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We introduce a model for translational molecular motors to demonstrate that a multivalent catalytic walker
with flexible, uncoordinated legs can transform the free energy of surface-bound substrate sites into mechanical
work and undergo biased, superdiffusive motion, even in opposition to an external load force. The walker in
the model lacks any inherent orientation of body or track, and its legs have no chemomechanical coupling other
than the passive constraint imposed by their connection to acommon body. Yet, under appropriate kinetic
conditions the walker’s motion is biased in the direction ofunvisited sites, which allows the walker to move
nearly ballistically away from the origin as long as a local supply of unmodified substrate sites is available.
The multivalent random walker model is mathematically formulated as a continuous-time Markov process and
is studied numerically. We use Monte Carlo simulations to generate ensemble estimates of the mean squared
displacement and mean work done for this non-ergodic system. Our results show that a residence time bias
between visited and unvisited sites leads to superdiffusive motion over significant times and distances. This
mechanism can be used to adapt any enzyme–substrate system with appropriate kinetics for use as a functional
chemical implementation of a molecular motor, without the need for structural anisotropy or conformationally
mediated chemomechanical coordination.
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I. INTRODUCTION

Motion at the nanoscale is dominated by random, thermally
driven collisions that lead to slow, uncontrollablediffusive
transport. Diffusion of large cargo molecules in a crowded
cellular environment is so slow that nature has evolved sophis-
ticated, specialized molecular machines to transport cargo di-
rectionally at superdiffusive rates. These translationalmolec-
ular motors, such as kinesin, dynein, and myosin [1], walk
alongoriented tracks, consuming chemical energy in the form
of ATP and converting it to mechanical energy that is used to
do work against external load forces [2, 3]. Molecular motors
are essential to a cell’s ability to control the distribution and
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FIG. 1: (color online) A multivalent random walker (MVRW) isan
abstract model of a multivalent enzyme with a rigid, symmetric body
andk identical enzymatic legs that can reversibly attach to surface-
bound chemical sites. Each leg is flexibly-tethered to the body with
maximum extension lengthℓ. The enzymatic action of a leg can
irreversibly transform a substrate site into a product, changing the
subsequent binding kinetics for the site. As the legs attachto and
detach from sites, the walker moves over the surface.
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movement of materials and information within it.
Synthetic nanoscale systems, like the natural cellular sys-

tems that have inspired their development, also need mech-
anisms to maintain non-equilibrium distribution of materi-
als and information [4]. Useful synthetic behavior has been
demonstrated by combining natural molecular motors and
components in novel ways [5]. However, each species of nat-
ural molecular motor is highly specialized to its cellular en-
vironment, chemical fuel source, and polymeric track (e.g.,
microtubules, actin, or DNA). Synthetic systems with differ-
ent polymers must either adapt existing natural motors, or use
newly designed compatible synthetic motors. Kinesin and
other natural motors can be mutated to change the kinetics of
their motion [6], but not to catalyze arbitrary fuel substrates,
or move over arbitrary tracks without fundamentally alter-
ing their functionality or efficiency. Natural molecular mo-
tors rely on non-local conformational changes to couple the
binding of fuel with the kinetics of track binding [7], and use
this conformationally-mediatedchemomechanical coupling to
coordinate their processive hand-over-hand walking gait [8].
These mechanisms make natural motors efficient but also hard
to mimic in synthetic systems.

We show that neither oriented tracks, nor rigid walking
gaits, nor chemomechanical coupling, nor coordinated confor-
mational changes, are necessary for a molecular walker to do
ordered mechanical work as a molecular motor.1 We consider
the motion of a multivalent walker with a rigid, inert body and
several flexible, enzymatic legs (Fig. 1). The legs attach toand
enzymatically modify surface-bound chemical sites arrayed as

1 As described below, our model can be compared with much simpler models
of multivalent enzymatic walkers as proposed by Antal and Krapivsky [12,
13]. While the ability to act as a motor is immanent to multivalent enzy-
matic walkers, the simpler models lack the representational detail needed
to quantify the ability of walkers to perform physical work.Below we
elaborate on other functional distinctions between the models.



arbitrary 2D patterns and tracks. The legs are chemically and
conformationally uncoupled, other than by the passive con-
straint imposed by the connection to a common body. Yet,
under appropriate kinetic conditions, the walker can be made
to move directionally and processively even in opposition to
a force. By modeling and understanding such simple walker
systems, we learn which chemical and mechanical properties
of walker-based motors are sufficient for superdiffusive mo-
tion, and which properties are not necessary.

Our multivalent random walker (MVRW) model is an ab-
stract description of the motion of these walkers. It takes the
form of a continuous time Markov process that describes the
stochastic motion of a walker as it moves over and modifies
surface-bound sites. The model is designed so that the Markov
process can be efficiently simulated, yet still accurately model
the effect of external forces on the physical motion and chem-
ical action of the walker’s body and legs.

Through Monte Carlo simulations we show that walkers
with appropriate kinetics can move superdiffusively in the
direction of unvisited sites over significant times and dis-
tances, and can do so while performing a non-trivial amount of
work against an external load. This effect can be understood
from the spontaneous emergence of a substrate concentration
gradient—a boundary between visited product sites and un-
visited substrate sites. At this boundary, the non-uniformlocal
substrate concentration combined with the chemical kinetics
of the legs and the constraints that the body places on leg mo-
tion lead to a directional bias away from previously visited
sites. As the legs irreversibly modify substrates to products,
they move this bias-inducing boundary further from the ori-
gin. Hence, as long as a walker stays proximate to the bound-
ary it moves ballistically away from the origin.

The MVRW model is inspired by attempts to model the
motion of synthetic DNA-based molecular walkers, called
molecular spiders [9], and a desire to aid in the design
of new laboratory experiments involving molecular spiders.
The spiders are structurally similar to the abstract walker
shown in Fig. 1. Chemically, molecular spiders employ a
deoxyribozyme–oligonucleotide [10] enzyme–substrate sys-
tem, where the deoxyribozyme legs can bind to and mod-
ify (cleave) the oligonucleotide substrates attached to the sur-
face. Molecular spiders have been observed to walk proces-
sively in 3D environments [9], and move directionally over
2D nanoscale tracks [11]. Abstract models of 1D spider mo-
tion were first proposed by Antal and Krapivsky [12, 13],
who showed that spiders with rigid nearest-neighbor hopping
gaits and idealized kinetics would experience an effectivebias
towards unvisited sites. Subsequent simulations [14] have
shown thisAK spider model to exhibit transient superdiffu-
sive behavior as the walkers move between periods of ballistic
and diffusive motion depending on the walker’s position with
respect to the boundary between visited and unvisited sites.
Other work has extended the AK model to study mathemati-
cal properties of AK spider walks in 1D [15–17] and 2D [18];
the collective and cooperative behavior of multi-spider sys-
tems in 1D [19–21]; and the effect of a load force on the rigid
1D walking gaits of AK-like spiders under the kinetic rates
specific to deoxyribozymes [22, 23].

However, it remains unclear how the rigid 1D gaits of the
AK model and its derivatives can be implemented at the chem-
ical level. Indeed, sophisticated mechanisms are necessary for
the coordinated stepping of the natural cytoskelatal motors
like kinesin I and myosin V, which rely on oriented tracks,
conformational switching, and long-range chemomechani-
cal coordination to achieve directed, hand-over-hand walking
gaits [24, 25]. Deoxyribozyme-based molecular spiders lack
these structural features, and there is no evidence to show that
coordinated hand-over-hand, inchworm, or nearest-neighbor
stepping gaits can be realized directly by molecular spiders.
The MVRW model removes any assumptions of leg coordi-
nation, and places no constraints on the gaits of the walker
legs, other than the passive constraint imposed by the finite
length of legs and their connection to a common body. This is
achieved by considering a more sophisticated model of the
mechanical equilibrium of the walker body and unattached
legs which allows the effect of a load force on the body motion
and the leg attachment rates to be efficiently simulated. Yet
the MVRW model still imposes inherently simple structural
requirements on the walkers it models which do not require
any sophisticated coordination between the legs, making the
model generally applicable toany enzyme–substrate walker
system that shares the simple structural motif of a rigid, in-
ert body with flexibly tethered enzymatic legs like the walker
in Fig. 1. Hence, the MVRW model is not an extension of
the Antal-Krapivsky spider models, in the sense that the AK
model is not a special case of the MVRW model. Nor is
the MVRW model a direct model of deoxyribozyme-based
molecular spiders, as it remains abstract enough to serve asa
general model of uncoordinated, unoriented, enzymatic walk-
ers. This abstraction allows us to show that such a struc-
turally simple walker design, using any enzyme–substrate sys-
tem with appropriate kinetics, can be made to move superdif-
fusively even under the direct application of a load force tothe
body, transforming the chemical free energy of substrate sites
into physical work.

The simulation results and analysis of the MVRW model
we present show that mechanisms for designing molecular
motors exist without the need for chemomechanical coupling,
conformational coordination, rigid walking gaits, or inherent
orientation of walker and track. Multivalent random walkers,
like natural molecular motors, are Brownian ratchets [26] that
rectify random molecular motion into ordered work and di-
rectional transport. Both systems achieve this rectification by
utilizing the chemical free energy of a substrate fuel. How-
ever, the mechanisms by which MVRWs do this are signifi-
cantly different from natural motors. Unlike kinesin I, myosin
V, and other natural cytoskelatal motors, multivalent random
walkers move over arbitrarily arranged 2D tracks, and are able
to do so without inherent orientation or structural asymme-
try. The gaits of a multivalent random walker are uncoordi-
nated and acyclic, yet the irreversible modification of surface
sites causes an emergent asymmetry in local substrate con-
centrations that is able to bias the motion of walkers, allow-
ing them to move directionally along prescriptive landscapes.
The structural and chemical simplicity of MVRWs is one of
their most important properties as it means that the conceptual



functionality of a molecular spider is independent of the spe-
cific enzyme–substrate system used in their implementation.
Hence, multivalent random walkers provide a different per-
spective for better understanding what structures, properties,
and mechanisms are minimally necessary to turn a molecular
walker into a molecular motor.

II. THE MULTIVALENT RANDOM WALKER MODEL

We model the motion of a multivalent random walker as a
continuous-time, discrete-state Markov process, where each
state transition corresponds to a chemical reaction between a
leg and a surface-bound site. The model conceptually sep-
arates the timescales of the relatively slow leg–site interac-
tions from the much faster physical (mechanical) motion of
the walker’s body and legs. In this way, only chemical re-
actions correspond to state transitions in the Markov process,
and the state space remains discrete. The Markov property is
ensured by assuming that the physical motion of the position
of the body and unattached legs comes to an equilibrium in
between successive chemical reactions.

The MVRW model is 2D and consists of a walker and an
environment of surface-bound sites. The walker has a rigid,
point-like body which serves as the attachment point fork
flexibly tethered legs, each with maximum lengthℓ. The en-
vironment is described by a setS⊂ R

2 of immobile chemical
sites. All sites are initially substrates, but they can be trans-
formed into products by the enzymatic action of a leg.

The state of the Markov process needs only to describe the
state of thereactive chemicals in the system, i.e., the species
at each chemical site and the chemical state of each leg. The
state of the surface is defined by the setP of sites that have
been transformed to products; all other sites inS are consid-
ered to be substrates. A walker leg is either attached to a site
in S or is detached. No two legs may be attached to the same
site. The state of the walker is succinctly represented by the
setA⊂ Sof attached sites, where 0≤ |A| ≤ k. Thus, any state
ω can be described compactly asω = (P,A), and we letΩ be
the set of all potential states.

A. Chemical kinetics and state transitions

In the MVRW model we assume each leg has a single enzy-
matic site that can bind to and irreversibly modify a substrate
site into product. The kinetics of an enzymatic leg (L) binding
to substrate (S) and product (P) sites can be described by five
reaction rates

L +S
k+S−→
←−
k−S

LS
kcat−−→ L +P+P∗

L +P
k+P−→
←−
k−P

LP

(1)

In Eq. 1, we define thekcat reaction to encompass both the
actual catalytic cleavage of the LS complex together with the

subsequent dissociation of leg L from the surface-bound prod-
uct P, and any other auxiliary product P∗. We assume the
auxiliary (waste) product P∗ is not bound to the surface and
its bulk concentration in solution,[P∗], is essentially 0. Thus,
individual rates of binding and unbinding of P∗ are not impor-
tant, and the dissociation reactions can be rolled into the rate
kcat. The assumption of irreversibility holds when the Gibbs
free energy,∆G, of the catalysis reaction is strongly negative,
and the rate of the reverse pathway is effectively zero, which
would be the case if[P∗]≈ 0.

The advantage of this definition ofkcat is that there is a di-
rect correspondence from reaction rates to Markov process
transitions. The reactions of Eq. 1 each correspond to one
of three types of functional motion for walker legs, associa-
tion (binding), dissociation (unbinding), and catalysis.Each
of these actions corresponds directly to a transition in the
walker Markov process. In the MVRW model, we assume
that rates for the unimolecular dissociation and catalysisreac-
tions for a leg–site complex are not chemomechanically cou-
pled to the conformations or positions of the body and other
legs. Thus, as in the unimolecular stochastic kinetic models of
Gillespie [27], each individual LS or LP complex will dissoci-
ate or undergo catalysis according to the ratesk−S , k−P , andkcat,
and the time until that reaction happens will be exponentially
distributed according to the sum of the potential reaction rates
from that bound state.

The bimolecular association reactions are more compli-
cated to model as their propensity depends not only on rates
k+S andk+P , but also on the likelihood of the leg being proxi-
mate to the chemical site in order that it may bind. This like-
lihood, in turn, depends on the position of the body and the
unattached legs.

B. The body’s equilibrium position

Molecular motors and molecular walkers operate in a
regime where they are almost always at physical (mechanical)
equilibrium with their surroundings [28], and this fact is criti-
cal to understanding how molecular motors operate at the level
of discrete chemical transitions [29–31]. After each chem-
ical reaction of a leg attaching, detaching, or cleaving, the
walker’s body is subject to high-frequency thermally-driven
constrained diffusion, which quickly brings the walker body
to a physical (mechanical) equilibrium distributionB over
2D positions on the surface. This ensures that the Markov
property holds for the discrete chemical states in the MVRW
stochastic process because the high-frequency physical mo-
tion of the walker quickly removes any conformational mem-
ory of previous chemical states, and the body distributionB
only depends on the current stateω = (P,A), and not on any
previous states in the Markov process.

We assume that the only coupling between the attached legs
and the body is that the body is constrained to stay within
distanceℓ from each attached site. Hence,P[B = p ] = 0 for
positionp ∈R2 if there is any attached leg sites∈ A such that
‖p−s‖> ℓ. We call all values ofp that satisfy‖p−s‖≤ ℓ for
all s∈ A thefeasible body positions,F , illustrated in Fig. 2.
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FIG. 2: (color online) The feasible body positions,F , as determined
by the attached leg constraints are labeled and shown in yellow. Any
site at most distanceℓ from F is a feasible site (labeled and shown
in green).

At equilibrium,B is a Boltzmann distribution over the fea-
sible positionsp ∈ F according to the energyU(p) at each
position,

P[B = p ] = pB(p) =
e−βU(p)

∫

F
e−βU(p)dp

. (2)

In Eq. 2,β = 1/kBT , wherekB is Boltzmann’s constant andT
is absolute temperature. The energyU(p) necessarily depends
on the entropic and mechanical properties of the walker legs
and their tethers, the details of which are possible to modelin
U(p), but are dependent on the actual chemical construction
of the walker legs and tethers. To keep our analysis generally
applicable to any flexible tether, we choose a null hypothesis
of no mechanical coupling or internal structure to the legs,and
model the energyU(p) as uniform over any feasible position,
but infinite for infeasible positions,

U(p) =

{

0 p ∈ F
∞ otherwise

. (3)

C. Leg–site binding kinetics

The bimolecular kinetics of leg–site binding is controlled
by two factors, (I) a second-order process by which the leg and
site come into contact, and (II) a first-order process wherein
the leg and site undergo conformational changes to move to
a strongly bound state [28]. We consider the case when the
legs are short enough, and the conformational changes lead-
ing to binding are slow enough that factor II is limiting. In this
case, an unattached leg undergoing constrained diffusion has
the opportunity to interact many times with the local feasible
sites before it finally binds strongly enough to be considered

attached. The overall rate of a leg reacting with any feasi-
ble site is then proportional to the number of feasible sitesin
its proximity. Equivalently, from the perspective of a feasible
site, the probability that it reacts with the leg is independent
of the number of other feasible sites in the local environment.
For any sitesand body positionb we define a feasibility func-
tion,

fs(b) =

{

1 ‖s−b‖< ℓ

0 otherwise
. (4)

Then from positionb, an unattached leg binds to sites, with
speciesπ(s) ∈ {S,P}, with rate

rb(s) = k+π(s) fs(b). (5)

Now, we take into account that the body is not at a single
positionb, but in an equilibrium distributionB over positions,
and we integrate Eq. 5 to obtain

rB(s) = k+π(s)

∫

F

pB(b) fs(b) db. (6)

Any site with non-zero rate of attachment is called afeasible
site; the region of feasible sites is shown in Fig. 2.

D. The effect of force on walkers

The MVRW model can also capture the effect of forces on
the walker body. This is an advantage of modeling the body’s
position as a Boltzmann distribution determined by the energy
of the walker at each feasible position. Under the effect of a
conservative load forcef, the energy of positionp is

Uf(p) =U(p)− f · (p−p0), (7)

wherep0 can be any reference point. The energyU(p) is the
energy of the body at positionp under zero force, which is de-
fined in Eq. 3 using our assumption of a uniformU(p). This
choice ofU(p) represents a worst-case scenario from the per-
spective of force production by walkers, as the mechanical
structure of the attached legs is not able to oppose any forces
acting on the walker. Despite this disadvantage, we will show
in Sec. IV that walkers can still move superdiffusively in op-
position to a load force applied to the body.

The adjusted energyUf in Eq. 7 gives a new equilibrium
distribution with probability mass shifted in the direction of
the applied force. The effect of force on the body’s equilib-
rium position and on the attachment propensity for each of the
feasible sites is illustrated in Fig. 3.

III. SIMULATION AND ANALYSIS METHODS

The MVRW model is a continuous-time Markov process
(CTMP) with discrete statesω = (P,A) ∈ Ω. Given all
relevant parameters, the walker CTMP defines certain ran-
dom variables{X(t)}t≥0 over the state spaceΩ. This sin-
gle Markov process simultaneously describes the fast phys-
ical motion of the walker body and legs under an external
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FIG. 3: (color online) The equilibrium body position probability den-
sity for a walker under several different load forces. Warmer colors
represent increasing probability. The body is drawn at its mean equi-
librium position,〈B〉. The region of feasible sites is labeled and il-
lustrated in green, but not all sites are equally likely for attachment.
The color and size of feasible sites indicate the effective attachment
rate as determined by the body position distributionB.

load, as well as the slower discrete chemical state changes
of the legs binding and modifying the surface sites. The
MVRW simulation process uses a kinetic Monte Carlo al-
gorithm [32, 33] to sample from thenon-equilibrium behav-
ior of the walker’schemical motion, but each chemical step
in this MVRW Markov Chain requires using the Metropolis-
Hastings algorithm to sample theequilibrium behavior of the
body’sphysical motion. Hence, by separating the timescales
of the chemical from the physical behavior of the system, we
can take advantage of both equilibrium and non-equilibrium
Markov chain Monte Carlo techniques, using each technique
where it is most applicable to the dynamics of the walkers.

Our kinetic Monte Carlo (KMC) algorithm for the MVRW
process produces samplesx(t) for t ∈ [0, tmax], such that at
each time,x(t) is a sample of a random variableX(t). With
an ensemble ofn samples of the Markov process, we measure
and report various properties of the system state at linearly and
logarithmically spaced time pointst ∈ [0, tmax]. The simula-
tion algorithm is described in detail in previous work [34, 35].

In order to compute the transition rates for the association
reactions, we use the Metropolis-Hastings algorithm [36–38]
to sample from the body’s equilibrium distributionB and use
these samples for Monte Carlo integration of Eq. 6. Impor-
tantly, the Metropolis-Hastings algorithm is able to sample
from B using only the energy from Eq. 7, without having to
compute the partition function of the Boltzmann distribution
of Eq. 2.

There are computational advantages to modeling the dis-

tribution B at equilibrium. When the forces on the walker
are conservative,B is translationally invariant, and depends
only on the relative locations of the attached legs, and not on
the whole system stateω = (P,A). When the walkers move
overregular lattices, there are only a finite number of poten-
tial leg attachment gaits, and their corresponding attachment
propensities can be precomputed, eliminating the need to run
Metropolis-Hastings at every KMC iteration. This makes
KMC simulation tractable for long times and large values of
n. The details of the simulation of MVRWs on regular lattices
can be found in previous work [35].

A. Random number generation

In all Monte Carlo methods the fundamental source of
stochasticity derives from a deterministic pseudo-random
number generator. The statistical properties of the pseudo-
random number source are critically important to the correct-
ness of model predictions [39]. To allow parallel computa-
tion and preserve mathematical guarantees of random number
generator quality, we use the leapfrogging method to gener-
ate n parallel random number streams from a single master
stream [40]. Hence, only a single random seed is needed to
compute alln KMC traces for each set of model parameters
studied.

B. Mean squared displacement and diffusion

In single-particle tracking, the stochastic motion of indi-
vidual molecules is frequently analyzed in terms of the mean
squared displacement (MSD) [41]. The MSD is the vari-
ance in the displacement,Var (‖p(t)‖) =

〈

‖p(t)‖2
〉

. For any
diffusive process (i.e., an unbiased random walk) the MSD
will scale linearly with time. Anomalous diffusion [42] is
characterized by the MSD scaling as some non-linear power
0≤ α ≤ 2,

〈

‖p(t)‖2
〉

∝ tα ,



























α = 0 stationary
0< α < 1 subdiffusive
α = 1 diffusive
1< α < 2 superdiffusive
α = 2 ballistic or linear

. (8)

MSD can either be computed as a temporal average (over dif-
ferentδ t values for a single walker trajectory) or an ensemble
average (over absolutet for an ensemble of trajectories from
identical walker systems). Many biological systems are (or
are at least assumed to be)ergodic in the sense that the mo-
tion of a walker is independent of its absolute position on the
track and does not depend on its previous motion over a re-
gion of that track. Under the assumption of ergodicity the
temporal and ensemble MSD are equivalent (assuming suffi-
cient measurement resolution), but when a non-ergodic sys-
tem is analyzed, only the ensemble average is meaningful for
use in characterizing anomalous diffusion [43, 44]. MVRWs
are a nonergodic system because they irreversibly modify the



x̂(nm)
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FIG. 4: (color online) A snapshot several hundred steps intoa
MVRW simulation. The surface track for walkers in this set ofsim-
ulations consists of a semi-infinite strip of substrate sites 3-wide.
Shown are the circular constraints imposed by the attached legs, and
the probability densitypB for the body’s equilibrium position (as a
heat map). The walker has one unattached leg, and the relative rate
at which it would attach to each site is shown by the size and color
of the site. The boundary of the surface doesn’t present any effective
constraint on the walker’s motion, other than the fact that the lack of
sites outside the track prevents the walker body from movingmore
than a leg length,ℓ, into those empty regions.

track as they move over it. Thus, the motion of the walker
depends on its absolute position on the track and specifically
on whether the local sites are products or substrates. Hence,
only the ensemble MSD can be used to study MVRWs.

IV. RESULTS

By itself a multivalent random walker is just a rather unso-
phisticated multivalent enzyme, but when paired with an ap-
propriately designed nanoscale track of substrates it becomes
a molecular transport device, able to move superdiffusively
even under the influence of an external load force. Using
KMC simulations we studied the motion of MVRWs mov-
ing over a 3-wide semi-infinite track of substrates (Fig. 4).
The track spacing and other relevant parameters are summa-
rized in Table I. As shown in Fig. 4, the walker starts with
a single leg attached to the middle leftmost site atx-position
0. The remaining legs quickly attach, and the walker begins
to move over the surface. From this initial position, the lack
of substrates to the left breaks the symmetry of the walker’s
environment, and means the walker can only move in the+ x̂
direction. The broken symmetry allows us to apply a load
force to the walker’s body in the− x̂ direction to oppose the
walker’s motion, and Eq. 7 describes the effect of that force
on the walker body’s energy functionUf . If the force ap-
plied to the walker isf = ( fx, fy), we let fy = 0, and write
f = − fx as a scalar for the magnitude of the force in the− x̂
direction. We limit f ≤ 4.0pN as larger forces result in in-
significant motion under the parameters of Table I. The up-
per bound off = 4.0pN is near the maximum force a DNA-
based realization of a MVRW coulda priori be expected to
move against, as the stall force for kinesin is approximately
5−8pN [45], and the dissociation force for double-stranded
DNA is < 12pN [46].

TABLE I: Model parameters used for simulations.

Parameter Description Symbol Value
Number of legs k 4
Leg length ℓ 12.5nm
Track width – 3 sites
Track length – semi-infinite
Track site spacing – 5.0nm×5.0nm
Initial set of product sites P /0
Effective substrate binding rate k+S 1.0×103 s−1

Effective product binding rate k+P 1.0×103 s−1

Substrate dissociation rate k−S 0.0s−1

Product dissociation rate k−P 1.0s−1

Catalysis rate kcat ≤ 1.0s−1

Temperature T 300K
Force in− x̂ direction f ≤ 4.0pN
Largest simulated time tmax ≤ 1.0×107 s

A. The role of kcat in walker kinetics

The chemical reactions from Eq. 1 describe the kinetics of a
generic enzyme that can irreversibly transform substratesinto
products. From the modeling point of view all five reaction
rates,k+S , k+P , k−S , k−P , andkcat are free parameters that can
each be varied to determine its effect on walker motion. In this
work we focus on the special role thatkcat plays in controlling
the walker’s motion. Accordingly, we have fixed the values of
the other four kinetic rates as shown in Table I, allowing us to
study the effect of varyingkcat. We have fixedk+S = k+P so that
there is no attachment bias between substrates and products.
This choice allows us to focus on the more subtle kinetic in-
terplay of the remaining rates. Clearly a walker withk+S > k+P
will be more likely to attach to substrates than products as it
is directly biased in attachment, and we investigate the effect
of such kinetics in Sec. V E. However, we are primarily inter-
ested in investigating the minimal kinetic properties a MVRW
must have in order to act as a molecular motor, and so we as-
sume thatk+S = k+P . With these rates equal, an unattached leg
has no ability to differentiate between substrates and products
and will just as rapidly bind to a feasible substrate as to a fea-
sible product. Yet, even under these conditions a difference in
the rates ofkcat andk−P can lead to a directional bias.

Consider that, once bound, a leg–product complex un-
binds at ratek−P , and a leg–substrate complex unbinds at rate
k−S + kcat. We assume that substrate unbinding is much less
probable than substrate catalysis so we letk−S = 0 (the re-
laxation of this assumption is also considered in Sec. V E).
Now, with kcat = k−P , there is no residence time bias be-
tween substrates and products—the expected duration of a
leg–product binding is the same as that for a leg–substrate
binding. While substrates are still converted into products, the
kinetics of the walker attachment and detachment are identi-
cal for both species. Hence, a walker withkcat= k−P is equiv-
alent to a walker moving over an all-product surface. But an
all-product surface provides no chemical free energy, and so
an all-product walker system must move diffusively. Hence,
a walker withkcat = k−P still releases chemical energy when



it catalyzes the conversion of a substrate, but the symmet-
rical kinetics prevent the walker from utilizing that energy.
Thus in subsequent results we have fixedk−P = 1s−1 while
we vary kcat, and the case wherekcat = 1s−1 = k−P repre-
sents the no-energy baseline motion of walkers. In contrast,
whenkcat< 1s−1 = k−P there is a residence time bias, wherein
leg–substrate bindings are longer in duration than leg–product
bindings, as the leg must wait until the relatively slow cataly-
sis step completes before it can unbind.

The only part of the walker kinetics that takes into account
the chemical free energy released in substrate catalysis isthe
assumption of irreversibility in the enzymatic conversionfrom
substrate to product. In enzyme kinetics there is some non-
zero rate for the reverse of the catalytic process. However,if
the Gibbs free energy (∆G) drop from substrate to product is
large enough, the reverse rate is so small it is for all practi-
cal purposes zero, and is omitted from the walker kinetics in
our model (Sec. II A). Thus, we vary thekcat parameter to
control the residence time bias between visited and unvisited
sites, and atkcat = 1s−1 the motion of the walker isequiva-
lent to the no-free-energy case. We do not directly incorpo-
rate∆G into the model, as the kinetic values ofkcat andk−P
are more important to walker motion than∆G, and any free
energy change large enough to make the substrate modifica-
tion effectively irreversible is sufficient to satisfy the model
assumptions.

B. Walkers move superdiffusively in the absence of force

Figure 5 shows the ensemble estimates (n = 1000) for
MVRWs moving in the absence of a load force. Initially (be-
low the characteristic timescale of 1/kcat) the walkers move
subdiffusively. As expected, thekcat = 1s−1 walkers never
move faster than diffusion. However, askcat is decreased,
walkers initially move more slowly due to the the slower catal-
ysis kinetics, but once sufficient time has passed, they move
superdiffusively withα > 1. The smaller the value ofkcat, the
more superdiffusively the walkers move, withα approaching
2 for the smallestkcat values. This superdiffusive behavior
persists over several decades in time, during which the walk-
ers move processively away from the origin in the direction
of unvisited sites. Because of this outward-directed bias,the
walkers withkcat< 1s−1 = k−P eventually overtake (in MSD)
the kcat = 1s−1 walkers given sufficient time. However, the
ability to move superdiffusively depends on the local avail-
ability of the immobile substrate fuel, which is consumed as
the walker moves over the track. Hence, if a walker moves
back over previously visited sites, it becomes starved for fuel.
In these energy-devoid regions the walker can only move dif-
fusively like thekcat = 1s−1 walkers, and so superdiffusion
must eventually give way to regular diffusion, even for the
smallest values ofkcat.

Figure 6 shows〈N(t)〉, the mean number of sites catalyzed
by time t; its rate of change represents the average availabil-
ity of substrate fuel. As long as the number of sites cleaved
grows linearly with time, the walkers are receiving fuel at a
constant rate and their motion is biased in the direction of
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FIG. 5: (color online) Simulation estimate of
〈

‖p(t)‖2
〉

when f =

0. Walkers withkcat = 1s−1 = k−P move diffusively. Those with
kcat< 1s−1 move superdiffusively, but eventually use up their local
supply of substrates and become ordinary diffusive. True transitions
to diffusion will occur above simulated timetmax= 107 s.
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FIG. 6: (color online) Simulation estimate of〈N(t)〉, the number of
substrates catalyzed to products whenf = 0. Sincek−S = 0, this is
equivalent to the number of distinct sites visited at timet. Walkers
with kcat< 1s−1 catalyze substrates at a nearly linear rate over many
decades in time. This is necessary to maintain a constant supply of
chemical energy to sustain superdiffusive motion.

new sites, which allows their constant fuel supply to be main-
tained. When〈N(t)〉 becomes sub-linear the walkers begin to
transition from superdiffusion to ordinary diffusion.

C. Walkers do work against a load

To quantify the sensitivity of the walker’s superdiffusive
motion, we impose a constant load forcef on the walk-
ers in the− x̂ direction (Fig. 4). Figure 7 shows ensemble
(n = 4000) estimates of

〈

‖p(t)‖2
〉

under a range of forces
for kcat= 1s−1 andkcat= 0.01s−1. Again,kcat= 1s−1 = k−P
(dashed lines) illustrates the no-energy case and, as shown
previously (Fig. 5), walkers move diffusively without the in-
fluence of force.

When f > 0, the random walk over products is biased in
the− x̂ direction. The lack of substrates to the left of the ori-
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FIG. 7: (color online) Simulation estimate (n = 4000) of
〈

‖p(t)‖2
〉

and 95% confidence bounds (shading) on a log-log scale. Reference lines
are shown for ordinary diffusion (α = 1) and ballistic motion (α = 2). Walkers withkcat< 1s−1 move superdiffusively, but whenf > 0, they
eventually slow down and return to the same equilibrium position as thekcat= 1s−1 walkers.
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FIG. 8: (color online) Simulation estimate (N = 4000) of〈∆E(t)〉 and 95% confidence bounds (shading) on a log-linear scale. Walkers with
f = 0 always have∆E = 0. Those withf > 0 andkcat < 1s−1 do significant amounts of work, reaching a peak energy beforeeventually
coming to an equilibrium. This equilibrium depends only onf and not onkcat.



gin (Fig. 4) constrains the walker and the biased random walk
will eventually reach an equilibrium position, after whichthe
net motion is stationary (α = 0). Indeed, this is seen for the
kcat= 1s−1 walkers, which never move faster than diffusion,
and their MSD increases monotonically to the equilibrium
value exactly as if they were undergoing constrained diffu-
sion in a box [47]. In contrast, whenkcat< 1s−1 we again see
nearly ballistic motion for all walkers except those under the
highest load forcesf ≥ 2.0pN. Thus, even though the load
force attempts to pull the walker body away from the sub-
strate fuel, the long residence time for leg–substrate binding
allows a few substrate-bound legs to resist the force and keep
the walker in proximity to the substrate sites. Eventually,as
in the f = 0 case, all walkers regardless ofkcat will exhaust
their local supply of substrates and will find themselves mov-
ing over energy-devoid product sites, which ultimately brings
them to the same equilibrium position as thekcat= 1s−1 walk-
ers (for a givenf ).

The change in potential energy of the walkers (∆E) as they
move in opposition to the load force can be quantified by eval-
uating the ensemble estimate of the mean position of the walk-
ers’ bodies,〈p(t)〉. We chose to set∆E = 0 when px = 0,
and then∆E = f px > 0 for walkers to the right of the origin
(Fig. 4). Figure 8 shows the ensemble estimate of〈∆E(t)〉.
As the load force is increased above 0, the walkers attain pro-
gressively higher potential energies, and their peak energies
come earlier, as they need to move less distance to do the same
amount of work. However, as the forces are increased beyond
f = 2pN, the walkers are not able to move very far without
being pulled backwards, away from their substrate fuel, and
they achieve only modest values of∆E.

D. Walker velocity

Mean walker velocity is another useful measure of walker
motility and is commonly used to characterize the motion
of the processive cytoskelatal motors such as kinesin I and
myosin V [48–50]. Estimation of mean velocity is difficult
for multivalent random walkers because they do not operate
in a steady state. Instead, like other measures of their motility,
mean velocity is time dependent. Furthermore, the instanta-
neous velocity between steps has high variance.

In the experimental setup depicted in Fig. 4, we are in-
terested in the mean velocity in thex direction, 〈vx(t)〉, as
this is the direction in which the force is applied. Velocity
is not a directly observable quantity of the MVRW model,
as walkers move in discrete steps over the state space. We
can directly measure the mean position of the walker〈p(t)〉=
(〈px(t)〉 ,

〈

py(t)
〉

), which is defined as the mean location of
the body position distribution〈B〉 (Eq. 2). Due to the variance
of random variablepx(t), simple finite difference estimations
of 〈vx(ti)〉 = (〈px(ti+1)〉 − 〈px(ti)〉)/(ti+1− ti) are too noisy
with our sampled data.

In general, computing the derivative of a function known
only with noisy measured data is an ill-posed problem and
some sort of regularization procedure must be defined so that
the solution can be uniquely determined [51]. The nature

of the walker motion implies that the mean velocity should
be a smooth function. Thus, we follow the methodology of
Stickel [52] in which the problem is regularized by optimiz-
ing for a smooth interpolator ˆpx(t) that is both a good fit to the
data and that has sufficiently small higher-order derivatives.

Stickel defines a functionalQ that ranges over possible
smooth interpolatorsϕ on the interval[t0, tmax],

Q(ϕ) =
∫ tmax

t0
|ϕ(t)−〈px(t)〉|

2dt+λ
∫ tmax

t0

∣

∣

∣
ϕ(d)(t)

∣

∣

∣

2
dt. (9)

In Eq. 9 the term
∫ tmax

t0
|ϕ(t)−〈px(t)〉 |2dt measures theL2-

norm of the difference of the interpolator from the data, and
the term

∫ tmax
t0
|ϕ(d)(t)|2dt measures theL2-norm of thed-th

derivative ofϕ . The smoothed position function, ˆpx(t), is the
minimizer of the functionalQ,

p̂x = argmin
ϕ

Q(ϕ), (10)

and we can define the smoothed velocity as

v̄x(t) =
d
dt

p̂x(t). (11)

The weighting parameterλ in Eq. 9 determines the relative
importance we put on selecting a ˆpx(t) that minimizes the dis-
tance from the data〈px(t)〉, versus a ˆpx(t) that has smalld-th
order derivative. As we are looking for the first derivative of
p̂x(t), we follow the advice of Stickel and optimize ford = 3,
which is two more than the derivative we require an estimate
for. We found that settingλ = 100 gave an optimal trade-off
between accuracy and smoothness of the resulting derivative,
and these results are shown in Fig. 9.

E. Peak work

When f > 0 all walkers eventually move to an equilibrium
position with energy∆E∞( f ). This value is greater than the
initial energy, because the walkers begin out of equilibrium
with only a single leg attached (Fig. 4). The initial energy of
the walker∆E0( f ) < 0, because we measurep as the body’s
equilibrium position〈B〉, which under any non-zero force will
havepx < 0 at the initial walker attachment location. How-
ever, the kinetics ofk+P ≫ k−P lead to an equilibrium where
legs are almost always attached to a site, and because all sites
are to the right of the origin, the equilibrium position∆E∞( f )
will also necessarily be greater than∆E0( f ). Thus, to charac-
terize the amount of useful work that a walker can do we take
into account the equilibrium energy specific to each force. We
define the peak work for forcef as

w⋆( f ) = max
t∈[0,tmax]

〈∆E(t; f )〉−∆E∞( f ). (12)

We estimate∆E∞( f ) as〈∆E(tmax; f )〉 for thekcat= 1 walker.
Figure 10a showsw⋆ as force andkcat are varied. Thekcat =
1s−1 walkers never havew⋆ > 0, but the walkers withkcat<
1s−1 can do significant work under moderate forces.
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FIG. 9: (color online) The regularized finite difference estimate of
the meanx-velocity, v̄x(t), for walkers moving under load forcef is
based on smoothing of the ensemble estimate of〈px(t)〉 (n = 4000).
Results are shown for timest ≥ t0 = 10s, as below this time the
velocity mainly captures the effect of the high-frequency stepping of
the walker between adjacent states in the state space. At longer times,
we can clearly see the net positive velocity away from the origin
experienced by thekcat< 1s−1 walkers even under force. This net
positive motion corresponds to the increase in walker energy ∆E(t)
as shown in Fig. 8. The mean velocity approaches 0 as the walkers
approach the constrained equilibrium imposed by the force.

Figure 10b shows the values for the peakx-position,

p⋆x( f ) = max
t∈[0,tmax]

〈px(t; f )〉− p∞
x ( f ). (13)

Again we estimate the equilibriumx-position, p∞
x ( f ) using

px(tmax; f ) as measured for thekcat = 1s−1 walkers. These
measurements show that the walkers move significantly far-
ther under small loads, although they do nearly the same work.

V. DISCUSSION

Multivalent random walkers are able to do work because
they act as Brownian ratchets. The physical motion of the
walker is the result of random thermally driven molecular mo-
tions that are rectified by the constraints imposed by attached
legs. Without any structural or conformational coupling, the
independently operating legs are constrained only by their
passive connection to a common body. The gaits with which
MVRWs move are uncoordinated, unoriented, and acyclic, yet
they can be designed to move nearly ballistically along tracks
laid out in 2D.
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FIG. 10: (color online) Simulation estimate of (a) peak workw⋆( f )
and (b) peakx position p⋆x( f ). Walkers withkcat∈ {1s−1,0.01s−1}
are shown with an ensemble estimate of the mean usingn = 4000
samples; otherkcat are shown usingn = 250 samples. The peak po-
sition for f = 0 is shown as well, which is limited by the simulated
timetmax= 1.0×106 s. In particular whenf = 0, thekcat= 0.001s−1

walkers are still moving superdiffusively att = 1.0× 106 s, but
are limited by their slower stepping kinetics. At longer times the
kcat = 0.001s−1 walkers will achieve a peak position greater than
those achieved by the largerkcat walkers.

From a thermodynamical perspective, the walkers are mod-
eled as a closed system, where the only energy available to the
walker is present in the uncleaved substrate sites. Any closed
system will eventually approach a thermodynamic equilib-
rium after which no useful work can be accomplished. Indeed,
we see this effect for the walkers under load forcef shown in
Figs. 7 and 8, where the walkers withkcat < k−P are able to
move superdiffusively over significant distances and hencedo
work as they move in opposition to the load force, but they do
so only while they still have energy available to bias their mo-
tion. Eventually, these walkers move to the same equilibrium
distribution as thekcat= k−P walkers, which correspond to the
no-energy case.

The key concept in the MVRW model of molecular walker
motion is that energy is a local resource, and the walker de-
pletes the local energy supply as it moves over a region and
catalyzes the conversion of the substrate sites to products.
This makes the MVRW systemnon-ergodic in the sense that
the behavior of the walker depends on the local distribution
of substrates and products, and this distribution in turn de-
pends on the past motion of the walker over that region of
the track. Most natural motors can be described as ergodic,
as their fuel source (normally ATP) is present in solution and
the track they move over is unmodified by their previous ac-
tions. Because MVRWs are non-ergodic they do not operate
in a steady state, and unlike models of natural motors [29, 30]
there is no way to quantify the motion of MVRWs by study-
ing a particular set of cycles of states in their state space.As
mentioned in Sec. III B, the non-ergodicity requires us to use
the ensemble formulation of MSD. Additionally, most other
random variables that describe MVRW motion (〈N(t)〉, v̄x(t),
〈∆E(t)〉, etc.) are time-dependent. Hence, there is no single
value of velocity, or single stall force that can be calculated
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FIG. 11: (color online) The irreversible catalysis of substrates to
products leads to the emergence of a spatial asymmetry in substrate
concentration at theboundary between the contiguousproduct sea
and the contiguous region of unvisited substrates. A walkerwith
kcat < 1s−1 has a residence time bias where leg–substrate binding
durations are much longer than for leg–product bindings. Thus, over
time, legs are more likely to be attached to local substratesthan lo-
cal products, not because they seek out substrates, but because legs
attached to products quickly detach. Hence, walkers are effectively
driven in the direction of greatest local substrate density, and near
the boundary this is always in the+ x̂ direction. The irreversibility
of substrate catalysis means the boundary itself also movesin the
+ x̂ direction, causing walkers near the boundary to move ballisti-
cally away from the origin.

for MVRW-like systems, as is normally done for the ergodic
motion of natural molecular motors [48].

A. Mechanism of superdiffusive motion

The superdiffusive motion of walkers and its eventual decay
to diffusion (f = 0) or stationary equilibrium (f > 0) can be
understood by noting that the only source of energy available
to the walkers is present in the substrate molecules, which are
a locally-limited, immobile resource.

After the walker starts moving and catalyzing sites, a con-
tiguous region of product sites we call theproduct sea be-
gins to form (Fig. 11). At theboundary between the product
sea and unvisited substrates, the local substrate concentration
gradient is in the+ x̂ direction, due to the broken symmetry
introduced by the semi-infinite surface configuration studied
(Fig. 4). The emergence of spatial asymmetry in concentra-
tion makes it possible for an unoriented, symmetric walker to
develop a directional bias. At the boundary, a MVRW with
kcat< 1s−1 is biased in the+ x̂ direction not because the legs
are more likely to attach to substrates (k+S = k+P ), but because
when they do attach to a substrate, they stay bound longer—
there is an effectiveresidence time bias.

A walker withkcat< 1s−1 is only directionally biased when
near the boundary, in which case its legs irreversibly catalyze
attached substrates to products, moving the boundary in the
+ x̂ direction as well. Thus, as long as a walker remains near
the boundary, it is biased in the+ x̂ direction, and it moves the
bias-inducing substrate concentration asymmetry along with
it, which leads to persistent motion directed away from the
origin.

This mechanism of residence time bias leading to a direc-
tional bias was identified by Antal and Krapivsky in their ab-

product sea substrates

region of feasible sites

external force f

product sea

substrates

boundary
external force f

Diffusive state (D)

Boundary state (B)

local substrate gradient

boundary

region of feasible sites

ballistic motion

biased diffusive motion

no local substrate gradient

FIG. 12: (color online) The walker moves between boundary (B)
and diffusive (D) metastates. The walker moves ballistically in the
direction of local substrate gradient when in theB state, but moves
diffusively over previously visited sites in theD state. The walker
initially spends most of its time in theB state, consuming substrate
fuel, however as the product sea grows, the time to exit theD state
increases, leading to asymptotically diffusive motion in the absence
of force and equilibrium stationary motion in the presence of force.

stract 1D molecular spider model [13]. Later it was shown
to lead to significant superdiffusive behavior of the Antal-
Krapivsky (AK) walkers in 1D without force [14]. The simple
state space of the AK walker models allows it to be shown ana-
lytically that the motion of AK walkers is ballistic in the direc-
tion of substrates while they remain proximate to the bound-
ary [14]. The 2D geometry of the MVRW model makes the
mathematical description of the boundary between substrates
and products more complex, but with the simulation results
in Figs. 5 and 7, we find the motion in 2D (at the ensemble
level) is nearly ballistic even in opposition to small forces.
This implies that individual walkers near the boundary must
on average also be moving nearly ballistically, even under the
effect of a constant load force.

B. The boundary and diffusive metastates

The emergence of the boundary between the product sea
and the unvisited substrates causes the walker to move su-
perdiffusively, but eventually all walkers either move diffu-
sively (f = 0) or move to a stationary equilibrium distribu-
tion ( f > 0). In analogy to our analysis of the AK spider
model [14], this behavior can be understood by decomposing
the Markov process into two metastates: a boundary state (B)
wherein the walker is attached to substrates near the bound-
ary, and a diffusive state (D) wherein the walker moves over
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FIG. 13: (color online) Typical traces ofpx(t) for a MVRW with
f = 0 for threekcat values. The traces are shaded darker (blue) when
the walker is in theB metastate, and lighter (red) when it is in the
D metastate. Walkers with smallerkcat have longerB periods, but
smaller velocity. The duration ofB-periods is independent of time,
but the duration ofD-periods grows with the size of the product sea,
and consequently increases over time. Thus, at short times the walker
is more likely to be in theB state, but at longer times is more likely
to be in theD state.

the energy-devoid product sea (Fig. 12).
When the walker is in theB state it moves ballistically in

the+ x̂ direction, but when it is in theD state it has no direc-
tional orientation, and it moves by ordinary unbiased diffusion
for f = 0, or by− x̂-biased diffusion whenf > 0. Figure 13
shows three typical traces of the position of individual walk-
ers under no force, whereB andD periods have been shaded
to show the alternation between states and the distinction be-
tween the ballistic and diffusive motion.

The probability of a walker leaving theB state by mov-
ing sufficiently far in the− x̂ direction is independent of the
absolute position of the boundary. Thus, theB metastate is
Markovian since the transition rate to theD metastate is inde-
pendent of how long the walker has been moving or the size
of the product sea. Askcat is decreased, the duration of leg–
substrate bindings relative to leg–product bindings increases
and the walker is less likely to simultaneously detach from all
boundary substrates and leave theB state. Thus, lowerkcat
values result in more persistent ballistic motion over longer
durations, but at smaller velocities (Fig. 13).

In contrast theD metastate is non-Markovian. The duration
of aD period depends on the size of the product sea, and hence
this duration grows as the walker catalyzes sites. In the case
wheref = 0, the time is quadratically dependent on the size of
the product sea, but whenf > 0 this dependence becomes ex-
ponential, and for sufficient forces and sufficiently sized prod-

uct seas, the probability of returning to the boundary once de-
parted a significant distance becomes effectively nil. Hence,
the duration ofB-periods is constant in time, but the duration
of D-periods grows. Eventually walkers spend nearly all their
time moving over products in theD state, and so approach
the same equilibrium distribution as thekcat = 1s−1 walkers
which represent the case where no energy is available to the
walker. This eventual drift toward equilibrium can be seen in
Figs. 7 and 8.

C. Dissociation

There is a non-zero probability for a walker to detach from
the track ifk−1 legs are simultaneously in the detached state,
and the next action chosen is for the remaining leg to detach.
A walker with k detached legs is free to diffuse in solution,
and cannot be ascribed a well-defined position with a discrete
state Markov process. Hence, dissociation poses mathemat-
ical difficulties for analyzing a non-ergodic motive process
and comparing it with other mathematical models of anoma-
lous diffusion. Ergodic models of natural motors like kinesin I
can simultaneously analyze motion and dissociation, because
the transport characteristics and dissociation probabilities can
be understood independently by studying a single motor cy-
cle [30, 53]. MVRWs, being non-ergodic, have transport and
dissociation probabilities that depend on the current state of
the local chemical sites, and cannot be analyzed with similar
techniques.

One approach to dealing with dissociation in non-ergodic
walker models is to have a single absorbing dissociated state
to which all walkers will eventually go and never return. This
state is then the single equilibrium state of the system, and
analysis is done on the remaining walkers. However, analyz-
ing MSD becomes challenging because at anyt > 0 there is
necessarily some non-zero proportion of walkers in the dis-
sociated state. Ensemble MSD is no longer well-defined, as
we cannot ascribe a position to dissociated walkers. Instead
of this approach, we implement ahopping rule, whereby a
walker with k−1 legs whose next KMC chosen transition is
to detach its one remaining leg is prevented from diffusing
away from its dissociation location. It is temporarily heldin
place until a leg attaches to a local feasible site. The net effect
is a hop from one site to another, and it is implemented as a
single KMC step, so that the position of the walker is always
well defined.

For any finitek+S andk+P rates, it is possible for walkers to
temporarily dissociate via a hopping event. In practice, how-
ever, when the walker has sufficiently many legs, the on-rates
are sufficiently fast, the legs are long, and the substrates are
densely spaced, the probability of dissociation is low. Over
the course of the simulations shown in Figs. 7 and 8, only four
out of 56000 walkers withf < 3.0pN and 100 out of 16000
walkers with f ≥ 3.0pN experienced any hopping event.
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FIG. 14: (color online) Simulation estimates(n = 400) showing
the effect of the number of walker legs (k) on walker motion when
f = 0. The MSD is shown with 95% confidence intervals in shad-
ing. Walkers with more legs move with smaller diffusion constant
whenkcat = 1s−1 = k−P and there is no residence time bias. How-
ever, whenkcat = 0.01s−1, the walkers with more legs experience
a stronger directional bias towards the local substrate concentration
gradient and hence move superdiffusively over longer timesand dis-
tances. Of the configurations studied, walkers withk = 5 legs and
kcat = 0.01s−1 eventually achieve the greatest mean squared dis-
placement. The black lines show the casek = 4, corresponding to
walkers in Fig. 5.

D. Effect of variation of number of legs and leg length

As summarized in Table I, our results focus on four-legged
walkers with leg lengthℓ = 12.5nm, which is 2.5 times the
5.0nm substrate spacing distance. Both the leg length and the
number of legs can be freely varied. However, there are sensi-
ble ranges for these parameters, outside of which the motion
of the walkers is not as processive, or is exceedingly slow. To
be efficient molecular transport devices, walkers must simul-
taneously avoid dissociation, resist the effect of forces,and
remain attached to substrates near the boundary.

First, consider the number of legs, which is varied in the
range 2≤ k ≤ 5 in Fig. 14. For the residence time bias to
lead to a directional bias, we requirek ≥ 2 [14]. With few
legs (k = 2), walkers are more likely to have all of their legs
detached simultaneously and undergo a hopping step. As
the number of legs is increased this probability drops expo-
nentially, as each leg’s probability of detachment is approx-
imately independent. Walkers with more legs also tend to
move more superdiffusively and processively when in theB
state, as they have a higher probability that at least one leg
remains attached to a substrate at the boundary. However, we
find walkers with many legs have a significantly smaller dif-
fusion constant. This observation agrees with the calculations
of Antal and Krapivsky regarding the relationship of the num-
ber of legs and the effective diffusion constant of walkers in
the AK spider model [12, 13]. Due to these considerations,

10−1 100 101 102 103 104 105

Time t (s)

101

102

103

104

105

106

107

108

M
ea

n
sq

u
ar

ed
d

is
p

la
ce

m
en

t
〈‖

p
(t
)‖

2
〉
(n

m
2
)

ℓ= 5.0nm kcat = 0.01
ℓ= 6.5nm kcat = 0.01
ℓ= 7.5nm kcat = 0.01
ℓ= 10.0nm kcat = 0.01
ℓ= 12.5nm kcat = 0.01
ℓ= 15.0nm kcat = 0.01
ℓ= 5.0nm kcat = 1.00
ℓ= 6.5nm kcat = 1.00
ℓ= 7.5nm kcat = 1.00
ℓ= 10.0nm kcat = 1.00
ℓ= 12.5nm kcat = 1.00
ℓ= 15.0nm kcat = 1.00

di
ff
us

iv
e

(α
=

1)

b
al

li
st

ic
(α
=

2
)

ℓ = 5.0 nm kcat = 0.01 s
−1

ℓ = 5.0 nm kcat = 1.00 s
−1

ℓ = 6.5 nm kcat = 1.00 s−1

ℓ = 7.5 nm kcat = 1.00 s
−1

ℓ = 10.0 nm kcat = 1.00 s
−1

ℓ = 12.5 nm kcat = 1.00 s
−1

ℓ = 15.0 nm kcat = 1.00 s
−1

ℓ = 15.0 nm kcat = 0.01 s−1
ℓ = 12.5 nm kcat = 0.01 s

−1

ℓ = 10.0 nm kcat = 0.01 s
−1

ℓ = 7.5 nm kcat = 0.01 s
−1

ℓ = 6.5 nm kcat = 0.01 s
−1

FIG. 15: (color online) Simulation results(n = 400) showing the ef-
fect (at f = 0) of varying the leg length 5.0 nm≤ ℓ≤ 15.0 nm, while
the number of legs is fixed atk = 4 and the substrate spacing is fixed
at 5.0 nm×5.0 nm. The effect ofℓ on MSD is shown with shading
indicating the 95% confidence interval for the mean. The effect of
changing the leg length is essentially manifested as a change in the
diffusion constant, but not in the qualitative characteristics of the su-
perdiffusive motion for thekcat= 0.01s−1 walkers. The exception is
for the very short leg lengthℓ= 5.0 nm, where the average number of
feasible sites becomes so small that walkers lose their superdiffusive
transport behavior

k = 4 was chosen as a reasonable compromise value that pre-
vents dissociation, maintains a strong tendency to remain on
the boundary, and moves with an appreciably fast diffusion
constant.

The leg length,ℓ, can also be freely varied, but it must
be considered in relation to the substrate spacing. Together
these parameters determine the average number of feasible
sites available for attachment. Ideally, the substrate spacing
would be made as small as possible, but it is constrained by
limits on the sizes of molecules and how closely substrates
can be arrayed on a surface. We chose 5.0nm as a reasonable
lower limit on this spacing, as it approximates the density of
DNA substrates arrayed on a DNA origami [54] surface, as
employed in molecular spider experiments [11].

Figure 15 shows the effect of varying the leg length for 4-
legged walkers while keeping the substrate spacing constant
at 5.0nm. We find that if legs are too short (ℓ ≤ 5.0 nm), the
number of feasible sites is too small to maintain a superdiffu-
sive effect. For leg lengthsℓ ≥ 7.5 nm, which is 1.5 times the
substrate spacing, there is little qualitative differencein the



walker motion, although longer legs do lead to a faster diffu-
sion constant in the absence of force.2 Under load, however,
leg length and substrate spacing should both be minimized to
maximize the peak work and displacement of walkers. Longer
legs allow a larger feasible regionF , leading to a larger bias in
B under any non-zero load. This in turn makes it more likely
for long-legged walkers to move backwards. We found that
a leg length of approximately 2.5 times the substrate spacing
provides a good balance between dissociation and processiv-
ity; a full analysis of this relationship is reserved for future
study.

E. Sensitivity to kinetic parameters

We initially arrived at the MVRW model through our efforts
to predict the characteristics of molecular spider motion in
laboratory experiments (e.g., experiments like those of Lund
et al. [11] in which spiders moved over nano-fabricated tracks
of substrates). Hence, the MVRW model is built around the
chemically realistic kinetics given in Eq. 1 which model the
dexyribozyme-based molecular spiders’ legs [9]. Until now
we have assumed that most of these rates are fixed, and have
shown that varying just thekcat/k−P ratio suffices to create a
residence time bias that leads to superdiffusive motion. While
a truly minimalist model of uncoordinated enzymatic walkers
could be distilled from the MVRW model by assuming that
attachment rates are infinite (thus eliminating the parameters
k+S andk+P ), and the conclusions of Sec. IV and the analysis of
the mechanism of superdiffusion in Sec. V A would still hold,
we have maintained the model’s foundation in finite rates and
realistic enzyme kinetics. This decision to keep all rates finite
does not make the model any more complicated to simulate,
but it does make a full exploration of the parameter space a
more challenging endeavor. For this reason, we have until
now fixed the kinetic rates other thankcat, as summarized in
Table I.

Now, we consider the effect of the variation of these other
kinetic parameters on the superdiffusive effect that has been
demonstrated for our fixed rates. The sensitivity of walker
motion to these kinetic rates is critical to our characteriza-
tion of the MVRWs as molecular motors, because any chem-
ical implementation of the multivalent random walker model
(e.g., molecular spiders) will have finite rates, and they will
potentially vary considerably from those in Table I. However,
we show that the qualitative characteristics of superdiffusive
walker motion persist over a wide range of kinetic values, as
long as the fundamental kinetic feature of a residence time
bias between visited and unvisited sites is present. This resi-
dence time bias is ultimately what leads to an effective motive
bias in the direction of the local substrate concentration gradi-
ent, and allows the walker to function as a molecular motor.

2 A similar relationship between effective leg length and diffusion constant
was also calculated by Antal and Krapivsky for their AK-model walk-
ers [12, 13].
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FIG. 16: (color online) Simulation results(n = 1000) showing the
effect (at f = 0) of varying k+S on the MSD of walkers whilek+P
is fixed at 1.0× 103 s−1. The black lines represent the case where
k+P = k+S = 1.0×103 s−1, which is used in all other simulations re-
sults. Whenk+P = k+S , there is no attachment preference for a sub-
strate over a product. An unattached leg will just as rapidlybind to
a feasible substrate as to a feasible product. However, as wetake
k+S < k+P , the walkers have an attachment bias to products, which
should be expected to reduce the time spent in the boundary (B)
metastate, and therefore lead to less pronounced superdiffusive be-
havior. These results show that the MSD is robust to moderate
changes in the on-rates, and even fork+S = k+P /10, there is an appre-
ciable superdiffusive effect whenkcat = 0.01s−1. However taking
k+S = k+P /100 overwhelms the residence time bias of the walkers in
theB state and prevents any superdiffusive motion.

In Fig. 16 we show that the superdiffusive behavior as quan-
tified by MSD persists over an order of magnitude in variation
of the k+S rate. Indeed, even in the pessimistic case where
the walker is biased 10:1 in attachment preference to prod-
ucts over substrates, the residence time bias of 100:1 of sub-
strate to product binding duration is still sufficient to achieve
a superdiffusive scaling of MSD over several decades in time.
This robustness even to large changes in attachment rates al-
lows us to be confident that superdiffusive behavior is a per-
vasive feature of multivalent random walker systems and is
not critically dependent on our particular choice of attachment
rates.

We show the results of varyingk−S in Fig. 17. In other re-
sults we have assumed thatk−S = 0, which is reasonable as
this rate is likely to be much slower thank−P or kcat for any
practical enzymatic implementation of a multivalent random
walker. Figure 17 shows that indeed the superdiffusive be-
havior is robust to changes ink−S , as long as it remains sig-
nificantly slower thank−P andkcat. However, settingk−S = k−P
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FIG. 17: (color online) Simulation estimates (n = 1000) of the mean squared displacement of the walkers ask−S is varied. Shading shows
95% confidence intervals for the mean. Each subplot shows thesame 12 walker configurations, varying only the values ofk−S . Fiducial lines
for diffusion and ballistic motion are shown in the same position on each subplot for reference. These data can be compared with Figure 7
which shows the casek−S = 0. The value ofk−S determines the rate of detachment without enzymatic conversion of the site to a product. As
long ask−S + kcat< k−P , there remains a residence time bias, and our results show that walkers withkcat= 0.01s−1 move superdiffusivly for
k−S < k−P = 1s−1. This shows that the qualitative behavior of the walkers is unchanged for small variations ink−S , and the choice ofk−S = 0
in the model is appropriate because small values ofk−S do not significantly affect the walker motion. However, whenk−P = k−S = 1s−1 the
superdiffusive motion is eliminated, as there is no longer an effective residence time bias between visited and unvisited sites.

eliminates any superdiffusive effect, as there is no longera
residence time bias between substrates and products, and the
motion of the walker near the boundary is no longer biased in
the direction of the local substrate concentration gradient.

F. Effect of forces on dissociation reactions

In describing our model we show how forces affect the bi-
molecular association rates through Eq. 6. However, apply-
ing a load force to walkers should also affect the kinetics of
the unimolecular dissociation events. From a high-level view,
the kinetics of unimolecular reactions depend on a molecule

having enough internal energy to surmount some reaction en-
ergy barrierU0. Thus, rate laws follow the Arrhenius formula,
k(T ) ∝ exp(−U0/kBT ). The effect of a forcef applied to the
molecule is a mean change in energy of∆U f , and the rate is
modified to

k(T ) = ν exp
(

(∆U f −U0)/kBT
)

. (14)

The value of the constantν and the relationship of∆U f with
force f depend on the specific internal chemistry of the leg
tethers, enzymes, and substrates [55–57], the details of which
are beyond the scope of our coarse-grained walker model. We
surmise that the effect of small forces is a slight increase in



k−S andk−P , although this change would not be uniform over
all legs, as those attached to sites further in the+ x̂ direc-
tion will oppose more of the load force on average than other
sites. Based on Fig. 17, small increases ink−S do not qual-
itatively change the motive properties of the walker with re-
gard to MSD, except when the forces are large enough that
k−S + kcat≥ k−P , which eliminates the residence time bias and
all superdiffusive motion. Additionally, small increasesin k−P
actually lead to an increase in the MSD, as they increase the
residence time bias. Quantitative analysis of variation ink−P
is beyond the scope of this paper, but is available along with
other supplementary results for the MVRW model [35]. Over-
all, these results show that even though the present formula-
tion of the MVRW model does not describe the effect of force
on dissociation rates, we expect an extension of the model in-
cluding these rates to predict similar superdiffusive behaviors,
as long as the forces and corresponding rate changes are small.

VI. CONCLUSION

The multivalent random walker model describes walker
systems that can be designed to act as translational molecu-
lar motors, without the need for complex intra-molecular con-
formational switching or gaiting. Unlike models of natural
molecular motors such as kinesin I and myosin V [25, 29, 30],
we do not assume any coordination between the legs, chem-
ical or mechanical. Instead, we assume that the legs act in-
dependently. The legs are passively constrained by their teth-
ering to a common body, but the chemical state of one leg
cannot be communicated to the other legs. We show that such
a simple walker design is able to exploit a residence time bias

in the enzymatic kinetics of the substrate and product sites
it moves over to generate a directional bias. In addition, be-
cause the substrate sites take the dual role of the chemical fuel
source and the track binding sites, there is no need to couple
together in each foot a separate track binding and fuel binding
site, as in kinesin I and other natural motors [1]. Hence, these
difficult-to-engineer features that are found in natural molec-
ular motors are not strictly necessary for MVRW-like walk-
ers to transduce the chemical free energy of substrate catal-
ysis into physical work, and many enzyme–substrate systems
could provide the effective kinetics necessary for a multivalent
random walker to act as a molecular motor. For this reason
we avoid explicitly focusing on a particular enzyme–substrate
system in the MVRW model and instead we explain how the
interplay between the various kinetic rates controls the ability
of a multivalent random walker to act as a molecular motor,
transforming chemical free energy into directed motion and
performing physical work as it moves in opposition to a load
force.
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