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We study the dynamics of dipolar gas in deep lattices described by a nonlocal nonlinear discrete
Gross-Pitaevskii equation. The stabilities and the propagation properties of travelling plane waves
in the system with defects are discussed in detail. For a clean lattice, both energetic and dynamical
stabilities of the travelling plane waves are studied. It shows that the system with attractive local
interaction can preserve the stabilities, i.e., the dipoles can stabilize the gas because of repulsive
nonlocal dipole-dipole interaction. For a lattice with defects, within a two-mode approximation,
the propagation properties of travelling plane waves in the system map on a nonrigid pendulum
Hamiltonian with quasimomentum dependent nonlinearity (induced by the nonlocal interactions).
Competition between defects, quasimomentum of the gas and nonlocal interaction determines the
propagation properties of the travelling plane waves. Critical conditions for crossing from superfluid
regime with propagation preserved to normal regime with defects induced damping are obtained
analytically and confirmed numerically. Particularly, the critical conditions for supporting the su-
perfluidity strongly depend on the defect type and the quasimomentum of the plane waves. The
nonlocal interaction can significantly enhance the superfluidity of the system.
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I. INTRODUCTION

In recent years, the interplay between nonlinearity, dis-
creteness and disorder (i.e., small random impurities or
defects) has been the subject of intensive theoretical and
experimental investigations[1–11]. The competition be-
tween nonlinearity, discreteness and disorder can induce
rich phenomena and plays a crucial role in nonlinear
discreteness system, such as Anderson localization [12]
and disorder induced inhibition of transportation [13–
16], etc. Especially, the transportation properties of the
disordered nonlinear discrete system have been becom-
ing a challenging issue. A key one is that in such sys-
tem, the propagation of travelling plane waves experi-
ences a crossover from superfluid regime with propaga-
tion preserved to normal regime with disorder induced
damping[3], in which nonlinearity plays a crucial role.
Because of the controllable of both disorder (can be in-
troduced in the system with a controlled way by using op-
tical means[17], atomic mixtures [18] or inhomogeneous
magnetic fields [19]) and nonlinearity (a consequence of
interactions between particles can be controlled by the
Feshbach technique[20]), ultracold Bosons in deep lat-
tices with defects provides an ideal physical system to
study this issue.

At low temperature, Bosons in deep lattices are
well described by the nonlinear discrete Gross-Pitaevskii
(GP) equation[3, 21], which has played a central role in
our understanding of the system. In the discrete GP
equation the cubic nonlinearity arising in the case of local
interaction is characterized by two-body nonlinear term
through a contact interaction that is parameterized by
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the s-wave scattering length a, whose sign determines
the type of interaction, i.e., a < 0 indicates the inter-
action among the particles in the system is attractive,
while a > 0 indicates the interaction is repulsive. Im-
portantly, systems with dominant attractive local inter-
actions are fundamentally unstable against collapse[22–
25]. Up to now, the transportation properties of Bosons
in lattices with defects are originally predicted and ex-
plored in the context of this local discrete GP equation.
The transportation properties of Bosons in disordered
nonlocal discrete GP equation are still not clear. Be-
cause of the long-range nonlocal character of the dipolar
interaction, dipolar condensate trapped in deep optical
lattices [26, 27] has opened the door to discuss this issue.
Dipolar condensate loaded into the deep lattices can be
described by a nonlinear discrete GP equation with non-
local interaction[28, 29], i.e., a nonlocal nonlinear discrete
GP equation. Stable solitons [31–37] and condensate[38–
42] should be observable.

In this paper, we investigate the stability and superflu-
idity of a dipolar condensate in lattices within a nonlocal
nonlinear discrete GP equation with and without defects.
The stability and the propagation properties of travelling
plane waves in the system are discussed in detail. For a
clean lattice, both energetic and dynamical stabilities of
the travelling plane waves are studied. It is shown that,
there is a critical scattering length, ac, when a > ac, the
system is stable. Interestingly, we find that, in a system
with nonlocal interaction, ac is always negative. This is
different from the case with only local interaction, where
ac > 0. That is, the dipoles can stabilize the condensate
because of repulsive nonlocal dipole-dipole interaction.
For a lattice with defects, we discuss the superfluidity of
the condensate in a deep annular lattice with defects, i.e.,
the propagation properties of the travelling plane waves
in the system with competition between defects and non-
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local interaction. Within a two-mode approximation, the
dynamics of the system described by the nonlocal non-
linear discrete GP equation maps on a nonrigid pendu-
lum Hamiltonian. We find there can also exist a criti-
cal scattering length ac that divides the system into two
regime: a > ac, a plane wave coherently passes through
the defects and the system is in a superfluid state; while
a < ac, the system is in a normal regime with defects
induced damping. Importantly, ac and the superfluidity
of the system strongly depend on the quasimomentum of
the plane waves. Especially, the nonlocal interaction can
enhance the superfluidity of the system.
The paper is organized as follows. In Sec. II, we

present the physical model for the dipolar condensate
in a deep one-dimensional lattice. In Sec. III, by using
the perturbative approximation, we analyze the stabili-
ties of the clean system. In Sec. IV, within a two-mode
approximation, the dipolar condensate is mapped onto a
nonrigid pendulum Hamiltonian. We study the dynam-
ical properties of the system with a single defects and
Gaussian defects. Finally, Sec. V is our discussion and
conclusion.

II. MODEL

We consider a dipolar condensate trapped in deep 1D
lattice, with magnetic dipolar moment −→µ oriented partic-

ular to the lattice by an external magnetic
−→
B . By using

the tight-binding approximation, the system can be de-
scribed by the dimensionless nonlocal discrete nonlinear
G-P equation [28–30]:

i
∂ψn

∂τ
= −1

2
(ψn−1 + ψn+1) + ǫnψn + [(aχ+ CDD0)|ψn|2+

CDD1(|ψn+1|2 + |ψn−1|2) + CDD2(|ψn+2|2 + |ψn−2|2)]ψn,

(1)

where ψn is the wave function of condensate in the nth
site of the array, n = 1, ...,N (N the number of sites).
The first term in the RHS of Eq. (1) is the tunneling
term, it denotes the tunneling between the adjacent sites.
ǫn, proportional to any external field superimposing on
the lattice (i.e., ǫn ∝

∫
d−→r [(~2/2mJ)|∇φn|2+Vext|φn|2],

where φn are wave functions localized in each site of the
periodic potential), is the on-site energy. For a clean
lattice, ǫn is a constant; for a defected lattice, ǫn in
each lattice is different and expresses the defect distri-
bution. The defects ǫn can be created by the additional
lasers and/or magnetic fields. In the physical systems we
have discussed, the defects ǫn can be spatially localized
or extended. In Eq. (1), the nonlinearity is induced by
the atomic contact interaction a, the on-site dipolar in-
teraction CDD0, the nearest-neighbor dipolar interaction
CDD1 and the next-nearest-neighbor interaction CDD2.
a is the s-wave scattering length in the units of the Bohr
radius a0. The local on-site dipolar interaction CDD0 and
the nonlocal inter-site dipolar interaction CDDj (j = 1, 2)

are given in Ref. [28], i.e. CDD0 = µ0µ
2

4πJ
1

l3
⊥
c3

√
2
π [

c(3−c2)

3
√
1−c2

−

arcsin(c)], CDDj =
µ0µ

2

4πJ
1

3l3
⊥

√
2
πF (c,

jb
l⊥
) (j = 1, 2), where

χ = 4π~2

mJ
a0

(2π)3/2l2
⊥
l
, l⊥ =

√
~/mw⊥ and l = bs−1/4/π,

b = π/kL being the lattice step, w⊥ = 290 Hz is the
vertical trapping frequency and kL = 2π/λ is the laser

wave vector (λ = 1064nm). J = 4√
π
s3/4e−2

√
sEr, Er =

~
2π2/2Md2 is the recoil energy of the optical lattices,
d is the lattice period (d = λ/2), and s is the strength

of the optical lattice, c =
√
1− l2/l2⊥. µ0 is the vac-

uum permeability and µ is the magnetic dipole moment
(µ = 6µB for 52Cr with µB the Bohr magneton). Here

F (u, ν) =
∫ 1

0 ds
3s2−1

(1−u2s2)3/2
(1 − ν2s2

1−u2s2 )e
−[ν2s2/2(1−u2s2)].

In this article, we study the propagation of a plan wave
ψn(τ = 0) = eikn in system (1), here, k is the quasimo-
mentum of the plane wave. We will use periodic bound-
ary conditions (due to the annular geometry): thus we
have k = 2πl/N , where l is integer (l = 0, ...,N − 1).
The Hamiltonian of the system (1) is

H =
∑

{−1

2
(ψn+1ψ

∗
n + ψnψ

∗
n+1) + ǫn|ψn|2

+ [
(aχ+ CDD0)

2
|ψn|2 + CDD1(|ψn+1|2 + |ψn−1|2)

+ CDD2(|ψn+2|2 + |ψn−2|2)]|ψn|2}.

(2)

III. STABILITIES OF THE SYSTEM WITHOUT

DEFECTS

Let us first consider the stabilities of the system with
ǫn = 0. We employ the plane waves ψ = ψ0e

i(kn−u0t)

which is the stationary solution of Eq. (1), where k
is the quasimomentum of the condensate. The stabil-
ity analysis of such state can be carried out by per-
turbing the carrier wave with small amplitude phonons:
ψ = [ψ0 + u(t)eiqn + ν∗(t)e−iqn]ei(kn−u0t), where q is
the quasi-momentum of the excitation, the perturbation
function u(t) and ν(t) have the same periodicity as the
lattices, then Eq. (1) becomes

i
∂

∂t

(
u
ν

)
= σ̂Â

(
u
ν

)
(3)

where Â =

(
L+ Cψ2

0

C(ψ∗
0)

2 L−

)
with L± = cos(k) −

cos(q± k)+C|ψ0|2 and the effective interaction parame-
ter C = aχ+ CDD0 + 2CDD1 cos(q) + 2CDD2 cos(2q). It
is important to note that this effective atom interaction
depends on the quasimomentum of the excitation. This
momentum dependent atom interaction is induced by the
nonlocal dipolar interaction. For a non-dipolar gas (i.e.
CDD0 = CDD1 = CDD2 = 0), C does not depend on q.
Here σ̂ is the Pauli matrix. By straightforward calcula-

tion, the eigenvalues of Â are easily found as

λ± = 2 cos(k) sin2(
q

2
) + C|ψ0|2 ±

√
P 2 + C2|ψ0|4, (4)
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and the discrete nonlinear G-P equation excitation spec-

trum (eigenvalues of σ̂Â) is given by

η± = P ±
√
Q2 − 2CQ|ψ0|2, (5)

where P = sin(q) sin(k), Q = cos(k)[cos(q)− 1].
Base on Eq. (4), we can easily find that the bound-

ary of energetic stability of Bloch waves is described by (λ
should be real positive) cos2( q2 ) ≤ cos(k)[cos(k)+C|ψ0|2].
Clearly, the energetic instability can be completely ex-
cited when cos(k) < 0. For long-wave length perturbing
(q → 0), this condition can be reduced to a critical con-
tact scattering length ac for maintaining the stability in
dipolar condensate.

a ≥ ac =
1

χ
[

sin2(k)

cos(k)|ψ0|2
− CDD0 − 2CDD1 − 2CDD2].

(6)

In Fig. 1 we plot the energetic stability diagram of the
system and the area above the critical scattering length
ac corresponds to the energetically stable region. The
critical parameter ac for both dipolar condensate and
non-dipolar condensate is shown in Fig. 1. We find the
critical scattering length ac decreases with increasing the
strength of optical lattices s, when fix the quasimomen-
tum k of the plane wave. And for a fixed s, ac increases
with increasing k. Interestingly, we find the dipolar con-
densate is more stable than the non-dipolar system, i.e.,
the dipolar gas can preserve the stability with attrac-
tive local interaction (contact interaction). With the in-
creasing of s, the critical scattering length ac of the non-
dipolar gas tends to 0, while the critical scattering length
ac of the dipolar condensate tends to −20a0.
For a non-dipolar condensate with purely contact in-

teraction, the system with attractive contact interaction
(attractive local interaction) is fundamentally unstable
against collapse, while the system with repulsive con-
tact interaction prevents the collapse and is stable. For
a dipolar gas, the nonlocal repulsive dipolar interaction
can compensate the local attractive contact interaction
and the effective interaction of the system can be repul-
sive. So the system with attractive contact interaction
could be stable as long as the effective interaction of the
system is repulsive (i.e. C > 0). That is, dipoles can
stabilizing the condensate due to the effectively nonlocal
repulsive dipolar interaction.
Furthermore, the modulational instability (dynami-

cal instability) can be induced when the eigenfrequency
η in Eq. (5) becomes imaginary, i.e., C|ψ0|2 ≥
− cos(k) sin2( q2 ). Therefore, when the effective atomic
interaction is repulsive (C > 0), the system suffers an ex-
ponential growth of perturbations with cos(k) < 0. For
long-wave length perturbing (q → 0), this condition re-
duces to a critical scattering length ac for preserving the
modulational stability of the system.

a ≥ ac = − 1

χ
(CDD0 + 2CDD1 + 2CDD2). (7)
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FIG. 1: Energetic stability diagram of the system. a0 is the
Bohr radius.

ac given by Eq. (7) is plotted in Fig. 2. The area
above the line corresponds to the stable region. When
s is small, we can find the critical scattering length ac
rapidly grows to a maximum which is due to the influ-
ence of the inter-site dipolar interaction. And then ac
decreases gradually with increasing of lattice depth s un-
til close to −20a0. Also, we can observe that ac for dif-
ferent s is less than zero. However, it is well known that
the dynamical stability in the non-dipolar gas can be in-
duced when the scattering length a is positive. So the
dipolar condensate is more stable in dynamics than the
system without dipolar interaction. On the other hand,
dipoles can suppress both energetic and dynamical insta-
bilities because of the effective nonlocal repulsive dipolar
interaction. Our results are in good agreement with the
recent experiments [38, 39].
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FIG. 2: Modulational stability diagram of the system. The
critical scattering length ac as a function of the lattice depth
s. a0 is the Bohr radius.

IV. SUPERFLUIDITY WITH DEFECTS

We now consider the dynamical properties of Eq. (2)
with defects. As discussed above, when cos(k) < 0,
the system becomes unstable, so we consider the case
in which cos(k) > 0. The angular momentum of this
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system is defined as

L(τ) = i
∑

(ψnψ
∗
n+1 − ψ∗

nψn+1). (8)

L(τ) oscillates between the initial value L0 to −L0, corre-
sponding, respectively, to plane waves with wave vector k
and −k in a liner system. Moreover, rotational state with
opposite wave vectors k and −k are degenerate in clear
optical lattices. However, the defects split the degener-
acy by coupling the two k and −k waves, very much as
the tunnelling barrier in a double well potential between
the left and right localized state. For this reason, the rel-
ative population of the two waves oscillates according to
an effective Josephson Hamiltonian [3, 43]. In this limit,
one can employ a two-mode ansatz for the dynamical
evolution of the wave function:

ψn(τ) = A(τ)eikn +B(τ)e−ikn. (9)

We set A,B =
√
nA,B(τ)e

iφA,B(τ) , z = nA − nB, and
φ = φA − φB .
To understand the dynamics of the system, we discuss

the variation of the angular momentum with some related
parameters. So using ansatz (9) in Eq. (8), we get

L = 2N z sin(k). (10)

Therefore, we observe that the angular momentum is pro-
portional to z. 〈L〉 = 0 implies that the wave is com-
pletely reflected, which means that the system is in a
normal state with defects induced damping. 〈L〉 6= 0 im-
plies that the wave is only partially reflected by the de-
fects, that is, the system is in a superfluid state. Here, the
< ... > stands for a time average. The latter case corre-
sponds to a self-trapping of the angular momentum. The
incident wave can not be reflected completely and coher-
ence is preserved. The observation of a persistent current
is associated with a superfluid regime of the system (1).

A. a single defect

Let us consider, first, the case of a single defect

ǫn = ǫδn,n. (11)

Defining the effective Lagrangian as £ =
∑

i
2 (ψ̇nψ

∗
n −

ψnψ̇∗
n)−H , both H and the morn

∑ |ψn|2 = N are con-
served and using ansatz (9) in this effective Lagrangian,
we have

£

N =− nAφ̇A − nBφ̇B − 2ǫ

N
√
nAnB cos(φA − φB + 2kn)

− CnAnB,

(12)

with the relation
∑
e2kn = 0. Using the Euler-Lagrange

equations d
dt

∂£
∂q̇i

= ∂£
∂qi

for the variational parameters

qi(τ) = nA,B, φA,B in Eq. (12) and with the replacement
φ+ 2kn→ φ, we obtain

ż = − 2ǫ

N
√
1− z2 sin(φ), (13)

φ̇ =
2ǫ

N
z√

1− z2
cos(φ) + Cz. (14)

where C = aχ+CDD0+4CDD1 cos(2k)+ 4CDD2 cos(4k)
is the effective atom interaction, which, interestingly, de-
pends on the quasi-momentum k (induced by the non-
local dipolar interaction). That is, within a two-mode
ansatz in Fourier space, the dynamics of the system map
on a nonrigid pendulum with quasi-momentum depended
nonlinearity. The effective Hamiltonian (i.e. the total
conserved energy) becomes

H =− 2ǫ

N
√
1− z2 cos(φ) +

Cz2

2
. (15)

Let us derive the critical condition for supporting a
superfluid flow. That is the occurrence of transition be-
tween the regimes with 〈L〉 = 0 and the regime with
〈L〉 6= 0. Eq. (10) indicates that the angular momen-
tum L is proportional to z. Therefore 〈z〉 = 0 (i.e., z
oscillates around 0 and 〈L〉 = 0) implies that the wave is
completely reflected by the defects. 〈z〉 6= 0 (i.e., z oscil-
lates around a non zero value and 〈L〉 6= 0) implies that
the wave is only partially reflected by the defects, and the
system is in a superfluid regime. Hence, if z can not reach
the value 0, then we can have 〈z〉 6= 0 and the system is in
a superfluid regime. To avoid the system reach the state
z = 0, the initial energy of the system H0 should be
larger than the energy of this state, i.e., H0 > H(z = 0).
Initially, we set z(0) = 1 and φ(0) = 0, so the con-
served initial energy is H0 = C/2. Because H(z = 0) =
− 2ǫ

N cos(φ). We clearly see that the maximum value of

H(z = 0) is 2ǫ/N , i.e., H(z = 0) = − 2ǫ
N cos(φ) ≤ 2ǫ

N .
Hence, if H0 = C/2 ≥ 2ǫ/N , i.e., C ≥ 4ǫ/N , then
H0 > H(z = 0) should be satisfied for all value of φ.
That is, when C ≥ 4ǫ/N , z can not reach the value
0 and the system will be in a superfluid regime. So, we
find a critical condition for supporting the superfluid flow
aχ + CDD0 + 4CDD1 cos(2k) + 4CDD2 cos(4k) = 4ǫ/N .
From this condition we can obtain a critical atomic scat-
tering length ac for maintaining the superfluidity

ac =
1

χ
[
4ǫ

N − CDD0 − 4CDD1 cos(2k)− 4CDD2 cos(4k)].

(16)

The system can be divided into two regimes by the
critical condition: a normal regime when a < ac and
a superfluid regime when a > ac. When a < ac, L
oscillates around 0; and when a = ac, asymptotically
L → 0, with a > ac, 〈L〉 6= 0. In a normal state a plane
wave reflected by the defect, while a plane wave trav-
els coherently through the defects in a superfluid state.
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Importantly, Eq. (16) indicates that the superfluidity
of the system strongly depends on the defect ǫ, dipo-
lar interaction and the quasi-momentum k of the gas.
The competition between defect, dipolar interaction and
quasi-momentum of the gas provides a critical scatter-
ing length ac for maintaining the superfluidity. For fixed
defect, the presence of nonlocal dipolar interaction can
reduce ac, even results in a negative ac and enhances the
superfluidity of the system.

2
4

6
8

10

-20

0

20

40

60

0.00
0.06

0.12
0.18

0.24

 

  

k/2

a
c  for dipolar gas

ac for non-dipolar gas

a c(
un

it
s 

of
 a

0)

s

FIG. 3: The critical scattering length ac against lattice depth
s and the quasimomentum k of the gas associated with a single
defect. a0 is the Bohr radius. ǫ = 0.05 and N = 100.

Figure 3 shows the critical ac against lattice depth s
and the quasimomentum k with a single defect given
by Eq. (16). Clearly, we find the critical scattering
length ac for dipolar gas decreases from a positive value
to ac = −30a0 with increasing lattice depth, when fix the
quasimomentum k. Thus, in the deep lattice regime, the
superfluid can more easily preserve due to the relatively
small critical scattering length ac. Furthermore, the criti-
cal scattering length ac for non-dipolar gas is positive and
tends gradually to zero in the deep lattice regime. That
is, the dipolar condensate with a single defect can more
easily support superfluid state than the system without
dipolar interaction. The dipoles can enhance the super-
fluidity of the condensate with a single defect. In order to
clearly show the relationship between ac and the quasi-
momentum k, the critical scattering length ac of dipolar
condensate vs the quasimomentum k for different lattice
depths of s = 5 and s = 9 is plotted in Fig. 4. It is
clear that, the values of ac for s = 9 are smaller than
that for s = 5. Interestingly, there is a critical kc, when
k < kc, ac decreases with increasing k, while k > kc,
ac increases with k. This nonmonotonic behavior of ac
against k is induced by nonlocal dipolar interaction (note
C depends on k). To confirm the analytical results, nu-
merical results obtained by direct numerical integrations
of Eq. (1) with a fourth-order Runge-Kutta method are
also shown in Fig. 4. We find that the analytical results
qualitatively agree with the numerical results.
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FIG. 4: The critical scattering length ac as a function of the
quasimomentum k for different lattice depth of s = 5 (a) and
s = 9 (b). a0 is the Bohr radius. The points are numerical
simulations of Eq. (1) and the solid lines are the analytical
results of Eq. (16). ǫ = 0.05 and N = 100.

B. the Gaussian defect

Furthermore, we now consider a Gaussian defect with
width σ centered on the site n:

ǫn =
ǫ√
πσ

e
−(n−n)2

σ2 , (17)

For sufficiently large N and σ & 1, we can set
∑
ǫn ≈∫

dnǫn = ǫ. Using the same way as we used in the case
of a single defect and setting φ + 2kn → φ, the effective
Hamiltonian reduces to

H ≈− 2εe−k2σ2

N
√
1− z2 cos(φ) +

Cz2

2
. (18)

We can clearly see that the system is equal to that of a

single defect with an effective defect ǫeff = ǫe−k2σ2

. So,
the critical ac for supporting the superfluid is

ac =
1

χ
[
4ǫeff
N − CDD0 − 4CDD1 cos(2k)− 4CDD2 cos(4k)].

(19)

For fixed defect, the critical scattering length ac
against the lattice depth s and the quasimomentum k
is shown in Fig. 5. Just like the case of a single defect,
we can see that the critical scattering length ac decreases
with the increasing of the lattice depth s, when fix the
quasimomentum k. The dipolar gas with the Gaussian
defect also requires relatively smaller critical scattering
length ac to preserve the superfluidity than that in the
system of the non-dipolar gas. In Fig. 6, we plot the
critical scattering length ac as a function of the quasi-
momentum k respectives to the lattice depth s = 5 and
s = 9. We can see that the critical scattering length
ac decreases with the quasimomentum k. We note that,
when kσ ≫ 1, ǫeff → 0. This means that the dipolar
system with Gaussian defect and large quasimomentum
will always pass through the defect. This is different from
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FIG. 5: The critical scattering length ac against the lattice
depth s and the quasimomentum k with the Gaussian defect.
a0 is the Bohr radius. ǫ = 0.05, N = 100, σ = 2.

the case of single defect, where ac varies nonmonotonic
with k ( see Fig. 4 ). We also find that, for Gaussian
defect, the analytical result is in good agreement with
the numerical result.
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FIG. 6: The critical scattering length ac vs the quasimomen-
tum k respective to the shallow lattice depth s = 5 (a) and
the deep lattice depth s = 9 (b). Points: numerical solutions
of Eq. (1); lines: analytical results of Eq. (19). a0 is the Bohr
radius. ǫ = 0.05, N = 100, σ = 2.

Critical scattering length ac against the defect ǫ for
different lattice strength s is shown in Fig. 7. One can
find that ac increases with increasing ǫ and decreases
with increasing s. Particularly, ac for the system with
Gaussian defect is much lower than that for the system
with single defect. On the other hand, system with a
Gaussian defect can more easily support superfluid state
than the system with single defect.

V. CONCLUSION

In this work we have investigated the stability and
the superfluidity of a dipolar 52Cr condensate in a deep
one-dimensional lattice. By using the perturbative and

tight-binging approximation, we analyze energetic stabil-
ity and modulationally stability (dynamical stability) of
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FIG. 7: The critical scattering length ac vs defects ǫ for differ-
ent lattice depths s. (a): with single defect (b): with Gaussian
defect. The points are numerical simulations of Eq. (1) and
the solid lines are the analytical results of Eqs. (16) and (19).
k/2π = 0.09, N = 100 and σ = 2. a0 is the Bohr radius.

a dipolar condensate in a clean lattice. There is a critical
scattering length, and the system is stable when a > ac.
Due to the critical scattering length decreases with the
lattice depth, we show that the system is more stable
in the deep lattice regime. Through the comparison with
the non-dipolar gas, a dipolar gas is easier to maintain the
stabilities because of the nonlocal dipolar interactions.
Furthermore, the superfluidity of dipolar condensate in
a deep annular lattice with defect is discussed both an-
alytically and numerically. Within a two-mode approx-
imation, the dynamics of the system can be considered
as a single nonrigid Hamiltonian with quasimomentum
dependent nonlinearity (induced by the nonlocal interac-
tion). We find that the superfluid state can exist beyond
a critical scattering length. The analytical expression of
the critical scattering length for supporting a superfluid
flow is obtained and we find it is determined with the
competition between defect, quasimomentum of the gas
and nonlocal dipolar interaction. The system can easily
support superfluid state in deep lattices. Especially, the
dipolar system can easily support superfluid state with
low scattering length relative to the non-dipolar gas. The
present results give a deep insight into the dynamics of a
dipolar condensate in disordered optical lattice.
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