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Abstract

In this paper, using the Darboux transformation, we demonstrate the gener-
ation of first order breather and higher order rogue waves from a generalized
nonlinear Schrödinger equation with several higher order nonlinear effects
representing femtosecond pulse propagation through nonlinear silica fibre.
The same nonlinear evolution equation can also describes the soliton type
nonlinear excitations in classical Heisenberg spin chain. Such solutions have
a parameter γ1 denoting the strength of the higher order effects. From the nu-
merical plots of the rational solutions, the compression effects of the breather
and rogue waves produced by γ1 are discussed in detail.
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1. Introduction

It is well known that one of the most challenging aspects of modern
science and technology is the nonlinear nature of the system, which is con-
sidered to be fundamental to the understanding of many natural phenomena.
In recent years, nonlinear science has emerged as a powerful subject for ex-
plaining the mysteries of the challenging nature. Nonlinearity is a fascinating
occurrence of nature whose importance has been well appreciated for many
years, in the context of large amplitude waves or high intensity laser pulses
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observed in various fields ranging from fluids to solid state, chemical, bio-
logical, nonlinear optical and geological systems [1, 2, 3, 4, 5, 6, 7, 8, 9].
This fascinating subject has branched out in almost all areas of science, and
its applications are percolating through the whole of science. In general,
nonlinear phenomena are often modeled by nonlinear evolution equations
exhibiting a wide range of high complexities in terms of different linear and
nonlinear effects. In recent years, the advent of high-speed computers, many
advanced mathematical software and development of many sophisticated and
systematic analytical methods in the study of the nonlinear phenomena and
also supported by many experiments have encouraged both theoretical and
experimental research. In the last few decades or so, nonlinear science has
experienced an explosive growth by the invention of several exciting and fas-
cinating new concepts like solitons, dispersion managed solitons, dromions,
rogue waves, similaritons, supercontinuum generation, complete integrabil-
ity, fractals, chaos etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Many of the completely
integrable nonlinear partial differential equations (NPDEs) admit one of the
most striking aspects of nonlinear phenomena called as soliton, which de-
scribe soliton as a universal character and they are of great mathematical
as well as physical interest too. The study of the solitons and other related
issues of the construction of the solutions to a wide class of NPDEs have
become one of the most exciting and extremely active areas of research in
science and technology for many years.

In addition to several developments in soliton theory, recent develop-
ments in modulational instability (MI) have also been widely used to ex-
plain why experiments involving white coherent light supercontinuum gener-
ation(SCG), admit a triangular spectrum. Such universal triangular spectra
can be well-described by the analytical expressions for the spectra of Akhme-
diev breather solutions at the point of extreme compression. In the context
of the NLS equation, Peregrine already in [12] had identified the role of MI in
the formation of patterns resembling freak waves or rogue wave (RW); these
theoretical results were later supported by several experiments. Rogue waves
in ocean are localized large amplitude waves on a rough background, which
have two remarkable characteristics: a) “appear from nowhere and disappear
without a trace” [13], b) exhibit one dominant peak. RWs have recently ap-
peared in several areas of science. Particularly in photonic crystal fibres,
RWs have been well established in connection with SCG [14]. This actually
has stimulated research for RWs in other physical systems and has paved the
way for many important applications, including the control of RWs by means
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of SCG [15, 16], as well as studies in superfluid Helium [17], Bose Einstein
condensates [18], plasmas [19, 20], microwave [21], capillary phenomena [22],
in telecommunication data streams [23], inhomogeneous media [24], water
experiments [25, 26], and so on. More recently, Kibler et al. [27] using their
elegant experimental apparatus in optical fibres were able to generate fem-
tosecond pulses with strong temporal and spatial localization and near-ideal
temporal Peregrine soliton characteristics.

In the recent past, several equations have been shown to admit the rogue
wave solutions. For example, in addition to the NLS equation, the Hirota
equation [28, 29, 30], the first type derivative NLS equation [31], the third
type DNLS equation [32], the Fokas-Leneels equation [33], the NLS-MB equa-
tions [34], the Hirota Maxwell-Bloch(MB) equations [35],the Sasa-Satsuma
equation [36], the discrete Ablowitz-Ladik and Hirota equation [37], the two-
component NLS equations [38, 39, 40],the three-components NLS equations
[41], the variable coefficient NLS [42, 43, 44, 45, 46], the variable coefficient
derivative NLS[47], and the variable coefficient higher order NLS(VCHNLS)
[48],the rogue waves in dissipative systems [49]are a few of the nonlinear evo-
lution equations which admit RWs. From the above studies, it is clear that
one of the possible generating mechanisms[50] for the higher order RW is
the interaction of the multiple breathers possessing the same and the very
particular frequency of the underlying equation.

In recent years, there has been a considerable interest in the study of
the nonlinear excitations of the spin chains with competing bilinear and bi-
quadratic interactions. In particular, the complete integrability and nonlin-
ear excitations of spin chains with spin magnitude S >1 has been established
if suitable polynomials in (Si, Sj) are added to the original bilinear Heisen-
berg spin Hamiltonian. In this connection and also from the mathematical
point of view, it is of interest to study the influence of the biquadratic interac-
tions on the integrability of the Heisenberg bilinear spin chain in the classical
limit as well. Considering the above points, one of the authors of this pa-
per, has investigated the integrability aspects of a classical one-dimensional
isotropic biquadratic Heisenberg spin chain in its continuum limit up to or-
der O(a4) in the lattice parameter through a classical differential geometric
approach [51, 52, 53] and investigated the soliton and integrability aspects
of the corresponding generalized nonlinear Schrödinger Equation (GNLSE).
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This equation is given by [51]

iqt+qxx+2q|q|2+γ1
(
qxxxx + 6q2xq

∗ + 4q|qx|2 + 8|q|2qxx + 2q2q∗xx + 6|q|4q
)

= 0.
(1)

Here q(x, t) is the complex envelope and γ1 denotes the strength of higher
order linear and nonlinear effects. When we consider the propagation of ultra
short pulse propagation through optical fibre, i.e, less than 100 fs pulses, it
has been shown that higher order dispersion, self steepening, self frequency
and quintic effects should be included in the model. The above equation
has been shown to be integrable and admits exact soliton solutions and also
gauge equivalent to Heisenberg spin chain equation. Thus it is an interesting
problem to find how these higher order terms will affect the breather and
rogue wave in an associated optical system/ spin system by means of changing
the value of γ1. It is our prime aim to answer this problem in this paper.

The paper is organized as follows. In Section 2, the Lax pair and the
Darboux transformation (DT) are introduced. In Section 3, we shall give
the first order breather and it’s limit of infinitely large period. In Section 4,
higher order rogue waves are given. The compression effects on the breather
and rogue waves produced by the higher order terms of GNLSE are given in
sections 3 and 4 respectively. Section 5 is devoted to conclusions.

2. Lax Pair and Darboux transformation

As discussed above, in this section, we would like to recall the Lax pair
of GNLSE[51, 52, 53]and to show its Darboux transformation. According to
the AKNS formalism, Lax pair for eq.(1) is written as

Φx = MΦ,Φt = NΦ (2)

with the following matrixes

M = iλU0 + U1 = iλ

(
−1 0
0 1

)
+

(
0 q
−q∗ 0

)
=

(
−iλ q
−q∗ iλ

)
,

and N = 8iγ1V4 − 2iV2. Here

V2 =

(
λ2 − 1

2
qq∗ iqλ− 1

2
qx

−iq∗ λ− 1
2
q∗x −λ2 + 1

2
qq∗

)
, V4 =

(
A4 B4

C4 −A4

)
,
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A4 =λ4 − 1

2
qq∗λ2 +

i

4
(qq∗x − qxq∗)λ+

1

8
(3q2q∗2 + q∗ qx,x + qq∗x,x − qxq∗x),

B4 =iqλ3 − 1

2
qxλ

2 − i

4

(
qx,x + 2q2q∗

)
λ+

1

8
(qx,x,x + 6 qq∗ qx),

C4 =− iq∗ λ3 − 1

2
q∗xλ

2 +
i

4

(
q∗x,x + 2qq∗2

)
λ+

1

8
(q∗x,x,x + 6qq∗ q∗x).

Moreover,

Φ(λ) =

(
φ(λ)
ψ(λ)

)
=

(
φ(λ;x, t)
ψ(λ;x, t)

)
denotes the eigenfunction of Lax pair eq.(2) associated with λ.

The Lax pair of GNLSE provides a basis for the solvability of this equa-
tion by means of the Darboux transformation. To construct the n-fold DT, it

is necessary to introduce 2n eigenfunctions fi =

(
fi,1
fi,2

)
= Φ(λi) associated

with eigenfunction λi(i = 1, 2, · · · , 2n) and satisfy corresponding reduction
condition λ2k = λ∗2k−1 as we have done for the NLS equation[54, 55]. Further-
more, a similar n-fold DT determinant representation derived for the NLS
equation as given in [54? ] For example, from the one-fold DT, we get

q[1] = q[0] − 2 i∆1

∆2

, (3)

with λ1 = ξ+iη, λ2 = λ∗1 = ξ−iη, f2,1 = −f ∗1,2, f2,2 = f ∗1,1,∆1 =

∣∣∣∣ f1,1 λ1f1,1
f2,1 λ2f2,1

∣∣∣∣ =

−2 if1,1f2,1η,∆2 =

∣∣∣∣ f1,1 f1,2
f2,1 f2,2

∣∣∣∣ = f1,1f2,2 − f1,2f2,1.

3. The first order breather and its limit

In this section, we first solve the eigenfunctions associated with a periodic
seed q[0], and then use it to get a first order breather by using the determinant
representation of one-fold DT in eq.(3). Further, this breather implies a first
order rogue wave in the limit of infinitely large period. These two solutions
have γ1 explicitly such that we can use it to study the effects of breather and
rogue waves affected by the higher order terms.

Considering a periodic solution in following form

q[0] = ceiρ (4)
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with ρ = ax + bt, b = (a4 − 12a2c2 + 6c4) γ1 + 2 c2 − a2. By the method of
separation of variables and the superposition principle, we have the following
eigenfunction associated with q[0]

f1,1 = k1ce
i( ρ

2
+d) + ik2

(a
2

+ h+ λ
)

ei(
ρ
2
−d), (5)

f1,2 = k2ce
−i( ρ

2
+d) + ik1

(a
2

+ h+ λ
)

e−i(
ρ
2
−d), (6)

with, h =
√
c2 +

(
λ+ a

2

)2
= hR + ihI ,k1 = eih(s1 ε+s2 ε

2), k2 = e−ih(s1 ε+s2 ε
2),

d = γ1
(
a
(
a2 − 6 c2

)
− 8λ3 + 4 aλ2 +

(
4 c2 − 2 a2

)
λ
)
ht+ (x+ (2λ− a) t)h

=
(
x+

(
2λ− a+ γ1

(
a
(
a2 − 6 c2

)
− 8λ3 + 4 aλ2 +

(
4 c2 − 2 a2

)
λ
))
t
)
h

= (x+ (dR + idI)t)h

Using the one-fold DT,a first order breather is constructed in the form

q[1] =

(
c+

2η
{

[w1 cos (2G)− w2 cosh (2F )]− i
[(
w1 − 2c2

)
sin (2G)− w3 sinh (2F )

]}
w1 cosh (2F )− w2 cos (2G)

)
eiρ,

(7)

with w1 = c2 + (hI + η)2 + (ξ + hR + a
2
)2, w2 = 2c(hI + η), w3 = 2c(ξ +

hR + a
2
), F = xhI + (dRhI + dIhR) t, G = xhR + (dRhR − dIhI)t. This is

a periodic traveling wave. The coefficient γ1 can affect the period of the
breather through G.

It is trivial to find
|q[1]|2(0, 0) = (c+ 2η)2,

which is the height of peaks of this breather. Obviously, the height is in-
dependent of a, ξ and γ1. This does not mean that γ1 cannot affect the
properties of the breather. In fact, we can see from eq.(7) that γ1 actually
controls the period of the breather. This observation can be clearly seen in
Figure 1: the number of peaks on same time interval is increasing when γ1
goes up from 0 to 3 with a constant gap 0.5. These pictures clearly show
that the resulting breather is compressed by the higher order effects due to
the presence of γ1 than γ1 = 0 case.In addition to the above, when the value
of γ1 increases, the number of peaks also increases. We use a short interval
in Figure 1(a) and (b) to avoid too many peaks in it.

Now we can consider what will happen in a breather when its period goes
to infinity. According to the explicit expression in eq.(7) of the first order
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breather, this limit can be realized by setting λ = ξ + iη → λ0 = −a
2

+ ic,

i.e., limλ→λ0 q
[1]. For simplicity, on setting a = 0 , the limit of the breather

solution is obtained as

q
[1]
limit =

(
4(1 + iT )

X2 + T 2 + 1
− 1

)
cei2c

2(3 γ1c2+1)t, (8)

with T = 4 (1 + 6 γ1c
2) c2t, X = 2cx. This is nothing but a first order rogue

wave possessing asymptotic height 1 when x and t go to infinity. Further we
find |q[1]limit|2max(0, 0) = 9c2, which denotes the height of a first order RW.
We can see from T that,like in the case of breather compression, γ1 also
responsible for compression effect of RW in the time direction, which is clearly
seen in Figure 2 with γ1 = 0, 0.5, 1, 1.5 respectively.

4. Higher order Rogue Waves

The limit method in eq.(8) is not applicable for the higher order breather
when λi → λ0(i ≥ 2). We can overcome this problem by using the coefficient
of the Taylor expansion in the determinant representation of a higher order
breather q[n] [50, 55]. Similar to the case of NLS [50], the first order rogue
wave of GNLSE is given by

q[1]rw =

(
F1 + iG1

H1

− 1

)
ceiρ. (9)

Here F1 = 4, G1 = 16 (1 + 6 γ1c
2 − 6 a2γ1) c

2t,

H1 =4 c2x2 +
(
32 c2γ1a

3 − 16 c2
(
1 + 12 γ1c

2
)
a
)
xt+ (64 c2γ1

2a6

− 64 c2γ1
(
1 + 3 γ1c

2
)
a4 + 16 c2

(
1 + 12 γ1c

2 + 72 c4γ1
2
)
a2

+ 16 c4
(
6 γ1c

2 + 1
)2

)t2 + 1.

Note that q
[1]
rw reduces to the q

[1]
limit when a = 0.

What follows is the second-order rogue wave given by the Taylor expan-
sion when λi → λ0(i = 1, 3) as the case of NLS[50]. There are two patterns
for the second order RW. The first one is called the fundamental pattern
possessing a highest peak surrounded by four small equal peaks in two sides.
Setting a = 0, s1 = 0, then the Taylor expansion in the determinant of q[2]

provides

q[2]rw =

(
12(F2 + iG2)

H2

− 1

)
cei2c

2(3 γ1c2+1)t. (10)
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Here

F2 =5T 4 +
(
6X2 + 34

)
T 2 − 64Ttc2 +X4 + 6X2 − 3,

G2 =T 5 +
(
2X2 + 10

)
T 3 − 32 tc2T 2 +

(
X4 − 14X2 − 23

)
T + 32 tc2

(
X2 + 1

)
,

H2 =T 6 +
(
3X2 + 43

)
T 4 − 64 tc2T 3 +

(
3X4 − 66X2 + 307

)
T 2

+
(
192 c2tX2 − 1088 tc2

)
T + 1024 c4t2 +X6 + 3X4 + 27X2 + 9,

and X,T are defined in eq.(8). By comparing two cases with γ1 = 0 and
γ1 = 1 in Figure 3, the compression effect in t direction is shown clearly. The
second is a triangular pattern, which consists of three equal peaks. Setting
s2 = 0,a = 0, s1 = 50− 50i, then an explicit formula of this pattern is

q
[2]
rwtrig =

(
1− 12(F2trig + iG2trig)

H2trig

)
cei2c

2(3 γ1c2+1)t, (11)

with

F2trig = 5T 4 +
(
24
(
1 + 6 γ1c

2
)
tc2X2 + 24

(
34 γ1c

2 + 3
)
tc2 + 1200 c2

)
T

−3 + 1200 c2X + 6X2 +X4,

G2trig = T 5 +
(
8
(
1 + 6 γ1c

2
)
tc2X2 + 8

(
1 + 30 γ1c

2
)
tc2 + 600 c2

)
T 2

+4
(
1 + 6 γ1c

2
)
tc2X4 +

(
−24

(
1 + 14 γ1c

2
)
c2t− 600 c2

)
X2

+4800
(
1 + 6 γ1c

2
)
c4tX − 12

(
5 + 46 γ1c

2
)
c2t− 600 c2,

H2trig = T 6 + 3X2T 4 +
(
12
(
86 γ1c

2 + 9
)
tc2 + 1200 c2

)
T 3

+
(
3X4 + 3600 c2X

)
T 2 −

(
3600 c2 + 72

(
22 γ1c

2 + 1
)
tc2
)
X2T

+X6 + 3X4 + 27X2 + 14400 c4
(
34 γ1c

2 + 3
)
t

+144
(
11 + 228 γ1c

2 + 1228 γ1
2c4
)
t2c4 + 720000 c4

−1200X3c2 + 3600 c2X + 9,

and X,T are defined in eq.(8). Figure 4 is plotted for the |q[2]rwtrig|2 to show its
compression effect. Because of the explicit appearance of t in F2, G2, H2, F2trig,

G2trig, H2trig, q
[2]
rw and q

[2]
rwtrig one can not be able to derive from the corre-

sponding RWs of the NLSE by a mere scalar transformation of x, t.
Next, we construct the third order RW of GNLSE by substituting present

fi(i = 1, 2, · · · , 6) in q[3][50]. There exists are three patterns: a fundamental

pattern q
[3]
rw with s1 = s2 = 0, a triangular pattern q

[3]
rwtrig with a = s2 = 0

and a circular pattern q
[3]
rwcirc with a = s1 = 0. The explicit form q

[3]
rw of
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the fundamental pattern with the third order RW is given in appendix and,
for brevity, the very lengthy forms of other two cases are deleted. Note
that q

[3]
rw includes the t dependence explicitly. This fact shows as the second

order RW solution cannot be obtained from the corresponding solution of
the NLS equation by a scalar transformation of x, t. Furthermore, to show
the compression effect on the RWs, Figures (5-7) are plotted for different
parametric choices.

5. Conclusions

In this paper, we considered the integrable version of the generalized non-
linear Schrödinger equation with several higher order nonlinear terms which
describes ultra short pulse propagation through nonlinear silica fibre and
soliton type nonlinear excitations in classical Heisenberg spin chain. Using
Daurboux transformation and periodic seed solutions, we have constructed
the first order breather solution and also discussed the behavior of these so-
lutions with an infinitely large period. Finally, we have also constructed the
first order, second order and third order rogue wave solutions by the Taylor
expansion. All of these solutions have parameter γ1 denoting the contribution
of higher order nonlinear terms. The compressed effects of these solutions
are discussed through numerical plots by increasing the value of γ1. This
new phenomenon of the rogue wave is useful for us to observe or analyze
its evolution in some complicated physical system. Another advantage of
our results of this paper is that, as GNLSE is equivalent to spin chain, the
rogue wave nature of spin systems can also be explained through suitable
geometrical/ gauge equivalence method. In addition, as higher order linear
and nonlinear effects in optical fibres are playing key role in explaining the
generation and propagation of ultra short pulse through a silica wave guides,
we hope that our results with all these higher order effects can be observed
in real experiments in the near future.
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Appendix

q[3]rw =

(
24(F3 + iG3)

H3
+ 1

)
ce2 ic

2(3 γ1c2+1)t

F3 = 11T 10 + 45X2T 8 + 180
(
130 γ1c

2 + 11
)
tc2T 7 +

(
70X4 + 420X2

)
T 6

+
(
50X6 + 480

(
15300 γ1

2c4 + 2508 γ1c
2 + 73

)
t2c4

)
T 4 − 600

(
38 γ1c

2 + 1
)
tc2X4T 3

+
(
15X8 + 7200

(
2460 γ1

2c4 + 308 γ1c
2 + 15

)
t2c4X2

)
T 2

+
(
−240

(
38 γ1c

2 + 1
)
tc2X6 − 28800

(
4056 c6γ1

3 + 17 + 300 γ1
2c4 + 210 γ1c

2
)
t3c6

)
T

+X10 + 15X8 + 210X6 +
(
−7200

(
220 γ1

2c4 + 20 γ1c
2 − 1

)
t2c4 − 450

)
X4

+
(
−43200

(
628 γ1

2c4 + 124 γ1c
2 + 5

)
t2c4 − 675

)
X2 + 675

+10800
(
2452 γ1

2c4 + 28 γ1c
2 − 3

)
t2c4
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G3 =T 11 + 5X2T 9 + 20
(
102 γ1c

2 + 5
)
tc2T 8 +

(
10X4 − 60X2

)
T 7

+
(
10X6 + 480

(
12 γ1

2c4 − 268 γ1c
2 − 29

)
t2c4

)
T 5 − 120

(
82 γ1c

2 + 7
)
tc2X4T 4

+
(
5X8 + 1440

(
4524 γ1

2c4 + 548 γ1c
2 + 19

)
t2c4X2

)
T 3 +

(
− 80

(
90 γ1c

2 + 7
)
tc2X6

−5760
(
99432 c6γ1

3 + 28676 γ1
2c4 + 3086 γ1c

2 + 107
)
t3c6

)
T 2

+
(
−7200

(
14 γ1c

2 + 1
)2
t2c4X4 +X10

)
T − 60

(
14 γ1c

2 + 1
)
tc2X8

+120
(
2 γ1c

2 − 5
)
tc2X6 − 1800

(
10 γ1c

2 + 3
)
tc2X4

+
(
57600

(
−126 γ1c

2 + 1176 c6γ1
3 − 564 γ1

2c4 − 7
)
t3c6 + 2700

(
170 γ1c

2 + 7
)
tc2
)
X2

+18900
(
14 γ1c

2 + 1
)
tc2 − 14400

(
11 + 1254 γ1c

2 + 18084 γ1
2c4 + 84168 c6γ1

3
)
t3c6

H3 =T 12 + 6X2T 10 + 24
(
206 γ1c

2 + 21
)
tc2T 9 +

(
15X4 + 270X2

)
T 8

+
(
20X6 + 720

(
7596 γ1

2c4 + 1636 γ1c
2 + 83

)
t2c4

)
T 6 − 240

(
42 γ1c

2 − 1
)
tc2X4T 5

+
(
15X8 + 8640

(
3012 γ1

2c4 + 492 γ1c
2 + 25

)
t2c4X2

)
T 4

+
(
−240

(
82 γ1c

2 + 3
)
tc2X6 − 57600

(
3048 c6γ1

3 − 2604 γ1
2c4 − 450 γ1c

2 − 17
)
t3c6

)
T 3

+
(
6X10 − 21600

(
548 γ1

2c4 + 76 γ1c
2 + 1

)
t2c4X4

)
T 2

+
(
172800

(
46968 c6γ1

3 + 11196 γ1
2c4 + 906 γ1c

2 + 29
)
t3c6X2

−360
(
22 γ1c

2 + 1
)
tc2X8

)
T

+X12 + 6X10 + 135X8 +
(
2880

(
1324 γ1

2c4 + 164 γ1c
2 + 3

)
t2c4 + 2340

)
X6

+
(
−43200

(
428 γ1

2c4 − 12 γ1c
2 − 5

)
t2c4 + 3375

)
X4

+
(
−64800

(
2500 γ1

2c4 + 492 γ1c
2 + 9

)
t2c4 + 12150

)
X2 + 2025

+64800
(
7260 γ1

2c4 + 772 γ1c
2 + 23

)
t2c4

+172800
(
213 + 8056 γ1c

2 + 720096 c6γ1
3 + 115128 γ1

2c4 + 1836624 γ1
4c8
)
t4c8
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(a) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 1 (b) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 1

(c) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 1 (d) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 3
2

(e) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 2 (f) a = ξ = 0, c = 2
5 , η = 1

2 , γ1 = 3

Figure 1: (Color online) The dynamical evolution of the first order breather |q[1]|2 on the
(x, t)-plane. When the value of γ1 increases, the number of peaks on same interval of time
also increases.
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(a) c = 1
2 , γ1 = 0 (b) c = 1

2 , γ1 = 1
2

(c) c = 1
2 , γ1 = 1 (d) c = 1

2 , γ1 = 2

Figure 2: (Color online) The dynamical evolution of the first order rogue wave |q[1]limit|2
on the (x, t)-plane. For larger values of γ1, it is clear that the compression effects in t
direction are quite high.
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(a) a = s1 = 0, c = 1√
2
, γ1 = 0 (b) a = s1 = 0, c = 1√

2
, γ1 = 0

(c) a = s1 = 0, c = 1√
2
, γ1 = 1 (d) a = s1 = 0, c = 1√

2
, γ1 = 1

Figure 3: (Color online) The dynamical evolution of the second order rogue wave |q[2]rw|2
on the (x, t)-plane. Comparing of (a) and (b) with (c) and (d) indicates effective high
compression in the t direction.
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(a) a = 0, c = 1√
2
, s1 = 50−

50i, γ1 = 0

(b) a = 0, c = 1√
2
, s1 = 50− 50i, γ1 = 0

(c) a = 0, c = 1√
2
, s1 = 50− 50i, γ1 = 1

4 (d) a = 0, c = 1√
2
, s1 = 50− 50i, γ1 = 3

4

Figure 4: (Color online) The dynamical evolution of the second order rogue wave |q[2]rwtrig|2
on the (x, t)-plane. It is shown from (b),(c) and (d) that rogue wave compression increases
as the value of γ1 increases.
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(a) a = s1 = 0, c = 1√
2
, γ1 = 0 (b) a = s1 = 0, c = 1√

2
, γ1 = 0

(c) a = s1 = 0, c = 1√
2
, γ1 = 1

4 (d) a = s1 = 0, c = 1√
2
, γ1 = 1

2

Figure 5: (color online) The dynamical evolution of the third order rogue wave |q[3]rw|2 on
the (x, t)-plane. By comparison with (a) and (b), (c) and (d) are highly compressed.
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(a) c = 1√
2
, s1 = −50i, γ1 = 0 (b) c = 1√

2
, s1 = −50i, γ1 = 0

(c) c = 1√
2
, s1 = −50i, γ1 = 1

4 (d) c = 1√
2
, s1 = −50i, γ1 = 3

4

Figure 6: (Color online)The dynamical evolution of the third order rogue wave |q[3]rwtrig|2
on the (x, t)-plane. It is shown from (b),(c) and (d) that rogue wave is compressed more
while increasing the value of γ1.
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(a) a = 0, c = 1√
2
, s2 = 5000i, γ1 = 0 (b) a = 0, c = 1√

2
, s2 = 5000i, γ1 = 0

(c) a = 0, c = 1√
2
, s2 = 5000i, γ1 = 1

4 (d) a = 0, c = 1√
2
, s2 = 5000i, γ1 = 1

Figure 7: (Color online) The dynamical evolution of the third order rogue wave |q[3]rwcirc|2
on the (x, t)-plane. It is shown from (b),(c) and (d) that rogue wave is changing its shape
and also compression increases by increasing the value of γ1.
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