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We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with
semi-permeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the
osmotic driving force in relation to the dimensionless parameters that specify the system. The
pumping efficiency of these flows is limited by the presence of “unstirred” concentration boundary
layers near the tube walls and our primary aim is to understand and quantify these layers and
their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate
Q∗, concentration c∗, and tube length L, and map out the dependence of the flow rate gain γ =
Qout/Q

∗
− 1 on these parameters. A theoretical analysis based on (1) the known velocity field

for slow flow in cylindrical porous tubes and (2) a parabolic concentration profile, allows us to
compute analytically how the flow gain depends on the relative magnitude of radial diffusion and
advection as well as the ratio of the osmotic velocity to pumping velocity, in very good agreement
with experiments and with no adjustable parameters. Our analysis provides criteria that are useful
for optimizing osmotic flow processes in e.g. water purification devices.

I. INTRODUCTION

Channel flows – liquid flows confined within a closed
conduit with no free surfaces – are found in many nat-
ural and man-made systems. In animals [1] and plants
[2] they serve as the building blocks of vascular systems,
distributing energy to where it is needed and allowing
distal parts of the organism to communicate. When con-
structed by humans, one of the major functions of chan-
nels is to transport liquids or gasses, e.g. water (irrigation
and urban water systems) and energy (oil or natural gas)
from sites of production to the consumer or industry. In
some cases, the channels have solid walls which are im-
permeable to the liquid flowing inside. In other cases, the
channels have semi-permeable membrane walls allowing
solvent flux while rejecting solutes.
The effect of semi-permeable porous walls is especially

important in the study of biological flows due to the pres-
ence of semi-permeable membranes and porous cell walls
[2] and in industrial separation processes [3]. In these
cases, the exchange of water across the membrane can be
driven by either hydrostatic or osmotic pressure differ-
ences, thus modifying the bulk axial flow in the channel.
A serious limitation to the performance of osmotic flows
is that the entry of water into the tube lowers the so-
lute concentration next to the membrane, as shown in
Fig. 1. This negative feedback leads to a decrease in
trans-membrane flow that can affect the efficiency of both
natural and engineered systems, such as sugar transport
in the phloem vasculature of plants and water purifica-
tion in filtration devices. Osmotic flows are exceptionally
complicated to analyse due to the intrinsic nonlinear na-
ture of the flow which arises due to the coupling between

∗ These authors contributed equally to this work
† tbohr@fysik.dtu.dk

the velocity and concentration fields, see e.g. [4–9]. Only
in a few cases have experiments been compared directly
to theory, see e.g. [10–12].
In this article, we report experimental results of os-

motic flows through a long, narrow cylindrical tube with
porous walls. A simple continuum model predicts that
the osmotic pumping efficiency is determined solely by
two parameters: a Péclet number β (see Table I and II
for parameter definitions) and the maximal osmotic ve-
locity scaled by the inlet velocity Γ. These parameters
characterize the unstirred layer effects and the relative
importance of feed and osmotic flows. Moreover, we ob-
serve that the pumping efficiency scales in an unexpected
way with the parameters in the problem and show that
our model correctly accounts for this scaling.

II. EXPERIMENTS

We flow aqueous solutions of sucrose (C12H22O11) and
sodium chloride (NaCl) through an experimental setup
that consists of a long, narrow cylindrical hollow fiber
membrane tube immersed in a reservoir containing pure
water. The hollow fiber membrane was kindly sup-
plied by Dr. Wang Rong, Singapore Membrane Tech-
nology Center, Nanyang Technological University, Singa-
pore. It was fabricated by interfacial polymerization of a
polyethersulfone substrate as described in [13, 14] where
the membrane used in this study is denoted the #B type.
A picture and a schematic sketch of the setup is shown in
Fig. 2. We control the inlet flow rate by connecting the
membrane tube to a syringe pump (Chemyx Inc., Fusion
400) and at the outlet, the solution flows into a reservoir
at atmospheric pressure. The inlet flow rate and the so-
lute concentration is varied over an order of magnitude:
the flow rate from Q∗ = 0.2 mm3/s to Q∗ = 1.7 mm3/s
and the concentration from c∗ = 0.05 M to 1 M for NaCl
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FIG. 1. (Color online) Sketch of the solute concentration c(r)
(solid red (gray) curve and density of dots) in a cylindrical
tube of radius r = a in contact with a reservoir containing
pure solvent (c = 0). The semi-permeable membrane sepa-
rating the two solutions is indicated by the thick dashed line.
The concentration difference between the reservoir and chan-
nel drives an osmotic flow of solvent J ∝ ca (thin arrows,
see Eq. (2)) across the membrane. This dilutes the solution
next to the membrane, and the concentration of solute in con-
tact with the membrane ca = c(a) is therefore lower than the
value c0 = c(0) at the center of the tube. The concentra-
tion profile c(r) is set by the relative magnitude of diffusive
and advective fluxes (thick arrows). At the membrane inter-
face (r = a), there can be no net flux of solute molecules
Js = −D∂c + Jca = 0, which determines the relative magni-
tude of c0 and ca, see Eq. (13).

and from c∗ = 0.05 M to 0.5 M for sucrose. The radius
of the tube is held constant at a = 0.5mm, while the
length of the tube is varied from L = 6.2 cm to L = 13.6
cm. This approach allows us to measure the flow rate
gain due to osmotic influx, defined as the ratio of outlet
to inlet volumetric flow rates

γ =
Qout

Q∗
− 1 =

uout

u∗
− 1 (1)

as a function of geometric and material properties of the
problem. Here, Qout and uout = Qout/(πa

2) are the flow
rate and average axial velocity at the outlet, respectively,
and u∗ = Q∗/(πa2) is the average inlet velocity.
We use a balance (Sartorius CP 423S) to measure mass

flow at the outlet. Typical flow rate gains vary over two
orders of magnitude from γ = 0.1 to γ = 10. A represen-
tative experimental graph is shown in Fig. 3(a). Here,
the effect of varying inlet flow rate at fixed solute concen-
tration is illustrated. At large inlet flow rates, the solute
is adventcted quickly through the tube and the osmotic
flow has little effect. At low flow rates, however, we ob-
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FIG. 2. Experimental setup. (a) Picture of the experimental
setup. The syringe pump injects an aqueous solution of NaCl
or sucrose into the hollow fiber membrane tube which is im-
mersed in a reservoir containing pure water. The flow along
the x-axis in the tube accelerates from the initial value Q∗

due to osmotic exchange of water across the semi-permeable
wall. We measure the resulting outlet flow rate Qout using a
balance. (b) Cross section view of the hollow fiber membrane
tube. The inner diameter of the tube is 2a = 1 mm and the
wall thickness is d ≃ 200µm. (c) Schematic of the exper-
imental setup. (d) Sketch of the cylindrical flow geometry.
The velocity field u (streamline arrows, see Eqns. (5)-(6))
is determined by the average inlet flow velocity u∗ and the
trans-membrane flux J .

serve a strong gain. Similarly, Fig. (b) shows the effect of
varying the solute concentration at fixed inlet flow rate.
At low concentrations there is no net gain (i.e. γ ≪ 1)
since no osmotic flow occurs and we are simply observing
the effect of the syringe pump. At c∗ = 1M, however, the
gain is significant (γ ≃ 1) and the axial flow in the mem-
brane tube is strongly influenced by the osmotic pump-
ing. To quantify the pumping process, we measure the
gain as a function of inlet flow rate Q∗, and inlet solute
concentration c∗ for two different solutes which yields a
total of 216 data points, shown in Fig. 3(c-d).

III. THEORY OF OSMOTIC PIPE FLOWS

As previously described, we propose that the flow of
water across the membrane wall is driven by osmotic
pressure differences with a modification due to the pres-
ence of concentration boundary layers. Aldis was the first
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FIG. 3. (Color online) Experimental data, recorded with
NaCl (a-d) and sucrose (c-d) as the solute, as indicated in
the legend of (a). (a) Flow rate gain γ = Qout/Q

∗
− 1 plot-

ted as a function of inlet flow rate Q∗ for constant inlet NaCl
concentration c∗ = 1.0 M. (b) Flow rate gain γ plotted as a
function of inlet NaCl concentration c∗ for constant inlet flow
rate Q∗ = 1.7 mm3/s. In (a) and (b), solid lines show theoret-
ical predictions from Eq. (24) with no free parameters. In (c)
and (d), experimental data from all 216 experiments using su-
crose and NaCl are shown. Error bars in (a)-(d) indicate the
errors obtained in the least squares fits to the slopes of the
linear (time, mass)-data curves measured using the balance
shown in Fig. 2.

TABLE I. Non-dimensional parameters.

aspect ratio α = aL−1 0.004 − 0.008

flow rate gain γ = Qout(Q
∗)−1 − 1 0.1 − 10

max flow rate gain Γ = 2LpRTc∗L(u∗a)−1 0.08 − 20
concentration variation φ = (c0 − ca)/ca 0.04 − 1.1
Péclet number

- axial Pex = u∗LD−1 103 − 105

- radial Per = LpRTc∗aD−1 0.3 − 3.9
- mixed Pe = u∗aD−1 68 − 2100

- boundary layer β = u∗a2(6DL)−1 0.04 − 2.8

Reynolds number Re = ρu∗aη−1 0.1 − 1

TABLE II. Material parameters at T = 20◦C. Values for D,
R, and η were obtained from [15]

tube radius a 500µm
concentration at inlet c∗ 0.05 − 1M
thickness of membrane tube wall d 200µm

diffusion coefficient D
5.2 × 10−10 m2 s−1 (S)

1.6 × 10−9 m2 s−1 (NaCl)
length of membrane tube L 6.2 cm, 13.6 cm

permeability of membrane Lp 3.3 × 10−12 ms−1 Pa−1

flow rate at inlet Q∗ 0.2 − 2mm3 s−1

gas constant R 8.314 JK−1 mol−1

absolute temperature T 293K
velocity at inlet u∗ 60 − 600µms−1

viscosity η 1 − 5 mPa s

to considered the effect of unstirred layers on osmotic flow
in a cylindrical tube [11]. He found analytical solutions
for the concentration and velocity fields in the limit of
strong radial diffusion (boundary layer effects negligible)
and for short distances using a series expansion. Our ex-
periments, however, satisfy neither of these criteria and
we proceed to analyse the problem in the general case.
We begin by writing the water flux J across the semi-

permeable tube wall as

J = Lp(RT∆c−∆p) (2)

where Lp is the permeability of the membrane, R is the
gas constant, T is the absolute temperature, ∆c is the
difference in solute concentration, and ∆p is the differ-
ence in hydrostatic pressure between the inside and the
outside of the tube. See Appendix A for details on how
Lp was measured. For clarity we use the van’t Hoff value
RT∆c for the osmotic pressure in Eq. (2), which is valid
only for dilute (ideal) solutions. At the concentrations
relevant to our experiments (c < 1 M for NaCl and
c < 0.5 M for sucrose), the error in the osmotic pres-
sure introduced by using the van’t Hoff value is ∼ 10%
[17]. The liquid outside the tube is pure water (c = 0),
so the concentration difference ∆c = ca where ca is the
concentration at the inner surface of the tube (r = a,
see Fig. 1 and 2. Viscous friction which is responsible
for the term ∆p in Eq. (2), typically creates pressures
of the order ∆p ≃ 8ηu∗L/a2 ≃ 1Pa where η ≃ 1 − 5
mPa s is the viscosity of the solution. These pressures
are much smaller than the osmotic pressure differences
RT∆c ≃ 105Pa and it is therefore safe to disregard the
∆p term in Eq. (2) and write instead J = LpRTca.
The radial flux J , of water in or out of the tube is

naturally related to the mean axial flow velocity u along
the x-axis via volume conservation: ∂xu = 2J/a. We
therefore have the following equation for the average axial
velocity

∂xu = 2
Lp

a
RTca (3)

The concentration c is governed by the advection-
diffusion equation

∂tc+ u·∇c = D∇2c (4)
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where D is the diffusion coefficient of the solute in wa-
ter (see Table II). The 3-D flow field u = (ux, ur, uθ)
will generally be complicated, but since the channel
Reynolds number Re = ρu∗a/η ≃ 0.1 and aspect ratio
α = a/L ≃ 0.005 are both reasonably small we expect the
flow to be rotationally symmetric, laminar and to have a
Poiseuille axial flow profile. As shown by e.g. Aldis [10],
the velocity field u = (ux, ur) in cylindrical coordinates
is then given by

ux = 2
(a2 − r2)

a2
u(x) (5)

ur =
r(r2 − 2a2)

a3
J(x) (6)

The hollow fiber membrane used in the experiments is
able to retain ion-sized solutes. Moreover, axial diffusion
plays very little role since the axial Péclet number Pex =
u∗L/D ≃ 104 is large. Therefore, assuming steady state
and taking the radial average of Eq. (4) implies that the
axial solute flux is a conserved quantity, i.e.,

〈cu〉 = const = c∗u∗ (7)

where 〈cu〉 = 2/a2
∫ a

0 ux(r)c(r)r dr. Of the concentration
field c(r, x) we know that the radial solute flux

Jc = −D∂rc+ urc (8)

must vanish at r = 0 and r = a in order to satisfy the
no-flux boundary condition at the channel center line and
at the membrane wall. Eq. (8) leads to

∂rc = 0 at r = 0 (9)

−D∂rc− LpRTc2 = 0 at r = a (10)

When radial diffusion dominates, the difference in
concentration across the tube will be small, specif-
ically where the local Péclet number J(x)a/D =
LpRTca(x)a/D is small. In this limit, it reasonable to
assume that the concentration gradient at the membrane
is of the order (ca − c0)/a, where c0(x) is the concentra-
tion at r = 0. To solve the averaged advection-diffusion
equation (7), together with the boundary conditions in
Eq. (9) and (10), we approximate the concentration pro-
file by a parabolic function

c(r) = c0(x) + (ca(x) − c0(x))
r2

a2
(11)

Since the advection-diffusion equation can be written en-
tirely in terms of ρ = r2 [18], we can safely neglect odd
terms in r in the profile. The functional form of Eq. (11)
is sketched in Fig. 1. In this approximation, the no-flux
boundary condition at r = a (Eq. (10)) is

−2D(ca − c0)

a
− LpRTc2a = 0 (12)

which sets a relation between the concentration at the
channel center c0 and wall ca

c0 = ca +
LpRTa

2D
c2a = ca +

Per
2

c2a
c∗

(13)

where Per = LpRTc∗a/D is the radial Péclet number.
From the conservation of solute flux (Eq. (7)), we now

have from Eqns. (5) and (11)
(

ca +
Per
3

c2a
c∗

)

u = u∗c∗ (14)

To eliminate ca from Eq. (14) we use Eq. (3) which leads
to
(

a

2LpRT
∂xu+

Per
3c∗

(

a

2LpRT
∂xu

)2
)

u = c∗u∗ (15)

Introducing the variables X = x/L and U = u/u∗,
Eq. (15) can be written in non-dimensional form

(

∂XU + β (∂XU)2
)

U = Γ (16)

where

Γ = 2
L

a

LpRTc∗

u∗
(17)

is the ratio of the largest obtainable purely osmotic flow
velocity 2πaLLpRTc∗/(πa2) and the inlet velocity u∗.
The parameter

β =
1

6

a

L

u∗a

D
=

1

3

Per
Γ

=
1

6
αPe (18)

is proportional to the ratio of the radial Péclet number
Per and the maximum flow gain Γ, or, to the product of
the aspect ratio α and the mixed Péclet number Pe =
u∗a/D.
In the non-dimensional formulation, the flow rate gain

is given by γ = U(1) − 1, and Γ thus provides an upper
limit to the pumping efficiency, since we must have γ ≤ Γ.
An implicit solution of Eq. (16) can be obtained by the
Legendre transformation X = ∂ty, U = t∂ty − y, and
∂XU = t. With this change of coordinates, Eq. (16)
leads to a linear equation in y(t)

(

t2 + βt3
)

∂ty −
(

t+ βt2
)

y = Γ (19)

which has the solution

y(t) = Γ

[

− 1

2t
+ β + tβ2 log

(

t

1 + βt

)]

+ tC (20)

where the constant C allows us to fulfill the boundary
condition U(X(t) = 0) = 1 (in dimensional coordinates:
u(0) = u∗). The non-dimensional velocity U(X(t)) and
axial coordinate X(t) can be written in terms of t as

X = Γ

[

1

2t2
+

β2

1 + βt
+ β2 log

(

t

1 + βt

)]

+ C (21)

U =
Γ

t+ βt2
(22)

To determine C, we note that U = 1 when t = t0 =
(−1 +

√
1 + 4Γβ)/(2β). By inserting t0 in Eq. (21) with

X = 0, we find that

C = −Γ

[

1

2t20
+

β2

1 + βt0
+ β2 log

(

t0
1 + βt0

)]

(23)
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The flow rate gain γ can finally be determined from

γ(β,Γ) = U(1)− 1 =
Γ

t1 + βt21
− 1 (24)

where t1 is found from Eq. (21) by solving X(t1) = 1.
The flow rate gain γ predicted by Eq. (24) is plotted

as a function of β and Γ in Fig. 4(a). In Fig. 4(b), it is
compared to measured values of γ from 216 experiments.
Over two orders of magnitude of variation in γ, we find
excellent agreement between the experimental data and
the prediction of Eq. (24) with no free parameters.
When deriving Eq. (24), we approximated the concen-

tration by the parabolic profile given in Eq. (11) under
the assumption that the radial concentration distribu-
tion was close to uniform. To check this condition we
consider the magnitude of φ = (c0 − ca)/ca. If φ = 0,
the concentration profile is completely flat while if φ = 1
the concentration varies by a factor of 2 across the tube.
Using Eqns. (13), (3), and (16), φ can be written as

φ =
c0 − ca

ca
=

3

4

(

√

1 +
4

3

Per
U

− 1

)

(25)

In a given experiment, the non-dimensional velocity U =
u/u∗ varies between 1 and γ + 1 along the tube (see
Eq. (1)). This observation leads to the following inequal-
ity for φ

3

4

(
√

1 +
4

3

Per
1 + γ

− 1

)

< φ <
3

4

(

√

1 +
4

3
Pe r − 1

)

(26)
Using measured values of γ and calculated values of Per,
we find that φ varies between 0.04 and 1.1, indicating
that there is at most a 50% variation in concentration
across the tube, in rough accord with the slowly varying
concentration approximation.

A. Limiting cases

In the majority of our experiments, both β and Γ are
of moderate magnitude (see Fig. 4(a) and Table II). It is
therefore likely that the boundary layer contributes sig-
nificantly to the flow and that the full solution of Eq. (16)
is needed to rationalize the experimental data. It is,
however, of general interest to consider limiting cases of
Eq. (16) and we therefore consider solutions for β ≪ 1
and β ≫ 1 for arbitrary values of Γ below. Taking Γ ≪ 1
leads to u(x) = u∗ (i.e. γ = 0), and is therefore of lim-
ited interest since we generally look for conditions that
optimise the osmotic flow and thus maximize γ.

1. Weak unstirred concentration boundary layer effects

Consider the situation where radial diffusion is strong
compared to both radial and axial advection. In this case
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FIG. 4. (Color online) Comparison between experimental and
theoretical values of the flow rate gain γ. (a) Green (gray) sur-
face shows theoretical predicted values of γ (Eq. (24)) plotted as a
function of β and Γ. The solid black line indicates the approximate
analytical solutions for β ≪ 1 (Eq. (28)). The black dashed lines
indicate the approximate analytical solutions for β ≫ 1 (Eq. (30)).
White dots indicate the location in the (β,Γ)-plane of experimen-
tal data points. (b) Measured values of γ plotted as a function
of the predicted values using Eq. (24). (c) Measured values of γ

plotted as a function of the predicted values using Eq. (28). (d)
Measured values of γ plotted as a function of the predicted values
using Eq. (30). (b)-(d) uses the same legend as Fig. 3(a).
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the radial and mixed Péclet numbers Per = LpRTc∗a/D
and Pe = u∗a/D are small. This implies (i) that the con-
centration is nearly uniform (φ ∼ Per ≪ 1, see Eq. (25)),
and (ii) that the parameter β ∼ αPe ≪ 1 (see Eq. (18))
when the aspect ratio α = a/L is small, as is generally
the case in our experiments. In this limit, the solution of
Eq. (16) is

U(X) = (1 + 2ΓX)1/2 (27)

which has previously been found by e.g. Aldis [11] and
Thompson and Holbrook [19]. In this limit, the flow rate
gain γ can be expressed as

γ + 1 = (1 + 2Γ)
1/2

=

(

1 +
4LpRTc∗

u∗

L

a

)1/2

(28)

shown in Fig. 4(a) as a solid line. Eq. (28) provides a
useful approximation to γ for small values of β.

2. Strong unstirred concentration boundary layer effects

When radial diffusion becomes comparable or weaker
than radial and axial advection, both the radial and the
mixed Péclet numbers Per = LpRTc∗a/D and Pe =
u∗a/D can become greater than 1. In this limit the con-
centration profile in the tube is no longer uniform (φ ≥ 1,
see Eq. (25)) and the magnitude of the parameter β can
exceed unity. Keeping in mind that that our experiments
have only confirmed the validity of Eq. (16) for β ≤ 2.8,
we proceed to consider the case β ≫ 1. In this limit, the
solution of Eq. (16) is

U(X) =

[

3

2

(

Γ

β

)1/2

X + 1

]2/3

(29)

The flow rate gain γ can be expressed as

γ + 1 =

[

3

2

(

Γ

β

)1/2

+ 1

]2/3

(30)

=

[

3

2

(

12LpRTc∗L2D

a3(u∗)2

)1/2

+ 1

]2/3

(31)

shown in Fig. 4(a) as dashed lines. Eq. (30) provides a
simple approximation to Eq. (24) for large values of β/Γ,
where the flow rate gain scales as γ ∝ (Γ/β)1/2. For
β ≥ 1 and Γ ≥ 1 the error in Eq. (30) is typically less
than 10% when compared to Eq. (24).
The flow rate gains predicted by Eqns. (28) and (30)

are compared to the experimentally obtained values in
Fig. 4(c)-(d), and the relative error (γexp − γtheory)/γexp
is plotted as a function of β in Fig. 5. While both Eq. (28)
and (30) show reasonable agreement between theory and
experiment, the deviation between theory and experi-
ment clearly depends on the value of β. Fig. 5 thus illus-
trates that the parameter β plays an important qualita-
tive role in determining the scaling of the flow rate gain
γ with the parameters of the problem.
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FIG. 5. Comparison between experimental and theoreti-
cal values of the flow rate gain γ. Relative error (γexp −

γtheory)/γexp plotted as a function of the Péclet number β
for the full model (Eq. (24), open circles and solid line), the
limit β ≪ 1 (Eq. (28), dots and dashed line) and the limit
β ≫ 1 (Eq. (30), squares and dashed-dotted line). Lines
show smoothed data curves as a guide to the eye (averaged
over 20 neighboring data points).

IV. CONCLUSION AND DISCUSSION

In this paper, we have studied the effect of concen-
tration boundary layers on osmotic flows in cylindrical
tubes with porous walls. By varying the inlet flow rate
Q∗, inlet solute concentration c∗, and tube length L, we
have experimentally documented the dependence of the
flow rate gain γ (Eq. (1)) on these parameters.
To explain our experimental observations, we have de-

veloped a simple model. The model quantifies the change
in axial flow velocity due to osmotic exchange of water
across the tube wall, and gives a first approximation to
the effect of concentration boundary layers (Eq. (24)).
We have compared theory and experiment with good re-
sults, as shown in Fig. 4(b).
Our theoretical predictions give interesting indications

of how to develop and optimize devices that utilize os-
motic pumps, such as membrane modules for forward
osmosis applications based on hollow fibers [20, 21]. To
obtain the greatest osmotic effect, it is clearly desirable
to maximize Γ and minimize β, see Fig. 4(a). This
can be done in a number of ways, e.g. by using a
long membrane tube (Γ ∝ L, β ∝ L−1), or by inject-
ing fluid slowly (β ∝ u∗, Γ ∝ (u∗)−1). The greatest
potential for improvement, however, is in making the
tube radius a as small as possible, since β ∝ a2 and
Γ ∝ a−1. This increase in γ, however, will only continue
as long as the back pressure due to viscous resistance
∆p ≃ 8ηLu∗/a2 remains small compared to the osmotic
pressure RTc∗ ≃ 105 Pa, c.f Eq. (2). For water (η = 1
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mPa s) flowing at u∗ = 1 mm/s in a L = 1 m tube, the
two pressures are of equal magnitude when a ≃ 100µm.
This indicates that using sub-100µm tubes in filtration
devices is undesirable, although a more thorough analysis
is needed to determine the optimum tube dimensions in
the presence of viscous effects, and more generally non-
linear concentration effects such as deviations from the
van’t Hoff relation.
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Appendix A: Membrane permeability

The membrane permeability Lp was determined by
applying a known hydrostatic pressure differential ∆p
across a membrane section of area A. By measuring the
resulting flow rate Q, the permeability Lp = Q/(A∆p)
of the hollow fiber membrane was determined to be
Lp = (3.28±0.02)×10−12m/s/Pa, consistent with values
obtained from measurements on this type of membrane
material [22].


