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We introduce a model for translational molecular motorsémdnstrate that a multivalent catalytic walker
with flexible, uncoordinated legs can transform the freegnef surface-bound substrate sites into mechanical
work and undergo biased, superdiffusive motion, even irosjijon to an external load force. The walker in
the model lacks any inherent orientation of body or trackl, issmlegs have no chemomechanical coupling other
than the passive constraint imposed by their connection donamon body. Yet, under appropriate kinetic
conditions the walker's motion is biased in the directioruafisited sites, which allows the walker to move
nearly ballistically away from the origin as long as a locapgly of unmodified substrate sites is available.
The multivalent random walker model is mathematically fokated as a continuous-time Markov process and
is studied numerically. We use Monte Carlo simulations toegate ensemble estimates of the mean squared
displacement and mean work done for this non-ergodic syst@or results show that a residence time bias
between visited and unvisited sites leads to superdiffusiotion over significant times and distances. This
mechanism can be used to adapt any enzyme—substrate systeappropriate kinetics for use as a functional
chemical implementation of a molecular motor, without tleeah for structural anisotropy or conformationally

mediated chemomechanical coordination.
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I.  INTRODUCTION

movement of materials and information within it.
Synthetic nanoscale systems, like the natural cellular sys

Motion at the nanoscale is dominated by random, thermallyems that have inspired their development, also need mech-

driven collisions that lead to slow, uncontrollaldéfusive

anisms to maintain non-equilibrium distribution of materi

transport. Diffusion of large cargo molecules in a crowded @ls and information [4]. Useful synthetic behavior has been
cellular environmentis so slow that nature has evolvediseph demonstrated by combining natural molecular motors and

ticated, specialized molecular machines to transportocdig
rectionally at superdiffusive rates. These translatiomallec-

components in novel ways [5]. However, each species of nat-
ural molecular motor is highly specialized to its cellular e

ular motors, such as kinesin, dynein, and myosin [1], walkvironment, chemical fuel source, and polymeric track (e.g.
alongoriented tracks, consuming chemical energy in the form microtubules, actin, or DNA). Synthetic systems with diffe
of ATP and converting it to mechanical energy that is used tént polymers must either adapt existing natural motorsser u
do work against external load forces [2, 3]. Molecular mstor Newly designed compatible synthetic motors. Kinesin and

are essential to a cell’s ability to control the distributiand
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FIG. 1: (color online) A multivalent random walker (MVRW) &
abstract model of a multivalent enzyme with a rigid, symindiody
andk identical enzymatic legs that can reversibly attach toasa+
bound chemical sites. Each leg is flexibly-tethered to thiyhwith
maximum extension length. The enzymatic action of a leg can
irreversibly transform a substrate site into a product,ngiteg the
subsequent binding kinetics for the site. As the legs attacind
detach from sites, the walker moves over the surface.
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other natural motors can be mutated to change the kinetics of
their motion [6], but not to catalyze arbitrary fuel substsa

or move over arbitrary tracks without fundamentally alter-
ing their functionality or efficiency. Natural molecular mo
tors rely on non-local conformational changes to couple the
binding of fuel with the kinetics of track binding [7], andeus
this conformationally-mediated chemomechanical coggiin
coordinate their processive hand-over-hand walking @it [
These mechanisms make natural motors efficient but also hard
to mimic in synthetic systems.

We show that neither oriented tracks, nor rigid walking
gaits, nor chemomechanical coupling, nor coordinatedarenf
mational changes, are necessary for a molecular walker to do
ordered mechanical work as a molecular mét@ve consider
the motion of a multivalent walker with a rigid, inert bodydan
several flexible, enzymatic legs (Fig. 1). The legs attacntb
enzymatically modify surface-bound chemical sites ardase

1 As described below, our model can be compared with much simpbdels
of multivalent enzymatic walkers as proposed by Antal anagiirsky [12,
13]. While the ability to act as a motor is immanent to muléva enzy-
matic walkers, the simpler models lack the representdtidegil needed
to quantify the ability of walkers to perform physical worlBelow we
elaborate on other functional distinctions between theetsod



arbitrary 2D patterns and tracks. The legs are chemicatly an However, it remains unclear how the rigid 1D gaits of the
conformationally uncoupled, other than by the passive conAK model and its derivatives can be implemented at the chem-
straint imposed by the connection to a common body. Yetical level. Indeed, sophisticated mechanisms are negefssar
under appropriate kinetic conditions, the walker can beanadthe coordinated stepping of the natural cytoskelatal nsotor
to move directionally and processively even in opposition t like kinesin | and myosin V, which rely on oriented tracks,
a force. By modeling and understanding such simple walkeconformational switching, and long-range chemomechani-
systems, we learn which chemical and mechanical propertiesal coordination to achieve directed, hand-over-handiwglk

of walker-based motors are sufficient for superdiffusive mo gaits [24, 25]. Deoxyribozyme-based molecular spiderk lac
tion, and which properties are not necessary. these structural features, and there is no evidence to dtaiw t

Our multivalent random walker (MVRW) model is an ab- coordinated hand-over-hand, inchworm, or nearest-neighb
stract description of the motion of these walkers. It takes t Stepping gaits can be realized directly by molecular sgider
form of a continuous time Markov process that describes thd he MVRW model removes any assumptions of leg coordi-
stochastic motion of a walker as it moves over and modifieation, and places no constraints on the gaits of the walker
surface-bound sites. The modelis designed so that the Markdeds, other than the passive constraint imposed by the finite
process can be efficiently simulated, yet still accuratedglet  length of legs and their connection to a common body. This is

the effect of external forces on the physical motion and chemachieved by considering a more sophisticated model of the
ical action of the walker’s body and legs. mechanical equilibrium of the walker body and unattached

legs which allows the effect of a load force on the body motion
and the leg attachment rates to be efficiently simulated. Yet
the MVRW model still imposes inherently simple structural

requirements on the walkers it models which do not require

Through Monte Carlo simulations we show that walkers
with appropriate kinetics can move superdiffusively in the
direction of unvisited sites over significant times and dis-

tances, and can do so while performing a non-trivial amofint o - o ;
work against an external load. This effect can be understoo@"y sophisticated coordination between the legs, makiag th

from the spontaneous emergence of a substrate concentratig'°de! generally applicable tany enzyme-substrate walker

gradient—a boundary between visited product sites and urdystem that shares the simple structural motif of a rigid, in

visited substrate sites. At this boundary, the non-unifiacal ert POdY with flexibly tethered enzyma\_tic legs like the vyenlke
substrate concentration combined with the chemical kiseti '?] Fig. 1i Henpe,kthe !\SVRW én(l)de] |shnot an exI'E]ensL(])n of
of the legs and the constraints that the body places on leg m&€ Antal-Krapivsky spider models, in the sense that the AK

. At : ; o del is not a special case of the MVRW model. Nor is
tion lead to a directional bias away from previously visited mo . ;
sites. As the legs irreversibly modify substrates to présiuc the MVRW model a direct model of deoxyribozyme-based

they move this bias-inducing boundary further from the ori-molecular spiders, as it remains abstract enough to serae as

gin. Hence, as long as a walker stays proximate to the boun&eneral model of uncoordinated, unoriented, enzymatik-wal
ary it moves ballistically away from the origin ers. This abstraction allows us to show that such a struc-

o turally simple walker design, using any enzyme—substsate s
Tt_he M}/RWth(:_deBEIAl\nSplreg by latterlnpts t(l)kmodel rlhztem with appropriate kinetics, can be made to move superdif-
mol |on| 0 SYS N 'g d asz mo (:cu "?‘(; wa therszj cafle fusively even under the direct application of a load forctto
molecular spiders [9], and a desiré to aid In the design body, transforming the chemical free energy of substraés si
of new laboratory experiments involving molecular spiders

The spiders are structurally similar to the abstract Walkermto physical work.

shown in Fig. 1. Chemically, molecular spiders employ a The simulation results and analysis of the MVRW model
deoxyribozyme—oligonucleotide [10] enzyme-substrate sy we present show that mechanisms for designing molecular
tem, where the deoxyribozyme legs can bind to and modmotors exist without the need for chemomechanical coupling
ify (cleave) the oligonucleotide substrates attachedecstiT-  conformational coordination, rigid walking gaits, or imbat
face. Molecular spiders have been observed to walk procesrientation of walker and track. Multivalent random wakker
sively in 3D environments [9], and move directionally over like natural molecular motors, are Brownian ratchets [R@} t
2D nanoscale tracks [11]. Abstract models of 1D spider mo¥ectify random molecular motion into ordered work and di-
tion were first proposed by Antal and Krapivsky [12, 13], rectional transport. Both systems achieve this rectificaliy
who showed that spiders with rigid nearest-neighbor happin utilizing the chemical free energy of a substrate fuel. How-
gaits and idealized kinetics would experience an effedtise  ever, the mechanisms by which MVRWs do this are signifi-
towards unvisited sites. Subsequent simulations [14] haveantly different from natural motors. Unlike kinesin I, ngjo
shown thisAK spider model to exhibit transient superdiffu- V, and other natural cytoskelatal motors, multivalent @nd
sive behavior as the walkers move between periods of ballist walkers move over arbitrarily arranged 2D tracks, and ale ab
and diffusive motion depending on the walker’s positiontwit to do so without inherent orientation or structural asymme-
respect to the boundary between visited and unvisited. sitesry. The gaits of a multivalent random walker are uncoordi-
Other work has extended the AK model to study mathematinated and acyclic, yet the irreversible modification of aoef
cal properties of AK spider walks in 1D [15-17] and 2D [18]; sites causes an emergent asymmetry in local substrate con-
the collective and cooperative behavior of multi-spides-sy centrations that is able to bias the motion of walkers, allow
tems in 1D [19-21]; and the effect of a load force on the rigiding them to move directionally along prescriptive landssap
1D walking gaits of AK-like spiders under the kinetic rates The structural and chemical simplicity of MVRWSs is one of
specific to deoxyribozymes [22, 23]. their most important properties as it means that the cone¢pt



functionality of a molecular spider is independent of the-sp subsequent dissociation of leg L from the surface-bound-pro
cific enzyme—substrate system used in their implementatioruct P, and any other auxiliary product.PWe assume the
Hence, multivalent random walkers provide a different per-auxiliary (waste) productPis not bound to the surface and
spective for better understanding what structures, ptgser its bulk concentration in solutiori*], is essentially 0. Thus,
and mechanisms are minimally necessary to turn a moleculandividual rates of binding and unbinding of Bre not impor-
walker into a molecular motor. tant, and the dissociation reactions can be rolled intodkes r
kcat The assumption of irreversibility holds when the Gibbs
free energyAG, of the catalysis reaction is strongly negative,
Il. THE MULTIVALENT RANDOM WALKER MODEL and the rate of the reverse pathway is effectively zero, whic
would be the case {P*] ~ 0.

We model the motion of a multivalent random walker as a The advantage of this definition & is that there is a di-
continuous-time, discrete-state Markov process, whech ea rect correspondence from reaction rates to Markov process
state transition corresponds to a chemical reaction betaee transitions. The reactions of Eq. 1 each correspond to one
leg and a surface-bound site. The model conceptually semf three types of functional motion for walker legs, assecia
arates the timescales of the relatively slow leg—site awter tion (binding), dissociation (unbinding), and catalysisach
tions from the much faster physical (mechanical) motion ofof these actions corresponds directly to a transition in the
the walker’s body and legs. In this way, only chemical re-walker Markov process. In the MVRW model, we assume
actions correspond to state transitions in the Markov @m®ce that rates for the unimolecular dissociation and catalgsis-
and the state space remains discrete. The Markov property i®ns for a leg—site complex are not chemomechanically cou-
ensured by assuming that the physical motion of the positiopled to the conformations or positions of the body and other
of the body and unattached legs comes to an equilibrium ifegs. Thus, as in the unimolecular stochastic kinetic medkl
between successive chemical reactions. Gillespie [27], each individual LS or LP complex will dissec

The MVRW model is 2D and consists of a walker and anate or undergo catalysis according to the raigsc, , andkcay,
environment of surface-bound sites. The walker has a rigidand the time until that reaction happens will be expondstial
point-like body which serves as the attachment pointkor distributed according to the sum of the potential reactéias
flexibly tethered legs, each with maximum lengthThe en-  from that bound state.

vironment is described by a s8t— R? of immobile chemical The bimolecular association reactions are more compli-
sites. All sites are initially substrates, but they can lam$r  cated to model as their propensity depends not only on rates
formed into products by the enzymatic action of a leg. k& andkg, but also on the likelihood of the leg being proxi-

The state of the Markov process needs only to describe thmate to the chemical site in order that it may bind. This like-
state of theeactive chemicals in the system, i.e., the specieslihood, in turn, depends on the position of the body and the
at each chemical site and the chemical state of each leg. Thaattached legs.
state of the surface is defined by the Betf sites that have
been transformed to products; all other site§iare consid-
ered to be substrates. A walker leg is either attached tea sit B. The body’s equilibrium position
in Soris detached. No two legs may be attached to the same
site. The state of the walker is succinctly represented by th
setA C Sof attached sites, where<Q|A| < k. Thus, any state
w can be described compactly @s= (P,A), and we leQ be
the set of all potential states.

Molecular motors and molecular walkers operate in a
regime where they are almost always at physical (mechagnical
equilibrium with their surroundings [28], and this fact istie
cal to understanding how molecular motors operate at ttet lev
of discrete chemical transitions [29-31]. After each chem-
ical reaction of a leg attaching, detaching, or cleavin@ th
walker’'s body is subject to high-frequency thermally-ériv
. constrained diffusion, which quickly brings the walker lyod

Inthe MVRW model we assume each leg has a single enzyy, 5 physical (mechanical) equilibrium distributid over
matic site that can bind to and irreversibly modify a sulistra > hositions on the surface. This ensures that the Markov
site into product. The kinetics of an enzymatic leg (L) bigli  5roperty holds for the discrete chemical states in the MVRW
to substrate (S) and product (P) sites can be described by fig,chastic process because the high-frequency physical mo

A. Chemical kinetics and state transitions

reaction rates tion of the walker quickly removes any conformational mem-
K ory of previous chemical states, and the body distribuBon
L+SLS keat | 4 pypr only depends on the current state= (P,A), and not on any
ks previous states in the Markov process.
N 1) We assume that the only coupling between the attached legs
L+P<% LP and the body is that the body is constrained to stay within
o distance/ from each attached site. Hené¥,B =p| =0 for

positionp € R? if there is any attached leg sise= A such that
In Eqg. 1, we define thég,: reaction to encompass both the ||p—s|| > ¢. We call all values op that satisfyl|p — s|| < ¢ for
actual catalytic cleavage of the LS complex together with th all s€ A thefeasible body positions, 7, illustrated in Fig. 2.



attached. The overall rate of a leg reacting with any feasi-
ble site is then proportional to the number of feasible sites
its proximity. Equivalently, from the perspective of a fixes
site, the probability that it reacts with the leg is indepemid

of the number of other feasible sites in the local environtmen
For any sitesand body positiotr we define a feasibility func-
tion,

. . .
region of feasible sites

0 otherwise

fo(b) = {1 Is=bil <& (4)

Then from positiorb, an unattached leg binds to sgewith
speciesi(s) € {S,P}, with rate

rb(S) = k;(s) fs(b). )

Now, we take into account that the body is not at a single
positionb, but in an equilibrium distributioB over positions,
and we integrate Eq. 5 to obtain

chemical sites
. . .

FIG. 2: (color online) The feasible body positios, as determined

by the attached leg constraints are labeled and shown iovwy.efiny et /
site at most distancéfrom F is a feasible site (labeled and shown B(s) = kTT(S) b P (b) fs(b) db. ©)

in green). . . . .
green) Any site with non-zero rate of attachment is callefibasible

site; the region of feasible sites is shown in Fig. 2.

At equilibrium, B is a Boltzmann distribution over the fea-
sible positiongp € F according to the energy (p) at each

. D. The effect of force on walkers
position,

e BUM) The MVRW model can also capture the effect of forces on
= T e FUldp’ (2)  the walker body. This is an advantage of modeling the body’s
Ire P position as a Boltzmann distribution determined by thegper
of the walker at each feasible position. Under the effect of a

conservative load forck the energy of positiop is

P[B=p]=ps(p)

In Eq. 2,8 = 1/ksT, wherekg is Boltzmann’s constant and

is absolute temperature. The enelyyp) necessarily depends
on the entropic and mechanical properties of the walker legs Ut(p) =U(p) —f- (p—po), (7)

and their tethers, the details of which are possible to miodel . .

U(p), but are dependent on the actual chemical constructioWherepo can be any reference point. The enetfyp) is the

of the walker legs and tethers. To keep our analysis gegeral€nergy of the body at positiqnunder zero force, which is de-
applicable to any flexible tether, we choose a null hypothesifined in Eq. 3 using our assumption of a unifothfp). This

of no mechanical coupling or internal structure to the legs, ~ choice ofU (p) represents a worst-case scenario from the per-
model the energw (p) as uniform over any feasible position, Spectlve of force prOdUCtlon by Wa|kerS, as the mechanical

but infinite for infeasible positions, structure of the attached legs is not able to oppose anydorce
acting on the walker. Despite this disadvantage, we wilixssho
{0 per in Sec. IV that walkers can still move superdiffusively in-op
U(p) = . (3)  position to a load force applied to the body.
 otherwise The adjusted energys in Eq. 7 gives a new equilibrium

distribution with probability mass shifted in the directiof
the applied force. The effect of force on the body’s equilib-
C. Leg-site binding kinetics rium position and on the attachment propensity for eachef th
feasible sites is illustrated in Fig. 3.
The bimolecular kinetics of leg—site binding is controlled
by two factors, (1) a second-order process by which the lely an
site come into contact, and (I1) a first-order process wierei Il SIMULATION AND ANALYSIS METHODS
the leg and site undergo conformational changes to move to
a strongly bound state [28]. We consider the case when the The MVRW model is a continuous-time Markov process
legs are short enough, and the conformational changes lea(CTMP) with discrete stateso = (PA) € Q. Given all
ing to binding are slow enough that factor Il is limiting. hig  relevant parameters, the walker CTMP defines certain ran-
case, an unattached leg undergoing constrained diffusien hdom variables{X(t)}t>o over the state spac®. This sin-
the opportunity to interact many times with the local fekesib gle Markov process simultaneously describes the fast phys-
sites before it finally binds strongly enough to be considere ical motion of the walker body and legs under an external



tribution B at equilibrium. When the forces on the walker
are conservativeB is translationally invariant, and depends
only on the relative locations of the attached legs, and not o
the whole system stat® = (P,A). When the walkers move
overregular lattices, there are only a finite number of poten-
tial leg attachment gaits, and their corresponding attaciim
propensities can be precomputed, eliminating the neednto ru
Metropolis-Hastings at every KMC iteration. This makes
KMC simulation tractable for long times and large values of
n. The details of the simulation of MVRWSs on regular lattices
can be found in previous work [35].

A. Random number generation

In all Monte Carlo methods the fundamental source of
stochasticity derives from a deterministic pseudo-random
number generator. The statistical properties of the pseudo
random number source are critically important to the cdfrec
ness of model predictions [39]. To allow parallel computa-
tion and preserve mathematical guarantees of random number
FIG. 3: (color online) The equilibrium body position protiipden- ~ 9€nerator quality, we use the leapfrogging method to gener-
sity for a walker under several different load forces. Wargwors ~ aten parallel random number streams from a single master
represent increasing probability. The body is drawn at gamequi-  Stream [40]. Hence, only a single random seed is needed to
librium position, (B). The region of feasible sites is labeled and il- compute alln KMC traces for each set of model parameters
lustrated in green, but not all sites are equally likely fttaeghment.  studied.

The color and size of feasible sites indicate the effectitechment
rate as determined by the body position distributBn

B. Mean squared displacement and diffusion

load, as well as the slower discrete chemical state changes!n Single-particle tracking, the stochastic motion of indi
of the legs binding and modifying the surface sites. Thevidual molecules is frequently analyzed in terms of the mean

MVRW simulation process uses a kinetic Monte Carlo al-Sduared displacement (MSD) [41]. The MSD is the vari-

gorithm [32, 33] to sample from theon-equilibrium behav-  &nce in the displacementar ([|p(t)[|) = (IIp(t)[|?). For any
ior of the walker'schemical motion, but each chemical step diffusive process (i.e., an unbiased random walk) the MSD

in this MVRW Markov Chain requires using the Metropolis- will scale_linearly with time. Anomalous diffusio_n [42] is
Hastings algorithm to sample tleguilibrium behavior of the ~ characterized by the MSD scaling as some non-linear power
body’s physical motion. Hence, by separating the timescales? < 0 <2,
of the chemical from the physical behavior of the system, we

can take advantage of both equilibrium and non-equilibrium

Markov chain Monte Carlo techniques, using each technique

a=0 stationary
O0<a<1 subdiffusive

where it is most applicable to the dynamics of the walkers. {lp®[Py Ot {a=1 diffusive . (8
Our kinetic Monte Carlo (KMC) algorithm for the MVRW l<a <2 superdiffusive
process produces sample) for t € [0,tmax], Such that at a=2 ballistic or linear

each timex(t) is a sample of a random variab¥gt). With
an ensemble af samples of the Markov process, we measureMSD can either be computed as a temporal average (over dif-
and report various properties of the system state atlipead  ferentdt values for a single walker trajectory) or an ensemble
logarithmically spaced time pointsz [0,tmay. The simula-  average (over absolutfor an ensemble of trajectories from
tion algorithm is described in detail in previous work [38].3  identical walker systems). Many biological systems are (or
In order to compute the transition rates for the associatiorare at least assumed to kejodic in the sense that the mo-
reactions, we use the Metropolis-Hastings algorithm [8—3 tion of a walker is independent of its absolute position an th
to sample from the body’s equilibrium distributi@and use track and does not depend on its previous motion over a re-
these samples for Monte Carlo integration of Eq. 6. Impor-gion of that track. Under the assumption of ergodicity the
tantly, the Metropolis-Hastings algorithm is able to saenpl temporal and ensemble MSD are equivalent (assuming suffi-
from B using only the energy from Eq. 7, without having to cient measurement resolution), but when a non-ergodic sys-
compute the partition function of the Boltzmann distribati  tem is analyzed, only the ensemble average is meaningful for
of Eq. 2. use in characterizing anomalous diffusion [43, 44]. MVRWs
There are computational advantages to modeling the disare a nonergodic system because they irreversibly modify th



A

TABLE I: Model parameters used for simulations.

AE <01AE >0
Fo RS gL &
§(nm)

: _ Parameter Description Symbol Value
10] | L dwtse T 777D (R Number of fegs K 4
T e, Leg length ! 125nm
0 Track width - 3 sites
Track length - semi-infinite
Track site spacing - .Bnmx5.0nm
FIG. 4: (color online) A snapshot several hundred steps ato Initial set of product sites P 0
MVRW simulation. The surface track for walkers in this sesih-  Effective substrate binding rate kg 10x10°s™t
ulations consists of a semi-infinite strip of substratessBewide.  Effective product binding rate ks 10x10°s™t
Shown are the circular constraints imposed by the attaggs) and ~ Substrate dissociation rate ks 0.0s?!
the probability densitypg for the body’s equilibrium position (as a Product dissociation rate ko 1.0s?1
heat map). The walker has one unattached leg, and the eefaty  Catalysis rate Keat <1.0s?
at which it would attach to each site is shown by the size atorco Temperature T 300K
of the site. The boundary of the surface doesn’t present fhegtive Force in—X direction f <4.0pN
constraint on the walker's motion, other than the fact thatlaick of  Largest simulated time tmax <1.0x10’s

sites outside the track prevents the walker body from mowimoge
than a leg length, into those empty regions.

A. The role of keat in walker kinetics

track as they move over it. Thus, the motion of the walker The chemical . f Eq.1d ibe the kinetics of
depends on its absolute position on the track and specficall e chemical reactions from Eq. 1 describe the kinetics ofa
on whether the local sites are products or substrates. Henc&ENeric enzyme that can irreversibly transform substiates

onlv the ensemble MSD can be used to study MVRWS. products. From the modeling point of view all five reaction
y y rates,kd, ki, ks, ko, andkea are free parameters that can

each be varied to determine its effect on walker motion. ik th
work we focus on the special role tHat;: plays in controlling

the walker’s motion. Accordingly, we have fixed the values of
the other four kinetic rates as shown in Table I, allowingais t
study the effect of varyingca. We have fixedd = ki so that
there is no attachment bias between substrates and products
By itself a multivalent random walker is just a rather unso- 1 his choice allows us to focus on the more subtle kinetic in-

phisticated multivalent enzyme, but when paired with an api€rplay of the remaining rates. Clearly a walker vkth> Kk
propriately designed nanoscale track of substrates itheso  Will be more likely to attach to substrates than productd as i
a molecular transport device, able to move superdiffugivel IS directly biased in attachment, and we investigate theceff
even under the influence of an external load force. Usin@f such kinetics in Sec. V E. However, we are primarily inter-
KMC simulations we studied the motion of MVRWSs mov- €sted ininvestigating the minimal kinetic properties a MVR

ing over a 3-wide semi-infinite track of substrates (Fig. 4).Mmust have in order to act as a molecular motor, and so we as-

The track spacing and other relevant parameters are summgime thaks = kg . With these rates equal, an unattached leg
rized in Table I. As shown in Fig. 4, the walker starts with Nas no ability to differentiate between substrates andumisd

a single leg attached to the middle leftmost site-ppsition ~ @nd will just as rapidly bind to a feasible substrate as taa fe

0. The remaining legs quickly attach, and the walker begin§iPI€ product. Yet, even under these conditions a diffezémc

to move over the surface. From this initial position, theklac the rates okearandks canlead to a directional bias.

of substrates to the left breaks the symmetry of the walker's Consider that, once bound, a leg—product complex un-
environment, and means the walker can only move initfie  binds at ratek;, and a leg—substrate complex unbinds at rate
direction. The broken symmetry allows us to apply a loadks + kcat. We assume that substrate unbinding is much less
force to the walker’s body in the X direction to oppose the probable than substrate catalysis so weklet= 0 (the re-
walker's motion, and Eq. 7 describes the effect of that forcdaxation of this assumption is also considered in Sec. VE).
on the walker body’s energy functiddy. If the force ap- Now, with keat = kp, there is no residence time bias be-
plied to the walker ig = (fx, fy), we let fy = 0, and write  tween substrates and products—the expected duration of a
f = —fx as a scalar for the magnitude of the force in the  leg—product binding is the same as that for a leg—substrate
direction. We limitf < 4.0pN as larger forces result in in- binding. While substrates are still converted into prodpitte
significant motion under the parameters of Table I. The upkinetics of the walker attachment and detachment are identi
per bound off = 4.0pN is near the maximum force a DNA- cal for both species. Hence, a walker with; = k; is equiv-
based realization of a MVRW could priori be expected to alent to a walker moving over an all-product surface. But an
move against, as the stall force for kinesin is approxinyatel all-product surface provides no chemical free energy, and s
5—8pN [45], and the dissociation force for double-strandedan all-product walker system must move diffusively. Hence,
DNA is < 12pN [46]. a walker withkeqt = ko still releases chemical energy when

IV. RESULTS



it catalyzes the conversion of a substrate, but the symme< T T T T T
= keat = 0.005s™

I
. . . e . 9 |- 1]
rical kinetics prevent the walker from utilizing that engrg 10 F i‘:éss LT ol
Thus in subsequent results we have fixgd= 1s ! while 108 T e m s T R 2R
1 o [ —h— ke =0.1s @ kea = 0.0005s
we vary kear, and the case wherea = 1~ = k repre- 107 ko = 0055 =& ke = 0.0001 5!

sents the no-energy baseline motion of walkers. In contras
whenkear < 151 = k- there is a residence time bias, wherein
leg—substrate bindings are longer in duration than legayrd
bindings, as the leg must wait until the relatively slow tata
sis step completes before it can unbind.

The only part of the walker kinetics that takes into account
the chemical free energy released in substrate catalytis is
assumption of irreversibility in the enzymatic converdiam
substrate to product. In enzyme kinetics there is some non-
zero rate for the reverse of the catalytic process. Howéver, g 5. (color online) Simulation estimate 6fip(t)|2) when f =

the Gibbs free energyAG) drop from substra_tel to product is 0. Walkers withkear = 15 = ks move diffusively. Those with
large enough, the rever_se rat_e is so small it is for "’_‘” pfractl keat < 151 move superdiffusively, but eventually use up their local
cal purposes zero, and is omitted from the walker kinetics ing; 5,1y of substrates and become ordinary diffusive. Traesitions

our model (Sec. Il A). Thus, we vary thea parameter to 1o diffusion will occur above simulated tingax = 107s.
control the residence time bias between visited and uedsit

sites, and akear= 15 1 the motion of the walker igquiva- T —
lent to the no-free-energy case. We do not directly incorpo- E o ke =157~ ke = 0.00557
rate AG into the model, as the kinetic values k&t andkp 10 |~ ke = 0557 == ke = 0.001s7"

. . F -1 -1
are more important to walker motion th&, and any free f e ke =015 —€ kear = 0.0005 5

i 103 |~ ke = 00557 =& K, [:0.0001{1/

energy change large enough to make the substrate modific kfﬂ oor e /
. . . . . .. . F cat = 0.01s
tion effectively irreversible is sufficient to satisfy theodel [ ‘ A /
assumptions.
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B. Walkers move superdiffusively in the absence of force

Figure 5 shows the ensemble estimatas=(1000) for T L (L
MVRWSs moving in the absence of a load force. Initially (be- Time ¢ (s)
low the characteristic timescale of Keay) the walkers move
subdiffusively. As expected, thiea = 151 walkers never
move fa.St.e.r than diffusion. However, &g is decreased, equivalent to the number of distinct sites visited at timé&Valkers
W&_\Ike_rs |n_|t|aIIy move more _sl_owly _due tothe the slower tata with keat < 1571 catalyze substrates at a nearly linear rate over many
ysis kinetics, but once sufficient time has passed, they MOVgecades in time. This is necessary to maintain a constaptysap

superdiffusively witha > 1. The smaller the value &tay, the  chemical energy to sustain superdiffusive motion.
more superdiffusively the walkers move, withapproaching

2 for the smallesk:y: values. This superdiffusive behavior

persists over several decades in time, during which the-walk;,q,y, sites, which allows their constant fuel supply to be main

ers move processively away from the origin in the directiongined. Wher{N(t)) becomes sub-linear the walkers begin to
of unvisited sites. Because of this outward-directed Wi,  4nsition from superdiffusion to ordinary diffusion.

walkers withkeat < 151 = ke eventually overtake (in MSD)
the keat = 151 walkers given sufficient time. However, the
ability to move superdiffusively depends on the local avalil
ability of the immobile substrate fuel, which is consumed as
the walker moves over the track. Hence, if a walker moves
back over previously visited sites, it becomes starvedufer. f To quantify the sensitivity of the walker’s superdiffusive
In these energy-devoid regions the walker can only move difmotion, we impose a constant load foréeon the walk-
fusively like thekear = 151 walkers, and so superdiffusion €rs in the—X direction (Fig. 4). Figure 7 shows ensemble
must eventually give way to regular diffusion, even for the(n = 4000) estimates of||p(t)||*) under a range of forces
smallest values dfzat. for keat= 15 andkear= 0.01s 1. Again, keat= 15 = ks
Figure 6 showgN(t)), the mean number of sites catalyzed (dashed lines) illustrates the no-energy case and, as shown
by timet; its rate of change represents the average availabipreviously (Fig. 5), walkers move diffusively without the-i
ity of substrate fuel. As long as the number of sites cleavedluence of force.
grows linearly with time, the walkers are receiving fuel at a Whenf > 0, the random walk over products is biased in
constant rate and their motion is biased in the direction othe —X direction. The lack of substrates to the left of the ori-

FIG. 6: (color online) Simulation estimate @l(t)), the number of
substrates catalyzed to products whHea 0. Sincekg = 0, this is

C. Walkers do work against a load
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FIG. 7: (color online) Simulation estimate £ 4000) of<|\p(t)||2> and 95% confidence bounds (shading) on a log-log scale. éefelines

are shown for ordinary diffusioma(= 1) and ballistic motiond = 2). Walkers withkeat < 151 move superdiffusively, but wheh > 0, they
eventually slow down and return to the same equilibriumtpmsias thekear= 151 walkers.
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FIG. 8: (color online) Simulation estimat®l = 4000) of (AE(t)) and 95% confidence bounds (shading) on a log-linear scalé&evdavith
f = 0 always haveAE = 0. Those withf > 0 andkeat < 151 do significant amounts of work, reaching a peak energy befoeatually
coming to an equilibrium. This equilibrium depends onlyfoand not orkcat.



gin (Fig. 4) constrains the walker and the biased random walkf the walker motion implies that the mean velocity should

will eventually reach an equilibrium position, after whitte ~ be a smooth function. Thus, we follow the methodology of

net motion is stationarya( = 0). Indeed, this is seen for the Stickel [52] in which the problem is regularized by optimiz-

keat= 1s 1 walkers, which never move faster than diffusion, ing for a smooth interpolatqu(t) that is both a good fit to the

and their MSD increases monotonically to the equilibriumdata and that has sufficiently small higher-order deriestiv

value exactly as if they were undergoing constrained diffu- Stickel defines a functionaD that ranges over possible

sion in a box [47]. In contrast, whéqa < 151 we again see  smooth interpolatorg on the intervalto, tmax s

nearly ballistic motion for all walkers except those under t . . ,

highest load forces > 2.0pN. Thus, even though the load _ ™ _ 2 | L (d)

force attempts to pull the walker body away from the sub- ( _/ 16(1) = (p(®))] dt+/\/to ‘q) (t)‘ d. (9)

strate fuel, the long residence time for leg—substrateibind

allows a few substrate-bound legs to resist the force anp kedn Eq. 9 the termftgmax|¢(t) — (px(t)) |°dt measures th&?-

the walker in proximity to the substrate sites. Eventually, norm of the difference of the interpolator from the data, and

in the f = 0 case, all walkers regardlesslefe will exhaust  the term [">|¢(@)(t)|?dt measures th&?-norm of thed-th

their local supply of substrates and will find themselves mov derivative of¢. The smoothed position functiopy(f), is the

ing over energy-devoid product sites, which ultimatelyngs  minimizer of the functiona®,

them to the same equilibrium position as kg = 1s* walk-

ers (for a giverf). Px = argminQ(¢), (10)
The change in potential energy of the walkekg] as they ¢

move in opposition to thg load force can be qu:_;mtified by evalénd we can define the smoothed velocity as

uating the ensemble estimate of the mean position of the-walk

ers’ bodies,(p(t)). We chose to seAE = 0 whenpyx = 0, _ d.

and themAE = fpy > 0 for walkers to the right of the origin Vi(t) = 5 Px(t). (11)

(Fig. 4). Figure 8 shows the ensemble estimaté/f (t)).

As the load force is increased above 0, the walkers attain prolhe weighting parameteY in Eq. 9 determines the relative

gressively higher potential energies, and their peak ée®rg importance we put on selectingoa(t) that minimizes the dis-

come earlier, as they need to move less distance to do the sari@ce from the datfpy(t)), versus ax(t) that has smalil-th

amount of work. However, as the forces are increased beyonarder derivative. As we are looking for the first derivativie o

f = 2pN, the walkers are not able to move very far without Px(t), we follow the advice of Stickel and optimize fdr= 3,

being pulled backwards, away from their substrate fuel, andgvhich is two more than the derivative we require an estimate

they achieve only modest valuesAft. for. We found that setting = 100 gave an optimal trade-off

between accuracy and smoothness of the resulting degyativ
and these results are shown in Fig. 9.

fo

D. Walker velocity

oo E. Peakwork
Mean walker velocity is another useful measure of walker

motility and is commonly used to characterize the motion o

of the processive cytoskelatal motors such as kinesin | and Whenf > 0 all walkers eventually move to an equilibrium
myosin V [48-50]. Estimation of mean velocity is difficult POSition with energyAE«(f). This value is greater than the
for multivalent random walkers because they do not operat#itial energy, because the walkers begin out of equiliriu
in a steady state. Instead, like other measures of theititpoti  With only a single leg attached (Fig. 4). The initial enerdy o
mean velocity is time dependent. Furthermore, the instantdh® WalkerAEo(f) < 0, because we measipeas the body’s
neous velocity between steps has high variance. equilibrium p03|t|or_\(E.3>., which under any non-zero_force will

In the experimental setup depicted in Fig. 4, we are in1@vepx < 0 at the mElaI walker attachment location. How-
terested in the mean velocity in thedirection, (v(t)), as Vel the kinetics okg >k, lead to an equilibrium where
this is the direction in which the force is applied. Velocity 189S aré aimost always attached to a site, and becauseeall sit
is not a directly observable quantity of the MVRW model, &€ t0 the right of the origin, the equilibrium positid. (f)
as walkers move in discrete steps over the state space. \Wd!l also necessarily be greater thako(f). Thus, to charac-
can directly measure the mean position of the walloér)) = terize the amount of useful work that a walker can do we take
({px(t)) ,<py(t)>), which is defined as the mean location of INto account the equilibrium energy specific to each force. W
the body position distributiotB) (Eq. 2). Due to the variance d€fine the peak work for force as
of random variablgx(t), simple finite difference estimations N .
of (We(t)) = ((px(ti1)) — (Px(t)))/ (41— §) are 100 noisy W = e BEG T —AE(). (12)
with our sampled data. '

In general, computing the derivative of a function knownWe estimat\E. () as(AE (tmax; f)) for thekear = 1 walker.
only with noisy measured data is an ill-posed problem and-igure 10a shows/* as force andkg: are varied. Théa =
some sort of regularization procedure must be defined so thats 1 walkers never have > 0, but the walkers withkca <
the solution can be uniquely determined [51]. The naturels ! can do significant work under moderate forces.
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FIG. 9: (color online) The regularized finite differenceimstte of
the mearx-velocity, v(t), for walkers moving under load forceis
based on smoothing of the ensemble estimatgg(ft)) (n = 4000).
Results are shown for times> tg = 10s, as below this time the
velocity mainly captures the effect of the high-frequenpping of
the walker between adjacent states in the state space. gertimes,
we can clearly see the net positive velocity away from thegiori
experienced by thicas < 151 walkers even under force. This net
positive motion corresponds to the increase in walker gnAEg(t)

From a thermodynamical perspective, the walkers are mod-
eled as a closed system, where the only energy available to th
walker is present in the uncleaved substrate sites. Anydlos
system will eventually approach a thermodynamic equilib-
rium after which no useful work can be accomplished. Indeed,
we see this effect for the walkers under load fofcghown in

Figs. 7 and 8, where the walkers wikgs: < kp are able to
as shown in Fig. 8. The mean velocity approaches 0 as the malke move superdiffusively over significant distances and helace

approach the constrained equilibrium imposed by the force. work as they move in opposition to the load force, but they do

so only while they still have energy available to bias theirm
tion. Eventually, these walkers move to the same equilibriu

distribution as thé.at = k. walkers, which correspond to the
no-energy case.

The key concept in the MVRW model of molecular walker

motion is that energy is a local resource, and the walker de-

pletes the local energy supply as it moves over a region and
Px(tmax T) as measured for thieat = 15! walkers. These catalyzes the conversion of the substrate sites to products

measurements show that the walkers move significantly farrhis makes the MVRW systemon-ergodic in the sense that
ther under small loads, although they do nearly the same.workhe behavior of the walker depends on the local distribution

Figure 10b shows the values for the peagosition,

P(f) = max (px(t; F)) — p(f).

t€[0,tmax]

(13)

Again we estimate the equilibrium-position, pi(f) using

of substrates and products, and this distribution in turn de
pends on the past motion of the walker over that region of
the track. Most natural motors can be described as ergodic,

as their fuel source (normally ATP) is present in solutiod an
Multivalent random walkers are able to do work becausehe track they move over is unmodified by their previous ac-

they act as Brownian ratchets. The physical motion of thdions. Because MVRWs are non-ergodic they do not operate
walker is the result of random thermally driven molecularmo in a steady state, and unlike models of natural motors [29, 30
tions that are rectified by the constraints imposed by ag¢tdich there is no way to quantify the motion of MVRWSs by study-
legs. Without any structural or conformational couplirtgg t

independently operating legs are constrained only by theimentioned in Sec. IlI B, the non-ergodicity requires us te us
passive connection to a common body. The gaits with whichthe ensemble formulation of MSD. Additionally, most other
MVRWs move are uncoordinated, unoriented, and acyclic, yetandom variables that describe MVRW motighl(t)), v(t),

they can be designed to move nearly ballistically alongdsac (AE(t)), etc.) are time-dependent. Hence, there is no single
laid out in 2D.

value of velocity, or single stall force that can be caloedht

V. DISCUSSION

ing a particular set of cycles of states in their state spase.
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FIG. 11: (color online) The irreversible catalysis of subagts to
products leads to the emergence of a spatial asymmetry Biratd
concentration at thboundary between the contiguoyzoduct sea
and the contiguous region of unvisited substrates. A walkién

keat < 151 has a residence time bias where leg—substrate binding

durations are much longer than for leg—product bindingsisTbver
time, legs are more likely to be attached to local substrifizs lo-
cal products, not because they seek out substrates, buideelays
attached to products quickly detach. Hence, walkers asetafely
driven in the direction of greatest local substrate density near
the boundary this is always in theX direction. The irreversibility
of substrate catalysis means the boundary itself also miovése

+X direction, causing walkers near the boundary to move liallis

cally away from the origin.

external force f

Ve
[Boundary state (B)) <

| boundary

° L] [ ]
product sea

ballistic motion

° (]
substrates
L] L]

region of feasible sites

local substrate gradient

o;/o ° °

S

external force f

[Diffusive state (D)] )

I'boundary

product sea
[ ] L] L[]

<
biased diffusive motion !
° . . : . ° . .
=1
. ° \ . o) o . °
|

L] [ ]
substrates

.

no local substrate gradient
e

region of feasible sites

J

FIG. 12: (color online) The walker moves between boundd@) (

and diffusive D) metastates. The walker moves ballistically in the
direction of local substrate gradient when in Bistate, but moves
for MVRW-like systems, as is hormally done for the ergodic diffusively over previously visited sites in tHe state. The walker
motion of natural molecular motors [48]. initially spends most of its time in thB state, consuming substrate
fuel, however as the product sea grows, the time to exiDitstate
increases, leading to asymptotically diffusive motionhie fibsence

A. Mechanism of superdiffusive motion of force and equilibrium stationary motion in the presentoe.

The superdiffusive motion of walkers and its eventual deca;g
to diffusion (f = 0) or stationary equilibriumf( > 0) can be
understood by noting that the only source of energy availabl
to the walkers is present in the substrate molecules, whiech a
a locally-limited, immobile resource.

After the walker starts moving and catalyzing sites, a con
tiguous region of product sites we call tipeoduct sea be-
gins to form (Fig. 11). At théooundary between the product
sea and unvisited substrates, the local substrate coatientr
gradient is in thet X direction, due to the broken symmetry

introduced by the semi-infinite surface configuration sddi level) is nearly ballistic even in opposition to small fosce

(.F'g' 4). The emergence of spatllal asymmetry in concentrayy;q implies that individual walkers near the boundary must
tion makes I pos_5|ble fc_)r an unoriented, symmetric Walbe_rt on average also be moving nearly ballistically, even urider t
develop a directional bias. At the boundary, a MVRW with effect of a constant load force

keat < 151 is biased in ther % direction not because the legs
are more likely to attach to substratég < k), but because
when they do attach to a substrate, they stay bound longer—
there is an effectiveesidence time bias.

A walker withkeat < 151 is only directionally biased when
near the boundary, in which case its legs irreversibly gatal The emergence of the boundary between the product sea
attached substrates to products, moving the boundary in thend the unvisited substrates causes the walker to move su-
-+ X direction as well. Thus, as long as a walker remains neaperdiffusively, but eventually all walkers either movefdif
the boundary, it is biased in thieX direction, and it moves the sively (f = 0) or move to a stationary equilibrium distribu-
bias-inducing substrate concentration asymmetry alorly wi tion (f > 0). In analogy to our analysis of the AK spider
it, which leads to persistent motion directed away from themodel [14], this behavior can be understood by decomposing
origin. the Markov process into two metastates: a boundary dite (

This mechanism of residence time bias leading to a direcwherein the walker is attached to substrates near the bound-
tional bias was identified by Antal and Krapivsky in their ab- ary, and a diffusive stated) wherein the walker moves over

tract 1D molecular spider model [13]. Later it was shown
to lead to significant superdiffusive behavior of the Antal-
Krapivsky (AK) walkers in 1D without force [14]. The simple
state space of the AK walker models allows it to be shown ana-
lytically that the motion of AK walkers is ballistic in the rgic-

tion of substrates while they remain proximate to the bound-
ary [14]. The 2D geometry of the MVRW model makes the
mathematical description of the boundary between sulestrat
and products more complex, but with the simulation results
in Figs. 5 and 7, we find the motion in 2D (at the ensemble

B. The boundary and diffusive metastates
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uct seas, the probability of returning to the boundary oreze d
parted a significant distance becomes effectively nil. enc
the duration oB-periods is constant in time, but the duration
of D-periods grows. Eventually walkers spend nearly all their
time moving over products in thB state, and so approach
the same equilibrium distribution as thgy = 1s* walkers
which represent the case where no energy is available to the
walker. This eventual drift toward equilibrium can be seen i

E
= 75000 |- - Figs. 7 and 8.
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A walker with k detached legs is free to diffuse in solution,
and cannot be ascribed a well-defined position with a discret
. . . state Markov process. Hence, dissociation poses mathemat-
FIG. 13: (color online) Typical traces gi(t) for a MVRW with jca| difficulties for analyzing a non-ergodic motive proses
f =0 for threekcat values. The traces are shaded darker (blue) whenyng comparing it with other mathematical models of anoma-
the walker is in theB metastate, and lighter (red) when it is in the lous diffusion. Ergodic models of natural motors like kiimeis
D metastate. Walkers with smalli; have longer8 periods, but can simultaneously analyze motion and dissociation, tscau
smaller velocity. The duration d@-periods is independent of time, y analy . . s

the transport characteristics and dissociation proliasilcan

but the duration oD-periods grows with the size of the product sea, ) b ’
and consequently increases over time. Thus, at short tmeesalker ~ P€ understood independently by studying a single motor cy-

is more likely to be in theB state, but at longer times is more likely cI_e [30_' 5_3]- MVRW_Sg _being non-ergodic, have transport and
to be in theD state. dissociation probabilities that depend on the currenestét

the local chemical sites, and cannot be analyzed with simila
techniques.

Time  (s) x107

the energy-devoid product sea (Fig. 12).

When the walker is in th® state it moves ballistically in
the +X direction, but when it is in th® state it has no direc-
tional orientation, and it moves by ordinary unbiased diffun
for f =0, or by —X-biased diffusion wherf > 0. Figure 13
shows three typical traces of the position of individualkval
ers under no force, wheiandD periods have been shaded
to show the alternation between states and the distincten b
tween the ballistic and diffusive motion.

The probability of a walker leaving thB state by mov-
ing sufficiently far in the— X direction is independent of the
absolute position of the boundary. Thus, Benetastate is
Markovian since the transition rate to tbemetastate is inde-
pendent of how long the walker has been moving or the siz
of the product sea. Akcy is decreased, the duration of leg—
substrate bindings relative to leg—product bindings iases
and the walker is less likely to simultaneously detach frdm a
boundary substrates and leave Bistate. Thus, lowekcy
values result in more persistent ballistic motion over emg  For any finitek{ andkg rates, it is possible for walkers to
durations, but at smaller velocities (Fig. 13). temporarily dissociate via a hopping event. In practicey-ho

In contrast théd metastate is non-Markovian. The duration ever, when the walker has sufficiently many legs, the orsrate
of aD period depends on the size of the product sea, and henege sufficiently fast, the legs are long, and the substrates a
this duration grows as the walker catalyzes sites. In the casdensely spaced, the probability of dissociation is low. Ove
wheref = 0, the time is quadratically dependent on the size othe course of the simulations shown in Figs. 7 and 8, only four
the product sea, but whein> 0 this dependence becomes ex- out of 56000 walkers withf < 3.0pN and 100 out of 16000
ponential, and for sufficient forces and sufficiently sizeads  walkers withf > 3.0pN experienced any hopping event.

One approach to dealing with dissociation in non-ergodic
walker models is to have a single absorbing dissociated stat
to which all walkers will eventually go and never return. 3hi
state is then the single equilibrium state of the system, and
analysis is done on the remaining walkers. However, analyz-
ing MSD becomes challenging because at anyO0 there is
necessarily some non-zero proportion of walkers in the dis-
sociated state. Ensemble MSD is no longer well-defined, as
we cannot ascribe a position to dissociated walkers. ldstea
of this approach, we implementtapping rule, whereby a
walker withk — 1 legs whose next KMC chosen transition is
to detach its one remaining leg is prevented from diffusing
away from its dissociation location. It is temporarily héhd
place until a leg attaches to a local feasible site. The fetef
is a hop from one site to another, and it is implemented as a
single KMC step, so that the position of the walker is always
well defined.
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FIG. 14: (color online) Simulation estimatés = 400) showing
the effect of the number of walker legk) (on walker motion when
f = 0. The MSD is shown with 95% confidence intervals in shad-  10° |
ing. Walkers with more legs move with smaller diffusion ciamg
whenkgai= 151 = ko and there is no residence time bias. How-

ever, whenkeat = 0.01s™1, the walkers with more legs experience 10!
a stronger directional bias towards the local substrateemnation 107"
gradient and hence move superdiffusively over longer tiamesdis-
tances. Of the configurations studied, walkers wita 5 legs and
keat = 0.01s ! eventually achieve the greatest mean squared disFIG. 15: (color online) Simulation results = 400) showing the ef-
placement. The black lines show the cése 4, corresponding to  fect (atf = 0) of varying the leg length.B nm< ¢ < 15.0 nm, while
walkers in Fig. 5. the number of legs is fixed &t= 4 and the substrate spacing is fixed

at 50 nmx 5.0 nm. The effect of on MSD is shown with shading
indicating the 95% confidence interval for the mean. Thecefté
changing the leg length is essentially manifested as a ehamtihe
diffusion constant, but not in the qualitative characterssof the su-
perdiffusive motion for thécas = 0.015 1 walkers. The exception is

As summarized in Table I, our results focus on four-leggedor the very short leg length= 5.0 nm, where the average number of
walkers with leg lengtid = 12.5nm, which is 2.5 times the feasible sites becomes so small that walkers lose theirditfpsive
5.0nm substrate spacing distance. Both the leg length and tHEansport behavior
number of legs can be freely varied. However, there are sensi
ble ranges for these parameters, outside of which the motion
of the walkers is not as processive, or is exceedingly sl@v. Tk =4 was chosen as a reasonable compromise value that pre-
be efficient molecular transport devices, walkers must kimu vents dissociation, maintains a strong tendency to remain o
taneously avoid dissociation, resist the effect of for@es] the boundary, and moves with an appreciably fast diffusion
remain attached to substrates near the boundary. constant.

First, consider the number of legs, which is varied in the The leg length/, can also be freely varied, but it must
range 2< k < 5 in Fig. 14. For the residence time bias to be considered in relation to the substrate spacing. Togethe
lead to a directional bias, we requike> 2 [14]. With few these parameters determine the average number of feasible
legs k = 2), walkers are more likely to have all of their legs sites available for attachment. Ideally, the substrateiaga
detached simultaneously and undergo a hopping step. Agould be made as small as possible, but it is constrained by
the number of legs is increased this probability drops expolimits on the sizes of molecules and how closely substrates
nentially, as each leg’s probability of detachment is agpro can be arrayed on a surface. We cho§n as a reasonable
imately independent. Walkers with more legs also tend tdower limit on this spacing, as it approximates the densfty o
move more superdiffusively and processively when inBhe DNA substrates arrayed on a DNA origami [54] surface, as
state, as they have a higher probability that at least one legmployed in molecular spider experiments [11].
remains attached to a substrate at the boundary. However, weFigure 15 shows the effect of varying the leg length for 4-
find walkers with many legs have a significantly smaller dif- legged walkers while keeping the substrate spacing constan
fusion constant. This observation agrees with the calicniat at 50nm. We find that if legs are too shoft{ 5.0 nm), the
of Antal and Krapivsky regarding the relationship of the num number of feasible sites is too small to maintain a supardiff
ber of legs and the effective diffusion constant of walkers i sive effect. For leg lengths> 7.5 nm, which is 1.5 times the
the AK spider model [12, 13]. Due to these considerationssubstrate spacing, there is little qualitative differentehe

D. Effect of variation of number of legs and leg length
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walker motion, although longer legs do lead to a faster diffu [ K= 10X 1015 Ky = 0015

sion constant in the absence of fofcélnder load, however, 1010 g ki = 10x10%s" ke = 0,015 E
leg length and substrate spacing should both be minimized t ~ [ —8—k =5.0%10%s™" ke = 0.0157! i
maximize the peak work and displacement of walkers. Longe & 109 f —#—k =1.0x10°s™ ke = 00157 —
legs allow a larger feasible regidh leading to a larger biasin =~ | A = LOXI0ST! ko = 00157 7

B under any non-zero load. This in turn makes it more likely = o8 |- ::::’;3 z igz 182:71 ::z iggzl

for long-legged walkers to move backwards. We found tha & i Iki = 5.0x 102 5! k:[: 100 5!

a leg length of approximately 2.5 times the substrate sgacin = |7 [ -—-#--k = 1.0x 10°57 kg = 1,005
provides a good balance between dissociation and proeessi =gk = 10X 10°5™ koo = 1,005 4"
ity; a full analysis of this relationship is reserved fordte
study.
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We initially arrived at the MVRW model through our efforts
to predict the characteristics of molecular spider motion i I
laboratory experiments (e.g., experiments like those afd_u 10%
et al. [11] in which spiders moved over nano-fabricateddsac 10-!
of substrates). Hence, the MVRW model is built around the
chemically realistic kinetics given in Eq. 1 which model the

dexyribozyme-based molecular spiders’ legs [9].' Until NOWg G, 16: (color online) Simulation resul{s = 1000 showing the
we have assumed that most of these rates are fixed, and hayg, (atf = 0) of varyingks on the MSD of walkers whild

Sh()_wn that_ varying just thiecay/kp ratio s_uf'flc_es to C_ree_lte 8 s fixed at 10 x 103s~L. The black lines represent the case where
residence time bias that leads to superdiffusive motionil&Vh ki = k& = 1.0x 10°s1, which is used in all other simulations re-
atruly m'n'm"_’u'St model of uncoordinated enzymat'c,waﬂ(er sults. Wherk,i = kg there is no attachment preference for a sub-
could be distilled from the MVRW model by assuming that sirate over a product. An unattached leg will just as rapidiy to
attachment rates are infinite (thus eliminating the pararset j feasible substrate as to a feasible product. However, askee
k¢ andk}), and the conclusions of Sec. IV and the analysis ofk¢ < k, the walkers have an attachment bias to products, which
the mechanism of superdiffusion in Sec. V A would still hold, should be expected to reduce the time spent in the bound@ry (
we have maintained the model's foundation in finite rates andnetastate, and therefore lead to less pronounced supsidéfbe-
realistic enzyme kinetics. This decision to keep all rateigefi  havior. These results show that the MSD is robu_st to moderate
does not make the model any more complicated to simulat&hanges in the on-rates, and evenkigr= ks /10, there is an appre-
but it does make a full exploration of the parameter space &iable superdiffusive effect whekiar = 0.01s™*. However taking
more challenging endeavor. For this reason, we have untlfs = kg /100 overwhelms the re&dgncg time b!as of the walkers in
now fixed the kinetic rates other th&g,;, as summarized in theB state and prevents any superdiffusive motion.
Table I.

Now, we consider the effect of the variation of these other
kinetic parameters on the superdiffusive effect that hanbe In Fig. 16 we show that the superdiffusive behavior as quan-
demonstrated for our fixed rates. The sensitivity of walkertified by MSD persists over an order of magnitude in variation
motion to these kinetic rates is critical to our characteriz of thek{ rate. Indeed, even in the pessimistic case where
tion of the MVRWs as molecular motors, because any chemthe walker is biased 10:1 in attachment preference to prod-
ical implementation of the multivalent random walker modelucts over substrates, the residence time bias of 100:1 ef sub
(e.g., molecular spiders) will have finite rates, and they wi strate to product binding duration is still sufficient to aste
potentially vary considerably from those in Table I. Howeve a superdiffusive scaling of MSD over several decades in.time
we show that the qualitative characteristics of superdi¥®el  This robustness even to large changes in attachment rates al
walker motion persist over a wide range of kinetic values, agows us to be confident that superdiffusive behavior is a per-
long as the fundamental kinetic feature of a residence timgasive feature of multivalent random walker systems and is
bias between visited and unvisited sites is present. TBis re not critically dependent on our particular choice of attaent
dence time bias is ultimately what leads to an effective weoti rates.
bias in the direction of the local substrate concentratiailig
ent, and allows the walker to function as a molecular motor.
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We show the results of varyinkg in Fig. 17. In other re-
sults we have assumed thiat = 0, which is reasonable as
this rate is likely to be much slower thag or kot for any
practical enzymatic implementation of a multivalent ramdo
2 A similar relationship between effective leg length andudifon constant walker. Figure 17 shows that indeed the superdn‘fuswe be-

was also calculated by Antal and Krapivsky for their AK-mbdealk- hf"‘.wor is robust to changes kg’ as Iong as it .remams SIg-
ers [12, 13]. nificantly slower thark, andkca. However, settings = kp
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FIG. 17: (color online) Simulation estimates < 1000) of the mean squared displacement of the walkekg ds varied. Shading shows
95% confidence intervals for the mean. Each subplot showsaime 12 walker configurations, varying only the valuekof Fiducial lines
for diffusion and ballistic motion are shown in the same fiosion each subplot for reference. These data can be cothpatte Figure 7
which shows the cadg; = 0. The value okg determines the rate of detachment without enzymatic ceieiof the site to a product. As
long asks + keat < ko, there remains a residence time bias, and our results statwikers withkcat = 0.01s°1 move superdiffusivly for
ks <kp = 1s 1. This shows that the qualitative behavior of the walkersrishanged for small variations kg, and the choice okg =0
in the model is appropriate because small valueksofio not significantly affect the walker motion. However, when= kg = 1s1the
superdiffusive motion is eliminated, as there is no longeeffective residence time bias between visited and uedsites.

eliminates any superdiffusive effect, as there is no lorager having enough internal energy to surmount some reaction en-

residence time bias between substrates and products, @and thrgy barrietdo. Thus, rate laws follow the Arrhenius formula,

motion of the walker near the boundary is no longer biased irk(T) O exp(—Up/ksT). The effect of a forcd applied to the

the direction of the local substrate concentration gradien ~ molecule is a mean change in energy\f;, and the rate is
modified to

F. Effect of forces on dissociation reactions K(T) = vexp((AUf _ Uo)/kBT).
In describing our model we show how forces affect the bi- The value of the constamtand the relationship dU; with
molecular association rates through Eq. 6. However, applyforce f depend on the specific internal chemistry of the leg
ing a load force to walkers should also affect the kinetics oftethers, enzymes, and substrates [55-57], the detailsiohwh
the unimolecular dissociation events. From a high-levelwi are beyond the scope of our coarse-grained walker model. We
the kinetics of unimolecular reactions depend on a moleculsurmise that the effect of small forces is a slight increase i

(14)



ks andkp, although this change would not be uniform overin the enzymatic kinetics of the substrate and product sites
all legs, as those attached to sites further in the direc- it moves over to generate a directional bias. In addition, be
tion will oppose more of the load force on average than othecause the substrate sites take the dual role of the cheralal f
sites. Based on Fig. 17, small increasekdndo not qual-  source and the track binding sites, there is no need to couple
itatively change the motive properties of the walker with re together in each foot a separate track binding and fuel bgndi
gard to MSD, except when the forces are large enough thaite, as in kinesin | and other natural motors [1]. Hencese¢he
Ks +keat > ki, which eliminates the residence time bias anddifficult-to-engineer features that are found in naturalene
all superdiffusive motion. Additionally, small increasas; ~ ular motors are not strictly necessary for MVRW-like walk-
actually lead to an increase in the MSD, as they increase thers to transduce the chemical free energy of substrate- catal
residence time bias. Quantitative analysis of variatiokgn  ysis into physical work, and many enzyme—substrate systems
is beyond the scope of this paper, but is available along witteould provide the effective kinetics necessary for a malént
other supplementary results for the MVRW model [35]. Over-random walker to act as a molecular motor. For this reason
all, these results show that even though the present formulave avoid explicitly focusing on a particular enzyme-—sudistr
tion of the MVRW model does not describe the effect of forcesystem in the MVRW model and instead we explain how the
on dissociation rates, we expect an extension of the model irinterplay between the various kinetic rates controls thktyab
cluding these rates to predict similar superdiffusive vedra, ~ of a multivalent random walker to act as a molecular motor,
as long as the forces and corresponding rate changes ate smétlansforming chemical free energy into directed motion and
performing physical work as it moves in opposition to a load
force.
VI. CONCLUSION

The multivalent random walker model describes walker
systems that can be designed to act as translational molecu-
lar motors, without the need for complex intra-molecular-co
formational switching or gaiting. Unlike models of natural The authors would like to thank Tibor Antal, Thomas P.
molecular motors such as kinesin | and myosin V [25, 29, 30]Hayes, Paul L. Krapivsky, Cristopher Moore, Milan N. Sto-
we do not assume any coordination between the legs, cherqanovic, and Lance R. Williams for helpful discussions and
ical or mechanical. Instead, we assume that the legs act imdvice regarding the development of our model and simu-
dependently. The legs are passively constrained by thair te lation software, and the analysis and interpretation of re-
ering to a common body, but the chemical state of one legults. This material is based upon work supported by the
cannot be communicated to the other legs. We show that sudational Science Foundation under grants 0533065, 0829896
a simple walker design is able to exploit a residence time biaand 1028238.
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