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Abstract 

Turbulence governed by a generalized nonlinear Schrödinger equation (GNSE) including viscous 
heating and nonlinear damping is numerically investigated. It is found that a large localized pulse can 
suffer modulational instability and then collapse into the shortest wavelength modes, as for the classical 
NSE. However, the total energy of the nonconservative GNSE can also become constant during the 
collapse via local balance of energy gain and loss in the phase-space. After the collapse, instead of 
inverse cascading into a state of strong turbulence with broad spectrum, a single-step cascade, or 
condensation, into modes of one predominant wavelength can occur. In fact, after attaining total-energy 
balance the turbulent system as a whole evolves like a closed adiabatic system. 
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I. Introduction 

For more than half a century the nonlinear Schrödinger equation (NSE) has been used as a paradigm 
equation for describing the evolution of many physical phenomena [1-6]. Novel analytical methods have 
also been developed for solving this nonlinear partial differential equation [4]. Application of the NSE is 
further broadened by its many generalizations that include taking into account higher-order and exotic 
nonlinearities, linear and nonlinear dissipation, external sources and forces, etc. [5-9]. When generalized 
to allow for complex coefficients (such as for dissipative nonequilibrium systems), the equation can also 
be identified to be a generalization of a nonlinear reaction-diffusion equation, which is another paradigm 
evolution equation with applications in many areas [6,10-16]. However, the generalized equations are 
usually more difficult to analyze, and except for special cases [7,8] numerical methods must be 
employed.  

 

A most interesting aspect of dissipative nonequilibrium systems is that they can allow for, locally or 
globally, regular motion or structure via self-organization in the physical or phase space, even in the 
presence of turbulence or nonthermal fluctuations [17]. The generalized NSE (GNSE), where the 
coefficients of the group dispersion and nonlinear terms can be complex, is an ideal model for 
investigating such systems. The evolution of a highly localized large amplitude initial pulse governed by 
a two-dimensional (2D) GNSE was investigated numerically for a nonlinear dispersive-dissipative 
medium [13-15]. 2D systems [18-23] are of interest not only because they indeed exist, such as electrons 
on liquid helium surfaces, as well as waves, colloids and granules in or on fluids and plasmas, etc., but 
also because they often exhibit novel physical characteristics. As predicted by Zakharov for the collapse 
of Langmuir waves [1,9], Zhao et al. [14] found that a localized large amplitude pulse first undergoes 
modulational instability and then collapses into the shortest wavelength modes (as determined by the 
smallest scale of the physical problem or the numerical scheme) allowed by the system. The collapse is 
followed by inverse cascade of energy back to modes of longer wavelengths, until a stationary state of 
homogeneous turbulence with a spiky energy spectrum appears. However, no self-organization or 
condensation in the physical or phase space was found [14,15].         

 

In this paper, we reconsider the evolution of a localized pulse governed by a 2D GNSE with an 
anisotropic external potential, as well as viscous heating and nonlinear damping. The coefficients of the 
GNSE are chosen such that total energy gain and loss by the system can achieve balance during the 
evolution. As expected [1,14], at the start of the evolution the isolated initial pulse first suffers 
modulational instability, followed by collapse into the shortest-wavelength modes. The shortest 
wavelength is zero in an ideal (nondissipative) system [1], but here it is determined by a competition 
between the wavelength-dependent growth and intensity-dependent damping of the modes. Our result 
shows that the stepwise inverse-cascade process that is expected to follow the collapse is replaced by 
rapid (but still slow compared to the collapse) decay into modes of a specific wavelength, but with broad 
amplitude and phase-angle distributions. This occurs after the total energy of the system becomes 
constant through balance of the total energy gain and loss. In the real space an inhomogeneous 
turbulence structure, or pattern of oscillations, appears and evolves slowly. The energy spectrum 
becomes more and more localized around eight angles in the phase space, and the spatial wave pattern 
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becomes more and more stationary (averaged over the mode oscillations). Its total energy remains the 
same as that attained shortly after the collapse. In fact, after achieving total-energy balance, the system 
effectively evolves adiabatically. The phase space condensation here is somewhat similar to that of light 
amplification by simulated emission of radiation (laser) and Bose-Einstein condensation (BEC). To our 
knowledge, self-organized turbulent condensation after a collapse has not been reported earlier. 

   

II. Formulation 

The 2D GNSE investigated here is 

( )22 ( , ) 0tiE p E V x y q E E+ ∇ + + = ,        (1) 

where the coefficients r ip p ip= +  and r iq q iq= +  are complex. For convenience of discussion, we 

shall consider that (1) describes the evolution of the envelope of the fields of electron plasma waves 
[1,9]. When applied to other systems, some terms used in our descriptions and discussions may have 
different physical meanings. Accordingly, besides the usual group dispersion and nonlinear frequency 
shift that are characteristic of the standard NSE, Eq. (1) also includes viscous or diffusive heating if 

0ip >  and nonlinear damping or cooling if 0iq > . The external potential is given by 

( ) ( ){ }2 22
0( , ) 1 sechV x y V x a y b⎡ ⎤= − +⎣ ⎦ ,      (2) 

which can be anisotropic. The isolated initial pulse is taken to be Gaussian, or 

( )2 2 2
0(0, , ) expE x y E x y c⎡ ⎤= − +⎣ ⎦ ,           (3) 

so that even if a, b, and c are of the same order, the initial pulse is spatially much narrower than the 
external potential. 

As for the standard NSE, the evolution of the system depends strongly on group dispersion ( )2
rp E∇  

and nonlinear interaction ( )2
rq E E . However, here it also depends on diffusion ( )2

ip E∇  and 

amplitude-dependent dissipation or growth ( )2
iq E E . We can easily obtain from (1) for the evolution 

of the total “energy” of the system the relation 

2 2 42  ,  t i iE dA p E q E dA⎡ ⎤∂ = ∇ −⎣ ⎦∫ ∫            (4) 
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where dA dxdy= . Eq. (4) shows that positive values of ip  and iq  also correspond to total energy 

gain and loss, respectively. In this case the right-hand side of (4) can vanish during the evolution and the 
total energy can become constant. The overall system then becomes effectively adiabatic, so that 
stationary structure/pattern or turbulence can be expected.  

 

III. Numerical results 

Accordingly, we investigate Eq. (1) numerically for 0.5 0.05p i= + , 0.6 0.5q i= + , 0 6V = , 0 0.1E = , 

4,  0.4a b= = , and 1.5c = . That is, we consider a system with positive group dispersion ( 0rp > ), 

viscous heating ( 0ip > ), nonlinear frequency up-shift ( 2 0rq E > ), and nonlinear damping ( 2 0iq E > ), 

as well as an external potential ( )V x, y . The latter is taken to be highly (symmetry-breaking) 

anisotropic ( a b� ) in order to speed up the initial modulational instability, which can otherwise be 

relatively slow. It turns out that the final state does not depend much on ( )V x, y  because in the present 

problem a large gain of the total energy via the ( 2k -dependent, where k is the mode wave vector) 

viscous heating takes place as soon as collapse into the smallest-scale (largest k) modes occurs. Periodic 
boundary conditions are used on all sides of the 256×256 simulation box.  

 

 

Fig. 1. The external potential ( , )V x y  and the initial pulse (0, , )E x y . 

Figure 1 shows the external potential ( )V x, y  and the initial pulse ( )0E ,x, y . Figure 2 shows the 
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evolution of the total energy ( ) 2
E t,x, y dA∫ . The left and right columns in Figs. 3 to 5 show the full 

physical space of ( ) 2
E t,x, y  and a quadrant of the spectrum ( ) 2

x yE t,k ,k  (in arbitrary units), 

respectively, at various stages of the evolution. The initial pulse represented by the longest-wavelength 
modes (in the smallest k corner) of the spectrum first suffers modulational instability, here asymmetric 
because of the anisotropic external potential that helps to speed up the instability. Collapse begins at 

around 0 95 t ~ . , as can be seen by the appearance of very small scale periodic structures in ( ) 2
E t,x, y  

(clearly visible on the iso-energy contours) as well as modes in the far (largest k) corner of the spectrum 

( ) 2

x yE t,k ,k . In Fig. 3 we can also see that within a very short time much of the energy of the system is 

transferred from the longest (smallest k) wavelength modes making up the modulated initial pulse to the 
shortest (largest k) wavelength modes. As the long wavelength modes vanish, a rapid and complete 

change of the structure, or pattern, of the ( ) 2
E t,x, y  distribution, takes place, which is characteristic 

for collapse [1,11,18]. However, here the collapse is accompanied by rapid viscous heating ( 2
ip k∝ ), as 

can be noted in Fig. 2 from the large jump of the total energy 
2

E dA∫  at 0 11t .∼  and in Fig. 3 from 

the large jump of the energy scale in the spectra between 0 1 t ~ .  and 0 15 t ~ . . (Recall that the total 
energy of the classical NSE is conserved until the collapse, when the system becomes singular [1].)  

 

Fig. 2.  Evolution of the total energy ( ) 2
E t,x, y dA∫ . The insets (a) and (b) show 

enlargements of collapse-stop and single-step cascade stages, respectively. (Note that for the 
classical NSE the total energy would be constant.) 
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As an immediate consequence of the collapse and the resulting large increase in ( )E t,x, y , the effect of 

the external trapping potential ( )V x, y  becomes negligible. The boundary conditions then replace its 

role, as is evident from the ( ) 2
E t,x, y  patterns at 0 095t .=  and 0.1. Fig. 2 shows that at 0 13t ~ .  

the rapid growth of the total (in the phase space also local) energy is braked by the nonlinear damping 

( ( ) 2
iq E t,x, y∝ ), which becomes important as the mode amplitudes rapidly increase. The 

shortest-wavelength modes interact with each other as well as the remaining long-wavelength modes 
until all the latter vanish at around 0 3t .∼ . During that time the total energy also decreases slightly as a 
result of competition between nonlinear damping and viscous heating, i.e., the system is slightly cooled.  

 

From the spectrum at 0 5t .=  in Fig. 4, we can see that the shortest-wavelength modes begin to decay, 

or condensate, into modes around a specific wavelength (corresponding to 110=k ) but with large 

phase angle spread. This process is accompanied by a small bump in the evolution of the total energy 
(see Fig. 2(b)) arising from competition between the energy gain and loss mechanisms at this longer 

wavelength. A slowly evolving turbulent pattern for ( ) 2
E t,x, y  gradually emerges. Fig. 5 shows that 

at still longer times the modes slowly become more and more concentrated around two (eight in the 
complete phase space) phase angles in the spectrum.  

 



7 
 

 

Fig. 3. (Color online) The ( ) 2
E t,x, y  pattern in the real space (left column) and a 

quadrant of the spectrum ( ) 2

x yE t,k ,k  in the phase space (right column, in arbitrary 

units) during the collapse stage. For convenience of computation, we have redefined 
the real-space axes scales (from that in Fig. 1). Note the large jump in the amplitude 
scales between 0 1t .=  and 0 3t .=  arising from viscous heating at large k. 
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Fig. 4. (Color online) Same as in Fig. 3, at later times. Decay, or one-step-cascade, to 

modes of predominantly one k . 

 



9 
 

 

Fig. 5. (Color online) Same as in Fig. 4, at later times. Phase angle redistribution among 
the modes of nearly the same wavelength. Note the large difference in the time intervals 
between the subpanels in Figs. 3-5. The long-time evolution is very slow compared to 
that of the collapse and cascade stages. 

 

For completeness, in Fig. 6 we show a three-dimensional representation of ( ) 2
30E ,x, y , where the fine 

structure of the “single-wavelength turbulence” can be more clearly visualized. For still longer times, 

the ( ) 2
E t,x, y  distribution, still consisting of modes of one wavelength, appears to become more and 

more homogeneous. If that happens, energy balance would take place within each mode and the 
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integrand in (4) would vanish. We then get 2 2
k i iE k p q= , so that all the modes would eventually have 

not only the same wavelength but also the same amplitude. However, although the pattern structure of 

( ) 2
E t,x, y indeed appears to evolve in that direction, the process is extremely slow and we could not 

attain such a state in our numerical simulation. On the other hand, the flatness of the total energy curve 
for 1t ≥  (Fig. 2) indicates that the energy balance is taking place locally within each mode, so that no 
transport in the physical space, which can leads to fluctuations in the total energy curve, is necessary.     

 

 

Fig. 6. (Color online) Three-dimensional view of ( ) 2
30E ,x, y , exhibiting the 

single-wavelength turbulence structure. 

 

IV. Discussion 

In this paper, we found that in a dispersive, diffusive, and dissipative nonlinear system governed by a 
GNSE an initial large amplitude localized pulse can suffer modulational instability and collapse into the 
smallest-scale modes. If the total gain and loss of the energy can become balanced, the system can attain 
a nearly homogeneous turbulent state in the physical space by decaying into modes of predominantly the 
same wavelength (instead of inverse-cascading to a full spectrum, as normally expected of collapse). 

The one-step cascade is followed by very slow secondary condensation of the same- k  modes to that of 

eight phase angles. That is, the long-time turbulence state is a phase-space condensate consisting of 
modes of a predominant wavelength concentrated at the eight phase angles, instead of a full and 
homogeneous spectrum. This phenomenon can be partly attributed to the fact that at long times the 
energy gain and loss by each mode can balance locally, although the latter does not necessarily lead to it 
(as in the cases studied in Refs. 14 and 15). The mode decay and redistribution scenario after the 
collapse resembles that of what might take place from three-mode coupling in the wave kinetic theory  
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for weak turbulence [24]. For example, the final eight dominant modes at 12π , 5 12π  and their 

counterparts in the other three quadrants of the k space can be attributed to three-wave decays from the 
four largest k modes (at the four corners of the phase space) produced by the collapse. This is then 
followed by couplings of three modes having the same wavelength, which eventually redistributes the 

energy into 8 dominant modes (thus the 5 12 12 3π π π− =  angle between each pair of modes). 

However, the wave kinetic theory is based on small amplitude oscillations, energy and momentum 
conservation, and nearly homogeneous turbulence spectrum, and the rough explanation here does not 
account for the intermediate stages found in the simulations. Accordingly, a more rigorous theory of the 
condensation phenomenon here still remains to be found. On the other hand, our results can be directly 
applied to considering condensation in Langmuir wave turbulence [1-4,9], BEC, and laser filamentation 
[25], as well as other phenomena governed by the GNSE and the generalized nonlinear 
reaction-diffusion equations in material science, fluid dynamics, atomic and plasma physics, biology, 
and other areas [4-6, 10-12, 18-20, 23]. 

 

It should be emphasized that the evolution (such as the path, speed, and long-time behavior) of the 
initial pulse depends sensitively on the parameters of the GNSE, the boundary conditions, and the initial 
pulse (or other perturbations). On the other hand, for the problem considered, namely eventually the 
fluctuation energy becomes much larger than that of the external potential, the profile of the latter is not 
crucial. Furthermore, since the total energy here can become constant after the collapse, one can in 
principle [17] also expect the appearance of self-organized regular (nonturbulent) or coexisting 

turbulent/regular structures in the real space ( )E t,x, y , a state still awaiting discovery [26]. 
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