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We propose that a system of colloidal particles interacting with a honeycomb array of optical
traps that each contain three wells can be used to realize a fully packed loop model. One of the
phases in this system can be mapped to Baxter’s three-coloring problem, offering an easily accessible
physical realization of this problem. As a function of temperature and interaction strength, we find
a series of phases, including long range ordered loop or stripe states, stripes with sliding symmetries,
random packed loop states, and disordered states in which the loops break apart. Our geometry
could be constructed using ion trap arrays, BEC vortices in optical traps, or magnetic vortices in
nanostructured superconductors.

PACS numbers: 82.70.Dd,75.10.Hk

Introduction. There has recently been tremendous
growth in the area of creating idealized systems in which
certain types of statistical mechanics models with and
without geometric frustration can be physically realized,
such as in nanomagnets [1–3] and soft matter systems
[4–14]. The key advantage of these systems is that they
allow direct experimental access to the microscopic de-
grees of freedom. One of the most active of these ar-
eas has been artificial spin ices created using nanomag-
netic arrays with square [1] or hexagonal ordering [2, 3],
where ordered or frustrated states can occur that mimic
real spin ice systems [15]. Here, various types of excita-
tions such as monopoles can arise, and the dynamics can
be studied under an external field [3]. There are many
other statistical mechanics models that exhibit frustra-
tion effects, including loop models such as the famous
Baxter’s three-coloring model [16], where only very lim-
ited work has been performed on proposed physical real-
izations, all of which involve atomic degrees of freedom
[17–20]. The nanomagnetic systems have certain con-
straints, such as relatively high levels of disorder and the
lack of temperature-like fluctuations, that make it very
difficult to realize many other types of statistical mechan-
ics models of interest.

Here we propose that a system of colloidal particles in-
teracting with optical trap arrays can be used to realize
fully packed loop models, and show that one of the result-
ing phases can be mapped to the three-coloring model.
Loop models have been applied to a wide variety of phys-
ical systems, ranging from polymer physics [21, 22] and
turbulence [23] to optics [24] and magnetism [25–27], and
a physical realization of an idealized loop model would
be a major step in this field. Using a colloidal system
provides direct experimental access to the microscopic
degrees of freedom of such models; in addition, the real-
ization of a three-color model that we describe can not be
achieved in magnetic systems due to their intrinsic time-
reversal symmetry. Colloidal systems interacting with
periodic optical arrays have been experimentally realized

FIG. 1: (a) Schematic diagram of the basic unit cell with two
triple well traps each containing one colloidal particle. (b)
and (c) are snapshots of a small portion of the system. The
green triangles represent the traps and the red dots denote
the particles. (b) shows a random distribution of particles
at high temperatures. U0 pairs are circled and U1 pairs are
boxed. (c) shows an example of a particle configuration that
can be mapped to random fully packed loops in the hexagonal
lattice, as illustrated in panel (d). The yellow contour in (d)
corresponds to a flippable type-II loop.

[4, 5, 8–10, 28] and shown to exhibit novel types of order-
ings depending on the nature of the substrate [4, 8, 9, 13].
Beyond these static states, it is also possible to study
a variety of dynamical processes such as the motion of
kinks and antikinks [10, 12]. Highly tailored optical trap
arrays can be created where the colloidal particles can sit
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in multiple positions in a single trapping site [5, 28, 29],
so that arrays where colloidal particles can occupy one of
three possible positions in a trap are well within current
experimental capabilities.
Model. We consider a 2D array of N triangular-shaped

traps that each contain three potential minima, as illus-
trated in Fig. 1(a). These traps are similar to those cre-
ated experimentally in Ref. [4]. The traps form a honey-
comb lattice with triangles of opposite orientations occu-
pying the two different sublattices, as shown in Fig. 1(b)
and (c). When each trap contains one colloidal particle,
the system provides a natural realization of the 3-state
Potts model on the honeycomb lattice. We introduce a
Potts variable σi = 1, 2, or 3 to denote the potential
well occupied by the particle in the i-th trap. In order
to characterize the colloidal ordering, we also introduce
three unit vectors for each Potts state: ê1 = (0, 1), and
ê2, 3 = (±

√
3/2,−1/2). The particle in the i-th trap is lo-

cated at ri = Ri+dσi
, where Ri is the center of the trap

and the displacement dσ = ±δ êσ, with the plus (minus)
sign for up (down) triangles. δ denotes the linear size of
the trap.
The colloidal particles interact with each other via a

repulsive screened Coulomb or Yukawa potential given by
V (rij) = V0 q

2 exp(−κrij)/rij . Here rij is the distance
between two particles, V0 = Z∗2/(4πǫǫ0), Z

∗ is the unit
of charge, ǫ is the solvent dielectric constant, q is the
dimensionless colloid charge, and 1/κ is the screening
length. The Hamiltonian of the model system reads

H =
1

2

∑

i,j

V
(

|Rij + dσi
− dσj

|
)

(1)

where the summation runs over all pairs of triangular
traps i, j. Since the particles are always confined to one of
the three potential wells in each trap, we can identify the
first few neighboring interaction terms of the colloidal po-
tential V (rij) as summarized in Fig. 2. The dominant U0

interaction is between two particles at the closest corners
of two neighboring triangles shown in Fig. 2(a). Since
these two potential wells are specified by the same Potts
state in the respective traps, the U0 term essentially in-
troduces an anisotropic antiferromagnetic interaction be-
tween the Potts variables:

H0 = U0

∑

〈ij〉

δαij ,σi
δαij ,σj

, (2)

where 〈ij〉 denotes two nearest-neighbor traps, and αij =
1, 2, 3 specifies the relevant Potts state of the adjacent
wells of the 〈ij〉 pair. Such U0-pairs of particles [circled
in Fig. 1(b)] are energetically unfavorable and will be
suppressed at temperatures T ≪ U0. It is worth not-
ing that the interactions in Eq. (2) are frustrated and
there exist extensively degenerate Potts states (colloidal
configurations without U0-pairs) that minimize H0.
By attaching an arrow to each particle pointing from

the center of the triangular trap to the corner occupied by

(a)

(b)

(c) (d)

FIG. 2: Various interaction terms arising from the screened-
Coulomb or Yukawa potential V (rij) between a pair of colloids
in the optical traps.

the particle, the colloidal configuration can be mapped to
a collection of directed strings. Since the triangles form a
honeycomb lattice, a similar mapping can be established
by extending the arrow onto the corresponding bond [see
Fig. 1(c) and (d)]. As each trap contains exactly one
particle, there is always an outgoing arrow for each ver-
tex of the honeycomb lattice; however, the number of
incoming arrows for individual vertices can be 0, 1, or
2. The number of vertices with no incoming arrow must
equal the number of vertices with 2 incoming arrows since
these are the sources and sinks (or end points) of the di-
rected strings. The second and most relevant U1 term of
the interaction, shown in Fig. 2(b), prevents the fusion
of two strings by penalizing vertices with two incoming
arrows. Examples of U1 pairs are highlighted by square
boxes in Fig. 1(b). The number of end point vertices is
suppressed at temperatures T ≪ U1, where for systems
with periodic boundary conditions (BC) it becomes ener-
getically more favorable for strings to form closed loops
as shown in Figs. 1(c) and (d) [30, 31]. For finite lat-
tices with open BC, the end points of the strings reside
at the boundaries of the system. The further-neighbor
interactions U2 and U3 shown in Fig. 2(c,d) induce long-
range ordering of particles at very low temperatures. In
particular, the U2b term favors alignment of particles in
two different alternating Potts states along one of the C3

symmetry directions, effectively introducing a bending
stiffness to the strings.

It is worth noting that each fully packed loop (FPL)
configuration on the honeycomb can be further mapped
to a three-colored configuration on the same lattice. In
Baxter’s three coloring model [16], each bond of the hon-
eycomb lattice is assigned a color R, G, or B, so that
three different colors meet at each vertex, and all such
configurations are given equal statistical weight. The R

and B colored bonds thus form a FPL configuration as
illustrated in Fig. 1(d), and the two different sequences
RBRB · · · and BRBR · · · correspond to the forward and
backward propagating loops, respectively. It is impor-
tant to note that all three-colored configurations are en-
ergetically degenerate if we retain interactions up to the
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U1 terms only. Long-range orderings are induced by the
further-distance interactions in V (rij).

To understand the various phases of the model sys-
tem, we perform Monte Carlo simulations on the effec-
tive 3-state Potts model described by Eq. (1). Our choice
of algorithm varies depending on the temperature. At
high temperatures, the standard single-site Metropolis
updates are sufficient to equilibrate the system; however,
such local updates experience a dynamical freezing at
temperatures T ≪ U1 due to the huge energy cost of
updating a single-site Potts state. Since the effective
degrees of freedom in this temperature regime are the
fully packed loops discussed above, we also implement
two types of non-local updates in our Monte Carlo sim-
ulations similar to the loop algorithm introduced for the
three-coloring problem [32]. In the first type of loop up-
date, we randomly select a loop of head-to-tail arrows,
or a RBRB · · · loop, and flip all the arrows; this move
is accepted according to the standard Metropolis condi-
tions with further-distance interactions U2, U3, · · · taken
into account. The type-II loops consist of alternating
bonds with and without arrows; they correspond to the
GB or GR-colored loops in the 3-color scheme. An exam-
ple type-II loop is shown in Fig. 1(d).

At very low temperatures, even the loop updates suffer
freezing problems. Unlike the loops in dimer or spin-ice
models [33, 34], which can be constructed step by step
from numerous possible paths, the loops in the three-
coloring problem are predetermined by the colors in a
given configuration. The so-called worm algorithm [35],
in which detailed balance is always satisfied when con-
structing the loop, cannot be applied to our case. The
freezing problem arises because the acceptance rate of
flipping a long loop in the standard Metropolis criterion
becomes exceedingly small at low T . To overcome this
problem, we employ the parallel tempering algorithm [36]
to simulate this low-temperature regime. By simulta-
neously simulating 150 replicas covering a temperature
window 0 < T < 0.1U1, we are able to fully equilibrate
a system with periodic boundary conditions containing
N = 2× 6× 12 particles; the results from a system with
linear trap size δ = 0.9 × (a/2

√
3) and screening length

κ−1 = 0.06a, where a is the lattice constant of the un-
derlying honeycomb lattice, are summarized in Fig. 3.

In Fig. 3(a) we plot the fraction Nv of honeycomb lat-
tice vertices of type v as a function of temperature in
the regime T ≪ U0. Since the occurrence of U0-pairs is
strongly suppressed in this regime, there exist only three
vertex types Nd1, Nd2, and N3c, defined according to the
‘coloring’ of the three bonds attached to the vertex, as
illustrated in the insets of Fig. 3(a). The three bonds
meeting at the lowest-energy N3c vertices always have
different colors. In the language of loops, these 3-color
vertices have exactly one incoming and one outgoing ar-
row. There are two types, Nd1 and Nd2, of higher-energy
defect vertices that violate the three-color constraints;

FIG. 3: (a) Nv , the fraction of vertices of type v, as a func-
tion of temperature T/U1. Upper red line: N3c; lower blue
line: Nd1 + Nd2; dashed line: all other vertex types. Insets:
schematics of the three low-temperature vertex types Nd1,
Nd2, and N3c. (b) Order parameters M and S along with N3c

as a function of temperature T/U1. The parameter M charac-
terizes a uniform long-range ordering of particles in which all
loops are directed in the same direction and parallel to each
other. The stripe order parameter S describes a partially or-
dered phase in which loops are parallel to each other but the
direction of individual loops is disordered. (c) Phase diagram
of temperature T in units of V0q

2/a vs κa showing the regions
in which the ordered, smectic, three-coloring, and disordered
states are observed. Red circles: T3c; green squares: TS; blue
triangles: TN .

they correspond to the sources and sinks of the open
strings, and always satisfy Nd1 = Nd2. In Fig. 3(a), as T
decreases the fraction of defect vertices Nd1 +Nd2 grad-
ually decreases before vanishing for T < T3c ≈ 0.1U1,
while the fraction of 3-color vertices N3c saturates to 1
at low T . We define the crossover temperature T3c as
the point at which the fraction of defect vertices drops
below 0.1%. Below T3c, the system can be mapped to
a three-colored or fully-packed loops configuration. The
particle-particle correlations in this disordered yet highly
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FIG. 4: Particle pair distribution function g(r) in the 3-
coloring regime (T = 0.08U1 with κ−1 = 0.06a) obtained
from Monte Carlo simulations with loop algorithms on a sys-
tem with 2× 1202 particles. At large separation g(r) → n̄ =
1/3. The inset shows the density-density correlation function
Cnn(r) = 〈n1(r)n1(0)〉 − n̄2 along one of the C3 axes. The

correlation exhibits a power-law r−4/3 decay at large r.

constrained phase are expected to exhibit a quasi-power-
law decay [16]. We find that g(r) for our system in the
3-coloring regime approaches n̄ = 1/3 for large separa-
tions, as shown in Fig. 4. The density-density correlation
function Cnn(r) = 〈n1(r)n1(0)〉 − n̄2 along one of the C3

axes follows a power law decay at large r with an expo-
nent of 4/3, as expected for a three-colored configuration
and as illustrated in the inset of Fig. 4. Here n1(r) is the
density of particles at a particular potential well, such as
well number 1, of an up triangular trap.

As discussed previously, the further-neighbor interac-
tions U2 and U3 induce long-range orderings of loops at
lower temperatures. In particular, the loops acquire a
bending stiffness due to the U2b interaction. As a result,
the loops start to align themselves with one of the three
principle lattice symmetry directions upon lowering the
temperature. Since the dominant Potts interaction U0

is antiferromagnetic, we consider a Néel type order pa-
rameter: M = (2/

√
3N)

∑

i(−1)iêσi
, where (−1)i = +1

for up triangles and −1 for down triangles. The or-
der parameter M = |M| indeed rises to its maximum
at T . TN ≈ 0.003U1 as shown in Fig. 3(b), indicat-
ing a ground state with long-range antiferro-Potts order.
The phase boundary TN shown in Fig. 3(c) is defined
as the point at which M reaches 99% of its maximum
value. One of the perfectly ordered states is illustrated
in Fig. 5(a); there are a total of 6 degenerate ground
states related to the breaking of Z2 sublattice (the ar-
rows in the loops) and C3 rotational (the orientation of
the loops) symmetries.

Interestingly, for decreasing temperature the order pa-
rameter M shows an upturn at TS ≈ 0.034U1, above
the onset of long-range Potts order. Examination of
the snapshots from Monte Carlo simulations shows a
partially ordered phase with additional sliding symme-

tries [37]. In this phase, the loops are either paral-
lel or antiparallel to each other, hence breaking the
C3 lattice rotational symmetry. The directions of ar-
rows in individual loops remain disordered as shown in
Fig. 5(b). This partially ordered phase is characterized
by a Z3 order parameter indicating the overall orienta-
tion of loops and a set of Ising variables {τ0, τ1, · · · , τL}
specifying the direction of each loop. To characterize
this stripe-like order, we first compute the antiferro-
Potts order on a 1D chain along one of the C3 axes:
mα(c) = (1/L)vα ·

∑

n∈c(−1)nêσn
, where n is a site index

along the chain c; α = 1, 2, 3 specifying the orientation of
the chains; and vα = êβ−êγ , where (αβγ) is a cyclic per-
mutation of (123). The vector vα is used to project the
vector sum to the relevant Potts states along the chain.
Averaging over chains of the same orientation α gives a
quasi-1D order parameter: Mα = (1/L)

∑

c |mα(c)|, and
finally the stripe order parameter is defined as their max-
imum S = maxα Mα. As shown in Fig. 3(b), the system
enters the partially ordered stripe phase at T . TS as
the order parameter S saturates to its maximum. The
phase boundary TS shown in Fig. 3(c) is determined by
the crossing point of Binder’s cumulants from 6×6, 6×9,
9× 9, and 6× 12 lattices.

We summarize the sequence of thermodynamic trans-
formations, illustrated in the phase diagram in Fig. 3(c),
as follows. As the temperature is lowered, the colloidal
system first undergoes a crossover into the 3-color or ran-
dom FPL phase at T3c ∼ O(U1). A phase transition
into the partially ordered phase occurs at TS ∼ O(U2b)
when the stripe-ordering arises from the positive bend-
ing energy produced by the U2b interaction. Finally, the
system undergoes another phase transition into the long-
range antiferro-Potts ordered ground state at TN . We
note that for larger system sizes, our Monte Carlo sim-
ulations combining local Metropolis, loop updates, and
parallel tempering are able to reach the equilibrium 3-
color phase at T < T3c. However, since full equilibration
to the partially ordered striped phase as well as the fully
ordered ground state requires flipping system-size loops,
which costs too much energy for larger lattices, our algo-
rithm can only produce a multi-domain stripe phase. It
is worth noting that in the thermodynamic limit, the sys-
tem cannot reach the true long-range order and stays in
this smectic-like phase due to the huge energy barrier sep-
arating different stripe states. Our smectic phase is dis-
tinct from a q = 0 phase with domains. Conventionally,
domain walls are topological defects that separate do-
mains of (usually exact) degenerate ground states of the
Hamiltonian, where the degeneracy usually arises from
the symmetry of the Hamiltonian. In our case, however,
the different layered states are almost degenerate mainly
due to frustration and are accidental, meaning that they
are not protected by symmetry. The system is unable to
reach the true q = 0 ground state due to dynamical freez-
ing at low T from the large energy barriers separating the
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(a) (b)

FIG. 5: (a) A long-range ordered loop state characterized by
an antiferromagnetic Potts order parameter M . The parallel
loops in this ordered state are directed in the same direction.
(b) A partially ordered loop state exhibiting a sliding symme-
try. The loops in this phase are parallel to each other but the
direction of individual loops remains disordered. This state
is characterized by the stripe order parameter S.

layered states.

It is interesting to note that the highly degenerate
kagome-ice manifold [38, 39] can be derived from the 3-
coloring manifold by re-coloring every G bond to B color;
the number of B bonds is thus twice the number of R
bonds in the mapped configuration. By identifying the
R bonds as the minority spins, e.g. the out-spin in a
two-in-one-out triangle, the re-colored 3-coloring state is
mapped to a spin configuration in kagome ice. This map-
ping can be physically realized in our colloidal system by
increasing the particle numbers such that all 3c vertices
are replaced by d1 defect vertices [see inset of Fig. 3(a)].
Although correlation functions in both phases are criti-
cal, the kagome-ice phase is described by a scalar Gaus-
sian field, while the effective field theory for the 3-coloring
model requires a two-component vector field [40].

In summary, we have proposed that colloidal particles
interacting with a honeycomb array of optical traps that
each contain three wells can be used to realize a fully
packed loop model. We show that this system exhibits
an ordered ground state, a smectic-like stripe phase with
a sliding symmetry, a random fully packed loop state,
and a disordered state with broken loops. The random
fully packed loop state can be mapped to Baxter’s three-
coloring problem, indicating that our system could be
used to create a physical realization of this problem. We
map out where these phases occur as a function of tem-
perature and interaction strength. Fully packed loops
on different lattices can be similarly realized with optical
arrays in which the number of potential wells in a trap
site is the same as its coordination number. Our results
should be generalizible to other systems of repulsively in-
teracting particles in a similar array of three-well traps,
such as for vortices in BEC’s interacting with optical ar-
rays, vortices in nanostructured type-II superconductors,

and ions in tailored trap arrays.

This work was carried out under the auspices of the
NNSA of the U.S. DoE at LANL under Contract No.
DE-AC52-06NA25396.
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