by publisher], illustrating the different phases that can be reached and the dynamics that lead to
the phases.

where the distribution of the motor rotational frequency
along the feeder is the order parameter. The voltage
distribution along the feeder plays the role of an ex-
ternal field (degree of freedom) that modifies an ef-
fective energy potential for motor frequency. Different
(normal, stalled or partially stalled) spatially-extended
phases are stabilized and reach a steady state by achiev-
ing a global electro-mechanical balance of their voltage
and frequency distributions along the feeder.

• Sufficiently strong perturbations, e.g. sudden drops
or rises in voltage at the head of the feeder, lead
to transients in the form of propagating phase fronts
that separate normal-state motors at the head of the
feeder from stalled-state motors in the tail of the feeder.
We analyzed and classified the different types of tran-
sients and resulting steady-state phase distributions that
emerge after the transients settle for different perturba-
tion strengths and lengths of the feeder.

• We also experimented with the dynamics of mechanical
frequency and voltage phase distributions under more
realistic, but more complex, two-step perturbations – a
voltage drop at the head of the feeder followed shortly
by restoration back to its nominal value – that are ex-
pected to simulate the real world perturbations that re-
sult in FIDVR events. The dynamics and emerging
steady states were explored for different voltage pertur-
bations (depth and duration of the voltage depression)
and feeder characteristics (feeder length and inertia of
the connected induction motors).

Major conclusions drawn from our numerical experiments and
analysis are

• Hysteresis. The system is strongly hysteretic: reversing
a perturbation does not lead to a simple reversal of the
dynamical trajectory.

• Recovery Conditions. When the feeder is short enough
or the voltage perturbation is weak enough (small
enough in amplitude or short enough duration), the
feeder recovers to a fully normal phase following a volt-
age perturbation thus avoiding a FIDVR event. Longer

feeders or stronger voltage perturbations lead to incom-
plete recovery and, by modifying the three parameters
beyond the recovery threshold, one explores a continu-
ous family of different partially-stalled phases.

• Self-Similar Transients. When a feeder is sufficiently
long, recovery transients appear to show universal
soliton-like phase fronts with normal phase propagating
into the stalled phase with an (approximately) constant
speed and time-invariant shape.

This manuscript opens up a new line of research into
physics-based analysis of transients and phase transitions in
distribution feeders. We plan to continue this work focusing
on the following generalizations and extensions:

• We modelled distribution feeders as consisting of iden-
tical induction motor loads distributed uniformly along
the feeder. In reality, the motors may be different and
distributed non-uniformly along the feeder, their distri-
bution and parameters may fluctuate in time, and they
are present with many other different types of loads. We
will extend our purely deterministic analysis to a proba-
bilistic framework to describe the effects of these forms
of disorder and noise to resolve questions such as: what
is the probability that the feeder with a given level of
disorder will recover after a perturbation of given am-
plitude and duration and not enter a FIDVR state?

• As recently shown in [29], controls associated with dis-
tributed generation, e.g. inverters coupled to distributed
photovoltaic (PV) generation, can also be incorpo-
rated into the spatially continuous modelling frame-
work (ODE framework). The static model of [29] sug-
gests that a feeder with a sufficiently large penetra-
tion of the PV generation may show a rather compli-
cated bifurcation diagram with the emergence of mul-
tiple low-voltage solutions that are related to the low-
voltage, stalled solutions discussed in this manuscript.
Much like the effects discussed here, these inverter-
driven low-voltage states are not the result of the be-
havior of a single inverter, but rather result from the
collective action of many inverters and their and inter-
action with the nonlinearity and nonlocal behavior of
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the power flow equations. To address these dynami-
cal problems in a more comprehensive manner, we will
extend dynamical description of this manuscript to the
case of distributed generation, and more generally, to
the case of a feeder containing a mixed portfolio of dis-
tributed generation and different types of loads, includ-
ing induction motors.

• In our first physics-based paper on the subject of
electro-mechanical dynamical transients in distribution
feeders, we relied mainly on numerical experiments.
However, the problem formulation may allow asymp-
totic theoretical analysis, in particular: accurate res-
olution of the phase transition boundaries, determina-
tion of the bifurcation (spinodal) points, propagation
of soliton-like phase fronts, and analysis of the tails of
the distribution functions that account for the aforemen-
tioned effects of noise and disorder.

• We have focused primarily on describing electro-
mechanical dynamics and the perturbations and tran-
sients that lead to FIDVR events. Armed with the com-
prehensive understanding gained in the process, we are
ready to attack the larger question of distribution feeder
voltage control. Specifically, what is the least control
effort needed to avoid a FIDVR event following a given
type of fault?

Appendix A: Methods

1. Dynamic Simulations

To solve numerically Eqs. (11,12,13,14,15,16), we employ
space-time discretization and use an explicit finite differences
scheme. Our dynamical simulations are split in two steps.

• During the first sub-step we take p and q fixed (outputs
of the previous time step) and solve the feeder-global
static Eqs. (11,12,13) for v, φ and ρ under conditions of
the fixed voltage at the head of the line and zero fluxes
at the end of the line (Eq. (17)). This sub-step instanta-
neously imposes a spatially smooth and globally corre-
lated voltage profile.

• Once the global, v, ρ, φ variables are fully updated, we
start updating on the second sub-step the local variables,
ω, p, q. For ω, we use its explicit time dependence:

ωt+1
j = ωtj +

∆t

µ

(
ptj
ω0
− t0

(
ωtj
ω0

)α)
(A1)

where ∆t = T/Nt is the time step (Nt is the number
of steps, and T the time of the simulation). Once ω is
updated, we easily get the updated values of p and q
using Eqs. (15,16).

Appendix B: Movies

In this Appendix we describe illustrative Movies shown in
the Supplemental Materials at [URL will be inserted by pub-
lisher].

a. Movie 1: Large Fault

This movie shows the dynamical transient following a large
drop in v0 to 0.8, i.e. v0 < v−c . At t < 0, the line is in a sta-
ble stationary state where all the motors in the normal state. At
t = 0+ (the first picture in the movie), v0 suddenly drops from
1 to 0.8, and the voltage profile along the line (black curve)
immediately responds. In response to the lower v(z), the mo-
tors’ rotational frequency (blue) decelerates everywhere along
the line at a rate dependant on the local value of the voltage
– motors closer to the head of line where the voltage is larger
decelerate at a lower rate. Motors at the far end of the line de-
celerate faster and become stalled first. The stalling of these
remote motors results in an increase in their local reactive load
q (pink) and the overall reactive power flow φ (red) which
reinforces the reduction in v(z) creating a normal-to-stalled
transition front that propagates from the tail to the head of the
feeder. Eventually, the entire feeder becomes fully stalled.

b. Movie 2: Small Fault

This movie shows the dynamical transient following a small
drop in v0 to 0.95, i.e. v0 > v−c . The response of the voltage
and the mechanical frequency of the motors in the tail por-
tion of the line is similar to that in Movie 1 – the voltage near
the feeder tail is too low and they decelerate with those nearer
the tail getting to the stalled ω/ω0 ∼ 0 state first. The tran-
sition to the stalled state expands as it is again reinforced by
the increase in reactive loading q (pink) and reactive power
flow φ (red). However, the phase front slows down, sharp-
ens, and eventually stops propagating as it begins to feel the
boundary condition at z = 0 that does not allow the motors
near the head of the feeder to stall. The result is a half-stalled,
mixed phase distribution with motors in the tail part of the
line stalled, while motors near the feeder’s head in the normal
state. The slowing down of the front is related to the effect
of critical slow down typical of first-order phase transitions as
they approach a spinodal point, i.e. as v(z) approaches v−c .

c. Movie 3: Hysteresis

This movie shows hysteretic behavior of a feeder with
L > Lc, i.e. the application of an opposite perturbation does
not lead to a reversal of the dynamical trajectory back to the
original state. From t = 0 to 0.9, the movie is the same as
Movie 1 “movie large fault.pdf”, i.e. v0 is reduced to 0.8 at
t = 0 and the feeder and shows a complete collapse into the
fully stalled phase. At t = 0.9, the perturbation is reversed
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as v0 is restored to 1.0. The increased voltage causes the mo-
tors at the head of the feeder accelerate and return to the nor-
mal state and a propagating phase front is formed (more de-
tails about this recovery front can be found in the description
of Movie 4 ”movie recovery.pdf”). The front advances to-
wards the tail until it reaches the point where the voltage has
fallen to to v+c (voltage above which a stalled motors accel-
erates). At this point, the phase front can proceed no further
and we end up with a partially stalled feeder. The voltage
is unable to increase further because of the non-local rein-
forcement of the voltage drop by the stalled motors beyond
the point where v = v+c . Similarly to what was seen in Movie
2 (and what is generally the case when the system approaches
a spinodal point) the dynamics gets slower as the moving front
approaches the critical voltage v+c .

d. Movie 4: Recovery

This movie is identical to Movie 3, except that the length
of the feeder line now is significantly shorter with L < Lc. In
this case, there is no hysteretic behavior after a voltage fault is
cleared — the feeder recovers completely because the shorter
L has diminished the non-local effects of the motors near the
tail of the feeder. The recovery process take a long time al-
lowing us to distinguish different phases of the process. First,
at 1 < t < 1.3 the beginning of the line accelerates quickly;
then, at 1.3 < t < 9.5, one identifies emergence of the recov-
ery front, which propagates down the feeder with a nearly sta-
tionary soliton-like shape. The recovery front starts to change
shape as it approaches and interacts with the boundary con-
dition at the feeder tail. The absence of motors to accelerate
beyond z = L leads to fast recovery of the normal states in
the vicinity of the tail for t > 9.5.

e. Movie 5-9: Five different states

Each of the five movies shows the dynamics of the feeder
line during a voltage fault and after the fault is cleared.
Characteristics of the feeder and faults are identical in all
the movies, except we increase Tpertu from segment to seg-
ment. We observe that the number of motors stalled in steady
state increases with in Tpertu showing that different partially-
stalled states can be reached depending on the duration of the
fault. However, we also notice existence of an upper limit to
the number of motors that can be stalled, i.e. no matter how
severe the fault, half of the line will always recover. The two
last movies illustrate this phenomenon, i.e. even though the
fourth segment has Tpertu = 0.5 and the fifth segment has
Tpertu = 1, they both result in identical steady states with the
same number of stalled motors.
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