
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Free-energy power expansion for orientationally ordered
phases: Energy and entropy

Sergij V. Shiyanovskii
Phys. Rev. E 87, 060502 — Published 17 June 2013

DOI: 10.1103/PhysRevE.87.060502

http://dx.doi.org/10.1103/PhysRevE.87.060502


LS12872ER

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Free energy power expansion for orientationally ordered phases:

energy and entropy

Sergij V. Shiyanovskii

Liquid Crystal Institute and Chemical Physics Interdisplinary Program,

Kent State University, Kent, Ohio 44242

Abstract

We propose a new approach for description of orientational phase transitions that utilizes the

specific features of the orientational energy and entropy. The approach is applied to build a model

for nematic phases in materials with non-polar parallelepiped-type molecules with symmetry D2h.

The model operates with complex order parameters, generalizes the Landau-deGennes theory and

predicts the existence of a biaxial nematic phase for the forth order expansion of free energy.
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Introduction. An orientational order of anisometric molecules provides a rich variety of

phases and phase transitions in liquid crystals, polymers and other soft matter systems [1–

3]. Recently, orientational transitions in materials with molecules of complex non-symmetric

shape have attracted the strong interest because of the possibility of biaxial nematic phase,

see e.g. review [4]. However there is no commonly accepted view on the existence and

observation of the biaxial nematic phase in thermotropic liquid crystals yet. [5–11]. The

theoretical studies of the liquid crystal phases are usually performed within three approaches:

(1) the microscopic models where the specific intermolecular interaction is averaged over

orientations of neighboring molecules to produce the mean potential [12–14], (2) the Landau

phenomenological power expansion of the free energy in terms of the corresponding order

parameters (OPs) [1, 2, 15–17], and (3) computer simulations [18]. Orientationally-ordered

phases are often characterized by the multicomponent OPs, thus even the lowest fourth

order Landau expansion contains many terms, e.g. 14 terms for nematic phases [19].

In this Rapid Communication, we propose a new approach for description of orientational

phase transitions that utilizes the following specific features of the orientational energy

E and entropy S: (a) S possesses an additional symmetry in comparison with E, being

invariant under rotation of the molecular frame; and (b) E contributes only to the second

order terms because the pair molecular interaction is dominant. The approach is based on

minimization of the scaled orientational free energy F̄ = F/T = E/T − S instead of F

because F̄ obeys the standard assumption of the Landau theory that only the second order

terms are temperature dependent. We apply the approach to build a model for nematic

phases in materials with non-polar parallelepiped-type molecules with symmetry D2h. The

presented model introduces complex OPs, generalizes the Landau-de Gennes (LdeG) theory

and predicts the existence of a biaxial nematic phase for the fourth order expansion of F̄ .

General approach. We derive F̄ per molecule considering F̄ of the isotropic state as

zero reference point and using the same units for energy and temperature with the Boltz-

mann constant kB = 1. The orientational order is described either by symmetric traceless

tensor OPs [1, 15–17] or by the averaged Wigner D-functions
〈

DL
mk

〉

[13, 20–22]. We chose

the latter because DL
mk(Ω) form a complete set of orthogonal functions of the Euler angles

Ω = {ω1, ω2, ω3} [23]; Ω define the molecular orientation through rotation L
Ω−→ M from

the laboratory frame L to the molecular frame M. A set of OPs
〈

DL
mk

〉

obtained by aver-

aging with the single molecule orientational distribution function f(Ω) is complete and is
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equivalent to f(Ω)

f(Ω) =

∞
∑

L=0

2L+ 1

8π2

L
∑

m,k=−L

〈

DL
mk

〉

DL∗
mk(Ω) (1)

where DL∗
mk(Ω) = (−1)m−kDL

−m−k(Ω). OPs
〈

DL
mk

〉

provide a unified description of orienta-

tionally ordered phases: polar, nematic, and tetrahedral phases correspond to L = 1, 2, 3,

respectively.

Being scalars, E and S are invariant under the rotation L
Φ−→ L

′ from one laboratory

frame L to another L′ with the Euler angles Φ. If we neglect the intermolecular correlations,

E contains only the second order terms with the same L [22]

E = −1

2

∞
∑

L=1

L
∑

m,k=−L

UL(k1k2)
〈

DL
mk1

〉 〈

DL
−mk2

〉

(2)

where UL(k1k2) are the parameters of intermolecular interactions.

We assume that S possesses an additional symmetry: the expression for S does not depend

on the choice of the molecular frame and thus is invariant under the rotation M
Ψ−→ M

′
from

one molecular frame M to another M
′. The reason for this ’molecular isotropy’ is that S

is expressed through the invariant integral of the orientational distribution function fν(Ω
ν)

over the orientational space Ων of the ν molecules’ system

S = −ν−1

∫

fν(Ω
ν) log

[(

8π2
)ν
fν(Ω

ν)
]

dΩν . (3)

We can directly prove this assumption if we neglect the orientational correlations and

fν(Ω
ν) =

ν
∏

n=1

f(Ωn) , where Ωn is a set of the Euler angles of the nth molecule. Then

S = −
∫

f(Ω) log
[

8π2f(Ω)
]

dΩ, (4)

and we construct S as an invariant power series in
〈

DL
mk

〉

using the power expansion for

log (1 + x) in (4), where 1 stems from the term L = 0 in (1); expressions (4) and (1) remain

the same in different M and therefore the power series does not depend on M either.

In the standard models, the energy (2) usually contains OPs with one or few values of

L, L ∈ {L̄i}. In this case, we can a priory maximize S with respect to all
〈

DL
mk

〉

with

L /∈ {L̄i}. Then the maximized entropy S̄ remains invariant and contains only terms with

L ∈ {L̄i} that can be derived using their transformational properties.
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Thus the proposed approach contains the following steps: (a) selection of the orientational

OPs
〈

DL
mk

〉

that describe the phases of interest and determine the expression for orientational

energy E, (b) derivation of the invariant terms of S̄ that contain
〈

DL
mk

〉

, (c) determination

of the phase diagram by minimization of scaled free energy F̄ = E/T − S.

Free energy for nematics with molecular symmetry D2h.To illustrate our approach

and demonstrate how the invariant form of S̄ is derived, we present a model for nematic

phases in materials with molecular symmetry D2h. The nematic phases are described by the

OPs Rmk = 〈D2

mk〉 and by energy (2) with L = 2. D2h molecules in nematic phases have

four independent OPs, that have the simplest representation R00, R20 = R±20, R02 = R0±2,

R22 = R±2±2 in the molecular frame defined by the symmetry axes and planes and in the

laboratory frame along the directors [20, 21]. R00 and R20 describe, respectively, the uniaxial

and biaxial orientational orderings of the long molecular axis ê3 and related to the traceless

tensor order parameter Q = 〈ê3 ⊗ ê3〉 − I/3 [1, 3]. R02 and R22 describe, respectively,

the uniaxial and biaxial orderings of the short axes ê1,2 and are equivalent to the tensor

B = 〈ê1 ⊗ ê1 − ê2 ⊗ ê2〉 [14]. The scaled orientational energy Ē = E/T is defined as [22]

Ē = −u
2

[

R2

00
+ 2R2

20
+ 4γ (R00R02 + 2R20R22) + 4λ

(

R2

02
+ 2R2

22

)]

, (5)

where u = U2(00)/T is proportional to the inverse temperature and γ = U2(±20)/U2(00)

and λ = U2(±2,±2)/U2(00) are dimensionless parameters that describe the anisotropy of

intermolecular interaction [24].

The general expression of the power expansion of S̄ in Rmk

S̄ = −
∑

N,mn,kn

HN(m1, k1, ...mN , kN)

N
∏

n=1

Rmnkn (6)

is invariant with respect to the rotations of the laboratory L
Φ−→ L

′ and molecular M
Ψ−→ M

′

frames. Because of the independence of the rotations with Φ and Ψ , we present HN as

HN(m1, k1, ...mN , kN) =
∑

αβ

Hαβ
N hαN(m1, ...mN)h

β∗
N (k1, ...kN). (7)

Here Hαβ
N is an arbitrary numeric coefficient for an invariant term and hαN(m1, ...mn, ...mN)

is the αth solution of the equation

∑

mn

hαN (m1, ...mN )
N
∏

n=1

D2

mnln
(Φ) = hαN(l1, ...lN ). (8)
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for an arbitrary Φ. Using the standard exressions for the products of D-functions [23], we

obtain the solutions of (8)

hαN (m1, ...mN) =

N
∏

n=1

〈Mn−1m̄n−1 2mn|Mnm̄n〉 , (9)

where m̄n = m̄n−1+mn, M0 = m̄0 = MN = m̄N = 0, and α runs over αN pos-

sible sets {M1...MN−1} that provide non-zero products of Clebsch-Gordan coefficients

〈Mn−1m̄n−1 2mn|Mnm̄n〉 in (9), see Fig. 1. There is no solution for N = 1, and there

are single solutions for N = 2 and for N = 3. For higher orders N ≥ 4, the number of

solutions of (9) αN drastically increases: α4 = 5, α5 = 16, α6 = 65, etc. Thus expres-

sions (6),(7), and (9) contain α2

N invariant N th order terms, however these α2

N terms may

contain the same combinations of Rmk and the actual number of independent invariants is

substantially smaller.

We use MathematicaTM to analyze terms in S̄, (6), and have found that the fourth order

entropy S̄4 has 4 independent invariants:

S̄4 = −
(

a

2
I2 −

b

3
I3 +

c1
4
I2
2
+
c2
4
I4

)

(10)

where I2 = R2

00
+ 2 (R2

20
+R2

02
) + 4R2

22
, I3 = R3

00
+ 24R20R02R22 + 6R00 (2R

2

22
− R2

20
−R2

02
),

and I4 = J2

2
. J2 = 4 (R00R22 − R20R02) is the second order so-called psuedoinvariant because

it changes its sign under π/2 rotation around the long molecular axis or the long director.

The sixth order expansion has additional 7 terms:

S̄6 = S̄4 − (
d1
5
I2I3 +

d2
5
I5 +

e1
6
I3
2
+
e2
6
I2
3
+
e3
6
I2I4 +

e4
6
I6s +

e5
6
I6a), (11)

where I5 = J2J3, Is6 = J2

3
, J3 = 6R00R20R02 + 3R22 (R

2

00
− 2R2

20
− 2R2

02
) + 4R3

22
is the

third order pseudoinvariant, and Ia6 = 4 (R2

02
−R2

22
)
3
+ 3[(R2

00
+ 2R2

20
)
2
(R2

02
+ 2R2

22
) +

2 (R00R02 + 2R20R22)
2 (R2

00
+ 2R2

20
− 2R2

02
− 4R2

22
)]. The obtained invariants are similar to

the terms in Refs.[25, 26].

Expressions (6),(7), and (9) provide a general explicit form for the power expansion of the

maximized entropy S̄ for nematic OPs (L = 2). This form is further simplified by extracting

independent combinations of OPs taking into account the molecular symmetry D2h (10,11).

The method is straightforward and can be easily applied for phases with other orientational

OPs.
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Complex order parameters. To simplify analysis of nematic phases we introduce

uniaxial s̃ = R00 + i
√
2R02 = s eiα and biaxial p̃ =

√
2R20 + 2iR22 = p eiβ complex OPs,

where their phases α and β determine the ratios between the short and long molecular

axis orderings. s̃ and p̃ are equivalent to any set of four order parameters, systematized

in [27], e.g. s̃ = S + iU , p̃ = P + iF . They also allow us to build the complex tensor

OP C = Q + i√
3
B with the diagonal form

{

−
(

s̃−
√
3p̃
)

/3,−
(

s̃+
√
3p̃
)

/3, 2s̃/3
}

in the

laboratory frame along the directors.

Complex OPs provide several advantages. First, C determines any second-rank suscep-

tibility tensor χ̄ that is an orientational average of molecular tensor χ

χ̄ = χisoI+ Re [χ̃C] , (12)

where I is a unit tensor and χ̃ = χu − i
√
3χb/2. Here χiso = (χ1 + χ2 + χ3) /3, χu = χ3 −

(χ1 + χ2) /2 and χb = χ1−χ2 are, respectively, isotropic, uniaxial and biaxial combinations

of the diagonal components χi of the molecular tensor that is diagonal in the molecular

frame χij = χiδij .

Second, energy (5) and invariants In in (10,11) are even functions of the amplitude p;

e.g. Ē contains the defined above I2 = 3

2
Tr(CC∗) = s2 + p2 and the complex invariant

Ĩ2 =
3

2
Tr(C2) = s̃2 + p̃2:

Ē = −u
2

[

(1− ṽ − ṽ∗) I2 + ṽ Ĩ2 + ṽ∗Ĩ∗
2

]

(13)

= −u
2

{

s2 + p2 − 2v
[

s2 sinα sin(α− θ) + p2 sin β sin(β − θ)
]}

,

where ṽ = 1

2
− λ− i

√
2γ = v e−iθ is the complex parameter that describes the anisotropy of

intermolecular interaction, 0 ≤ θ ≤ π/2.

Third, the complex OP representation demonstrates that the presented model is a gen-

eralization of the LdeG theory [1, 15, 16], because the sixth order expansion F̄6 = Ē − S̄6

reduces to the LdeG theory under the assumption α = β = 0, that corresponds to the free

molecular rotation around the long axis. However, this assumption is not valid (does not

correspond to the absolute minimum) if γ 6= 0 or λ 6= 0, see below.

Phase diagram for uniaxial and biaxial nematics. The LdeG theory forbids Nb

phase in the fourth order expansion, allowing its existence only with the sixth order terms

[1, 15, 16]. However, in our model Nb phase already appears in the fourth order expansion

F̄4 = Ē − S̄4, which we analyze using s̃ = s eiα and p̃ = p eiβ representation
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F̄4 = F̄uni +
1

2
[g0 − g2 cos(2β − ψ)] p2 +

c1
4
p4 (14)

where

F̄uni =
s2

12
[6(a− u+ uv cos θ − uv cos(2α− θ))− 4bs cos 3α+ 3s2c1] (15)

and g0 = a− u+ uv cos θ+ (c1 + c2) s
2; g2 and ψ are, respectively, the amplitude and phase

of the complex term g2 e
iψ = uv cos θ+ c2s

2 − 2bs cosα+ i[uv sin θ+2s(b+ c1s cosα) sinα] .

The uniaxial phase is described by su and αu, obtained by minimization of Funi, (15).

The last two terms in F̄uni create 2-fold and 3-fold radial valleys in polar coordinates (s, α)

with minima at α = πn + θ/2 and α = 2πn/3, respectively. Thus the absolute minimum

corresponds either to calamitic phase, 0 < α < θ/2, if 0 ≤ θ ≤ π/3, or to discotic phase,

π + θ/2 < α < 2π/3 if π/3 ≤ θ ≤ π/2. The phase transition between calamitic and discotic

phases is impossible because the balance between them is not affected by temperature factor

u. Below we consider the case, when 0 ≤ θ ≤ π/3 and the uniaxial phase is calamitic with

0 < α < θ/2 ≤ π/6.

To simplify analysis of (14,15), we set a = c1 = 1 without losing generality, because

(14,15) transform into the normalized free energies
(

F̂4, F̂uni

)

=
(

F̄ , F̄uni
)

a2/c1, with nor-

malized OP amplitudes (ŝ, p̂) = (s, p)
√

c1/a and parameters b̂ = b/
√
c1a, ĉ2 = c2/c1,

û = u/a = T ∗/T , where T ∗ is the low temperature limit of the metastable isotropic phase;

parameter ṽ = v e−iθ and phases α, β, ψ remain unchanged. The normalization also allows

us to analyze the nematic phases only when û < 1.6, because the temperature range of

nematic phases rarely exceeds 150◦.

For small v, both Nu and Nb phases occur; typical temperature dependencies of OPs

are shown in Fig.2. The Nb phase is enclosed by two Nu phases with second order phase

transitions between them, Nu
2↔ Nb, Fig.2.

When θ < π/4, the effect of θ on the phase diagram is rather small, because α / θ/8 and

β = ψ/2 ≈ π/2, Fig.2. Figure 3 presents phase diagrams in {v, û} coordinates for several sets

of {b̂, ĉ2} parameters, when θ = 0 and F̂4 reaches the minimum at α = 0 and β = π/2. Nb

phase occurs if v < vb = (b̂2−4ĉ2+2
√

b̂2 − 2b̂2ĉ2 + 4ĉ2)/(8−2b̂2). Nb phase appears under the

cooling (û increasing) throughNu
2↔ Nb transition when vb > v > vt = b̂2 (3− 2ĉ2) /(9−2b̂2),

or through I
1↔ Nb transition when v < vt; {vt, ût = 1− 2b̂2/9} is the triple point. If ĉ2 > 0,
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the further cooling can result in the second low-temperature Nu phase either through the

second order transition, Nb
2↔ Nu or through the first order transition, Nb

1↔ Nu, Fig.3. The

temperature range of Nb phase is enhanced by b̂ and is suppressed by ĉ2 and v. The shape of

the phase diagrams in Fig.3 is similar to that observed in lyotropic materials [28]. However,

this similarity should not be overstated as both calamitic and discotic uniaxial phases are

present and may be caused by micelle shape transformation that effectively changes the

interaction between micelles [28].

The obtained results clearly demonstrate why the LdeG theory shows no Nb phase for

the fourth order expansion. The LdeG theory corresponds to the assumption β = 0 where

as the minimum of F̄4 for Nb phase occurs when β = ψ/2 ≈ π/2.

Conclusions. We demonstrated a new approach for description of orienational phase

transitions. The approach provides a straightforward method for minimization of scaled free

energy F̄ = E/T − S in the space of selected orientational OPs that describe the phases

of interest. We applied this approach for nematic phases with molecular symmetry D2h

building a model that generalizes the LdeG theory and predicts the biaxial Nb phase for the

fourth order expansion of F̄ . F̄ has only the second order temperature dependent term in

other theoretical models, e.g. Bragg-Williams theory, and may be useful for description of

various types of phase transitions.
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Figure Captions

FIG. 1 Chains of arrows represent the solutions (9); each arrow {Mn−1,Mn} corresponds

9



to 〈Mn−1m̃n−1 2mn|Mnm̃n〉.
FIG. 2. (Color online) Temperature dependencies of normalized OP amplitudes ŝ, p̂

(solid) and OP phases α, β (dashed) in Nu (thin) and Nb (thick) phases for b̂ = 0.5,

ĉ2 = 0.2, v = 0.09, and θ = π/18. The vertical line at ûiu = T ∗/Tiu, corresponds to the

phase transition between isotropic and Nu phases at the temperature Tiu. Note that ŝ = 0.37

at ûiu, thus the normalization factor for ŝ and p̂ is close to 1.

FIG. 3 (Color online) Phase diagrams in {û, v} plane for θ = 0 and different sets of b̂ and

ĉ2: (1) b̂ = 0.5, ĉ2 = 0.0; (2) b̂ = 0.5, ĉ2 = 0.2; (3) b̂ = 0.6, ĉ2 = 0.2. Curves correspond to

phase transitions: I
1↔ Nu (thin solid), I

1↔ Nb (thick solid), Nu
2↔ Nb (dotted), Nu

1↔ Nb

(dashed).
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