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Abstract

Transport of overdamped Brownian particles in a two-dimensional channel with non-straight

midline and narrow varying width is investigated in the presence of an asymmetric unbiased external

force. In the adiabatic limit, we obtain the analytical expression of the directed current. It is found

that the current is manipulated by changing the phase shift between the top and bottom walls of

the channel. As the phase shift is increased from 0 to π, the variation of the channel width decreases

and the current also decreases. Remarkably, the current is always zero when the phase shift is equal

to π, where the entropic barrier disappears. In addition, the temporal asymmetric parameter of

the unbiased force not only determines the direction of the current but also affects its amplitude.
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I. INTRODUCTION

Particle transport in narrow corrugated channels has attracted increasing attention in

recent years due to its important in many processes from biology and chemistry to nanotech-

nology [1]. Generally speaking, the corrugated channels fall into two categories depending on

the geometry of the channel wall: Smoothly corrugated channels [2–21] and compartmental-

ized channels [22–29]. In smoothly corrugated channels, the movement equation of Brownian

particles can be described by the Fick-Jacobs equation [2–21] which is derived from the three-

dimensional (3D) or two-dimensional (2D) Smoluchowski equation after elimination of y and

z coordinates by assuming equilibrium in the orthogonal directions. The reduction of the

coordinates can involve the appearance of entropic barrier and smoothly corrugated chan-

nels can also be called entropic channels. In contrast to the smoothly corrugated channels,

the compartmentalized channels have sharp boundary profiles. The diffusion of Brownian

particles in compartmentalized channels cannot be reduced to an effective one-dimensional

(1D) kinetic process directed along the axis.

Most studies have considered the corrugated channels with the straight midline. However,

the channels that occur in nature as a rule have a curved midline and artificially produced

channels do as well, the diffusion of Brownian particles in a 2D channel with non-straight

midline and varying width has attracted growing attention [30–34]. Diffusion in a 2D non-

straight midline channel can also be reduced to an effective 1D equation of motion and

the effective diffusivity includes a contribution that comes from variations in the channel

midline height y0(x) = [ω+(x) + ω−(x)]/2 as well as the well-known term stemming from

changes in the channel width h(x) = ω+(x) − ω−(x), where ω+(x) and ω−(x) are the top

and bottom walls of the channel respectively [30, 31]. Using the projection method, Dagdug

and Pineda [32] obtained a general expression for the effective diffusion coefficient for an

asymmetric 2D channel. In their later work [33], using Brownian dynamics simulation,

they evaluated the accuracy of the theoretical effective diffusion coefficient for 2D, tilted,

asymmetric, varying-width channels formed by straight walls and established the domain

of applicability of both the 1D description and the effective diffusion coefficient formulas.

Motivated by these works, we study the current induced by an asymmetric unbiased external

force in the 2D channel with the non-straight midline and varying width. We emphasize on

finding how the asymmetry of the unbiased force and the phase shift between the top and
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bottom walls of the channel affect the directed transport.

II. MODEL AND METHODS

We consider overdamped Brownian particles moving in a 2D channel with the curved

midline and narrow varying width(see Fig.2). The particles are subjected to an asymmetric

unbiased external force F (t) along the longitudinal x direction. Since most of the molecular

transport occurs in the overdamped regime, we can safely neglect inertial effect [34]. The

corresponding overdamped stochastic dynamics is described by the Langevin equations in

the dimensionless form:

η
dx

dt
= F (t) +

√

ηkBTξx(t), (1)

η
dy

dt
=

√

ηkBTξy(t), (2)

where x, y are coordinates, η the friction coefficient of the particle, T the temperature, and

kB the Boltzmann constant. ξx,y(t) is Gaussian white noise with zero mean and correlation

function: 〈ξi(t)ξj(t
′)〉 = 2δi,jδ(t − t′) for i, j = x, y. 〈· · ·〉 denotes an ensemble average over

the distribution of noise. The reflecting boundary conditions ensure the confinement of the

dynamics within the channel.

F(t) is an asymmetric unbiased external force [shown in Fig.1] along the x direction and

satisfies [20, 21, 35]

F (t) =











1+ε
1−ε

F0, nτ ≤ t < nτ + 1
2
τ(1− ε);

−F0, nτ + 1
2
τ(1− ε) < t ≤ (n + 1)τ ,

(3)

where τ is the period, F0 is the amplitude, and ε is the temporal asymmetric parameter

within [-1,1). The unbiased force means that its mean value is equal to zero (〈F (t)〉 = 0).

F(t) is temporal symmetric at ε = 0.

The shape of the channel is determined by its wall functions ω+(x) and ω−(x). The top

wall ω+(x) and the bottom ω−(x) are

ω+(x) = a(1− cosx) + b, (4)

and

ω−(x) = −{a[1 − cos(x+ ϕ)] + b}, (5)
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FIG. 1. Schematic diagram of the asymmetric unbiased external force. τ is the period, F0 is the

amplitude, and ε is the temporal asymmetric parameter.

where a is the parameter that controls the slope of the walls, b can control the channel

width at the bottleneck, and ϕ is the phase shift between the top and bottom walls. The

shapes of the channel are shown in Fig. 2 for different values of ϕ.

The dynamics of particles in confined channel can be described by the Fick-Jacobs equa-

tion which is derived from the 2D Smoluchowski equation after elimination of y coordinates

by assuming equilibrium in the transverse directions. The reduction of the coordinates may

involve not only the appearance of an entropic barrier but also the effective diffusion coef-

ficient. The effective diffusion coefficient in a narrow 2D channel with non-straight midline

and varying width is [30–33]

D(x) =
D0

1 + y′0(x)
2 + 1

12
h′(x)2

, (6)

where D0 = kBT/η and the prime stands for the first derivative of x. The width h(x) and

centerline y0(x) of the channel are respectively determined by

h(x) = ω+(x)− ω−(x), (7)

and

y0(x) = [ω+(x) + ω−(x)]/2. (8)
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FIG. 2. (color online). Schematic diagram of the channel with periodicity 2π for different values

of ϕ. (a) ϕ = 0. (b) ϕ = π/4. (c) ϕ = 3π/4. (d) ϕ = π. The solid lines (black) represent the top

and bottom walls, the dashed line (blue) represents the width, and the dash-dotted line (red) the

midline of the channel.

Note that if we use the Eq.(7) in reference [33], the same results are also obtained.

Considering the effective diffusion coefficient, the entropic barrier, and the asymmetric

unbiased external force, the Fick-Jacobs equation can be expressed as [2–8, 20, 21]

∂P (x, t)

∂t
=

∂

∂x
[D(x)

∂P (x, t)

∂x
+

D(x)

kBT

∂A(x)

∂x
P (x, t)] = −

∂j(x, t)

∂x
, (9)

where we define a free energy A(x) := E − TS = −F(t)x − kBT ln h(x). Here, E = −F(t)x

is the energy and S = kB ln h(x) is the entropy, where h(x) is the dimensionless width

of the channel. P(x,t) is the probability density of the particle at position x and time

t. It satisfies the normalization condition
∫ 2π
0 P(x, t)dx = 1 and the periodicity condition

P(x, t) = P(x+ 2π, t). j(x, t) is the probability current and it can be expressed as follows:

j(x, t) = −[D(x)
∂P (x, t)

∂x
+

D(x)

kBT

∂A(x)

∂x
P (x, t)]. (10)

If F (t) changes very slowly with respect to t, namely, its period is longer than any other

time scale of the system, there exists a quasisteady state. In this case, we can obtain the
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current [2–7, 20, 21, 36–42]

j(F (t)) =
1− exp(−2πF (t)

kBT
)

∫ 2π
0 exp[−A(x)

kBT
]dx

∫ x+2π
x D−1(y) exp[A(y)

kBT
]dy

. (11)

From Eq.(3), we can obtain the average current,

J =
1

τ

∫ τ

0
j(F (t))dt =

1

2
[(1− ε)j(

1 + ε

1− ε
F0) + (1 + ε)j(−F0)], (12)

which is the main mathematical result of this paper.

III. RESULTS AND DISCUSSIONS

We will firstly discuss the limitations of the approach they follow in terms of tube profile

and drive intensity. The Fick-Jacobs equation is effective for treating diffusion in a channel

when the wall shape ω(x) does not change too fast, i.e., the |ω′(x)| is small enough. The

Fick-Jacobs equation fails when |ω′(x)| is larger than 1 [8]. The ω′(x) in the present work

are 1
2π
sinx and − 1

2π
sin(x + ϕ). Both values of |ω′(x)| are in the interval [0, 1

2π
], so that the

reduced probability density P (x, t) obeys the Fick-Jacobs equation.

Similarly, as the external force increases, the particles are not homogeneously distributed

in the transverse direction and the Fick-Jacobs equation also fails [2, 13]. For our channel,

the validity criterion of the external force Fc is given by [5]

Fc =
kBTL

2(a+ b)2 + a2
[1−

a2

2
]. (13)

Submitting kBT = 0.5, L = 2π, a = 1
2π

and b = 0.25
2π

into Eq. (13), the Fc is roughly equal

to 30. In our paper, F0 = 1 , which is far less than Fc, so that the Fick-Jacobs equation

holds.

Figure 3 shows the current J as a function of the temporal asymmetric parameter ε of

the driving force for different values of ϕ. It is found that the current J is negative for ε < 0,

zero at ε = 0, and positive for ε > 0. Especially, for ε = −1, J=j (0)=0, therefore, when

ε < 0, there exists a value of ε at which the current J takes its extreme value (Fig.3(a)).

When ε > 0, the current J increases monotonously with the increase of ε (Fig.3(b)). Thus

we can obtain current reversals by varying the parameter ε.

Figure 4 describes the current J versus the phase shift ϕ for different values of a. It is

found that as ϕ is increased, the bell shaped structure in the current amplitude is presented.
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FIG. 3. (color online). Current J as a function of ε for different values of ϕ. (a) −0.9 ≤ ε ≤ 0. (b)

0 ≤ ε ≤ 0.9. The other parameters are a = 1/(2π), b = 0.25/(2π), kBT = 0.5, and F0 = 1.

When ϕ = 0 or 2π, the current J takes its maximum value. For ϕ = π, there is no change

in the width (Fig.2(d)), namely, h′(x) = 0, the effect of entropic barrier disappears. In

addition, the external force F(t) is unbiased and its mean value is equal to zero. These two

factors result in the current J goes to zero at ϕ = π. The results indicate that the phase

shift ϕ only controls the amplitude of the current.
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FIG. 4. (color online). Current J as a function of ϕ for different values a. (a) ε = 0.2. (b)

ε = −0.2. The other parameters are b = 0.25/(2π), kBT = 0.5, and F0 = 1.

In order to illustrate the competition between the asymmetric parameter ε and the phase

shift ϕ, the current contours on the ϕ-ε plane are shown in Fig.5. It is found that the
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FIG. 5. (color online). Current contours on the ϕ-ε plane at a = 1/2π, b = 0.25/2π, kBT = 0.5,

and F0 = 1.

current J is always positive for ε > 0, zero at ε = 0, and negative for ε < 0. Remarkably,

the current J is always zero at ϕ = π. The temporal asymmetry can control the direction

of the current, while the phase shift can only determine the amplitude of the current.

For a narrow symmetric channel with the straight midline (ϕ = 0), the channel width

h(x ) at the bottleneck is 2b and the current J is a peaked function of the radius at the

bottleneck. Especially, when b = 0, the bottleneck is zero. Thus the particles cannot pass

through the bottleneck, the current goes to zero [20, 21]. However, for a narrow asymmetric

channel with the non-straight midline (ϕ 6= 0), the position of the bottleneck not only

depends on x but also ϕ. As ϕ is increased, the position of the bottleneck moves to the left

(Fig. 6).

Figure 7 shows the current J as a function of the channel width b at the bottleneck for

different values of ϕ. When b → 0, the channel is blocked and the particle can not pass

from one cell to another, so the current J goes to zero. When b → ∞, the channel reduces

to a straight one and the effect of the channel shape disappears. Thus the current J tends

to zero. Therefore, there exists an optimized value of b at which the current J takes its

maximum value. Note that the peak values of the current move to the left with the increase
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of ϕ. It indicates that the current can be manipulated by changing the phase shift ϕ.
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FIG. 6. (color online). Channel width h(x) as a function of x at a = 1/(2π) and b = 0.25/(2π) for

the phase shift ϕ = 0 (solid), ϕ = π/4 (dotted), ϕ = π/2 (dashed), and ϕ = 3π/4 (dash-dotted).

Figure 8 shows the current J versus the amplitude F0 of the unbiased forces for different

values of ϕ. When F0 = 0, namely, there only exists the effect of the entropic barrier, so the

current J tends to zero. As F0 is increased, the current J tends to a certain value. Note

that the maximum value of the current decreases with the increase of ϕ.

IV. CONCLUDING REMARKS

In this paper, we study the transport of overdamped Brownian particles in a 2D channel

with the non-straight midline and narrow varying width in the presence of asymmetric

unbiased external force. Both the phase shift and the asymmetry of the unbiased force are

the two ways to controlling the current. The temporal asymmetric parameter of the unbiased

force not only determines the direction of the current but also affects the current amplitude.

The current is always positive for ε > 0, zero at ε = 0, and negative for ε < 0. Thus we

can obtain the current reversal by changing the asymmetric parameter ε. Remarkably, the

current is also manipulated by changing the midline, which can be changed by the phase
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FIG. 7. (color online). Current J as a function of b for different values of ϕ. (a) ϕ = 0. (b)

ϕ = π/4. (c) ϕ = π/2. (d) ϕ = 3π/4. The other parameters are a = 1/(2π), kBT = 0.5, ε = 0.2,

and F0 = 1.

shift between the top and bottom walls of the channel. As the phase shift is increased from

0 to π, the variation of the width decreases and the current also decreases. Especially, the

current is always zero at ϕ = π, this is because the channel width h(x) = 5
4π

at ϕ = π,

the entropic barriers disappear and the ratchet effect also disappears. The results we have

presented may have a wide application in many processes, such as transport in zeolites, and

nanostructures of complex geometry, controlled drug release, and diffusion in man-made

porous materials. In addition, It is very important to understand the novel properties of

these confined geometries, zeolites, nanoporous materials, and microfluidic devices, as well

as the transport behavior of species in these systems.
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