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ABSTRACT 

The effect of gravity on the onset and growth rate of capillary instabilities in viscous liquid jets is 

studied. To this end, a spatial linear stability analysis of Cosserat’s equations is performed using 

a multiscale expansion technique. A dispersion relation and expressions for the perturbation 

amplitude are derived to evaluate the growth rate of the most-unstable axisymmetric disturbance 

mode. Modeling results are compared with classical results in the limit of zero Bond number, 

confirming the validity of this approach. Expressions for the critical Weber number, demarcating 

the transition between convective and absolute instability are derived as function of capillary and 

Bond numbers. Parametric investigations for a range of relevant operating conditions 

(characterized by Capillary, Weber, and Bond numbers) are performed to examine the jet break-

up and the perturbation growth-rate. In addition to the physical insight that is obtained from this 

investigation, the results that are presented in this work could also be of relevance as test-cases 

for the algorithmic development and the verification of high-fidelity multiphase simulation 

codes. 
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I. INTRODUCTION 

Instability and breakup of liquid jets is important for a wide range of applications, including 

liquid fuel injection, coating, drug delivery, food preparation, and ink-jet printing [1]. By 

neglecting surrounding gas-effects and gravity, Rayleigh [2] demonstrated that the origin of the 

jet breakup is the hydrodynamic instability. He showed that a circular cylindrical liquid jet is 

unstable with respect to disturbances of wavelengths larger than the jet circumference. Keller et 

al. [3] argued that unstable disturbances grow over space as they are convected along the 

downstream direction. Leib & Goldstein [4, 5] studied the absolute instability of liquid jets, 

arising from a saddle-point singularity in the dispersion relation. In contrast to the convective 

instability analysis of Keller et al. [3], the disturbances in an absolutely unstable liquid jet 

propagate in both upstream and downstream directions.  

Although gravitational effects have been considered in the past for specific applications 

[1], the effect of gravity on capillary instabilities of low-speed liquid jets has not been 

investigated. Reasons for this are the complexity of breakup processes and the extension of the 

parametric manifold, requiring the consideration of the coupling between inertia, viscous forces, 

surface tension, and gravity. 

In the Rayleigh breakup regime, which is relevant for low-speed jets, surrounding gas 

effects are negligible and the breakup mechanism is due to capillary pinching.  Depending on the 

relative magnitude of gravitational, inertia, viscous, and surface tension forces, gravity could 

affect the instability dynamics. Therefore, providing a fundamental physical understanding about 

gravitational effects on the primary jet break-up has the potential to better control breakup length 

and drop-size [1, 6, 7].  
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Developing an analytic model for describing the onset of capillary instabilities of free-

surface flows from three-dimensional detailed conservation equations introduces unnecessary 

complexities. Therefore, consideration of a set of simplified equations that captures the essential 

physics in the linear stability regime enables the development of a tractable analytical method to 

obtain fundamental insight. Green [8] developed such a formulation and derived a one-

dimensional model for a straight, circular, viscous jet using the basic theory of the one-

dimensional Cosserat’s continuum equations. Cosserat’s equations can be systematically derived 

from the Navier-Stokes equations through a Taylor-series expansion [9] or through an averaging 

method over the cross-sectional plane using Galerkin projection techniques [10]. The resulting 

governing equations are high-order nonlinear partial differential equations [1]. This 1-D model, 

inherently containing radial inertia effects, describes the jet profile, velocity, and pressure as 

function of the axial coordinate only, and simplifies the analysis considerably. Bogy [11-14] 

used Cosserat’s equations successfully to study the stability of circular liquid jets in linear and 

nonlinear regimes. More recently, Amini & Dolatabadi [15, 16] analyzed the temporal and 

spatial stability of viscous elliptic jets using Cosserat’s theory in the absence of gravitational 

forces.  

The objective of this work is to investigate the Rayleigh instability of viscous liquid jets 

under consideration of gravitational forcing along the jet direction. To this end, a multiscale 

expansion of the one-dimensional Cosserat’s equations is performed, and the mean flow is 

obtained from the numerical solution of the steady-state Cosserat’s equations. The governing 

equations and linearized form are presented in the next section. From the linearized Cosserat’s 

equations, an analytic dispersion relation is derived. Using this relation, the instability dynamics 

is parametrically investigated in Sec. IV. The paper finishes with conclusions.  
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II. GOVERNING EQUATIONS 

The present analysis considers the instability of a liquid jet in the presence of inertia, viscosity, 

capillary, and gravitational forces.  The problem configuration that is considered in the present 

work and relevant parameters are schematically illustrated in Fig. 1.  

The complete set of Cosserat’s equations includes conservation equations for mass and 

momentum, which after eliminating pressure among axial and radial momentum equations [17], 

can be written in non-dimensional form as 
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where r is the liquid jet-radius and v is the velocity component in axial direction (see Fig. 1). 

These variables are functions of axial distance, z, and time, t. Subscripts z and t represent partial 

derivatives with respect to axial distance and time, respectively. The interested reader is referred 

to Ref. [10], which provides a detailed derivation of Eqs. (1). Equation (1b) describes the balance 

between momentum, on the left, and capillary, viscosity, and gravitational forces, on the right. 

All quantities in Eqs. (1) are non-dimensionalized by using the initial jet radius R* and the axial 

jet exit velocity V* as 

       
(2)
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+ r2v( )z

= 0,
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FIG. 1. (Color online) Schematic of liquid jet and relevant quantities. 

and an asterisk refers to a dimensional quantity. Through this non-dimensionalization, the 

following dimensionless groups can be identified: 

Weber number: We = ρ*V *2R*

σ **  (3a)

Reynolds number: Re = ρ*V *R*

μ**  (3b)

Froude number: Fr = V *2

g**R*  (3c)

Capillary number: Ca = μ*V *

σ * = We
Re

 (3d)
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Bond number: Bo = ρ*R*2

g*

σ * = We
Fr

 (3e)

In these equations, is the dynamic viscosity, is the density, is the surface tension, and 

is the gravitational acceleration.  

In the following, effects of Bond number and other controlling parameters on the 

instability dynamics of liquid jets are investigated by employing a multiscale stability analysis.  

III. MULTISCALE STABILITY ANALYSIS 

For a local linear stability analysis, the state-variables in Eqs. (1) are decomposed into a mean 

and a fluctuating quantity, viz.,  

(4a)

(4b)

In the following analysis, the base-flow quantities  and  are obtained from the numerical 

solution of the steady-state form of Cosserat’s equations (1), which can be written as: 
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The numerical scheme for the solution of these nonlinear coupled equations employs a staggered 

formulation. An upwind-biased scheme is used to approximate all convective terms and all other 

operators are discretized by central differencing schemes. Inflow conditions are enforced by 

*μ *ρ *σ

*g

r(t, z) = r (z)+ ′r (t, z)

v(t, z) = v (z)+ ′v (t, z).

r 2v( )z
= 0,
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Dirichlet conditions, and convective outflow conditions are used at the exit of the computational 

domain. The discretized equations are solved implicitly using an iterative scheme.  

 The spatio-temporal evolution of the hydrodynamic instabilities is described using a 

multiscale analysis technique [18, 19]. The underlying assumption of this analysis is that the base 

flow varies slowly in the axial direction compared to the perturbed flow. To consider this scale-

disparity, a slowly varying coordinate, X, is introduced 

 (6)

and ε is defined as 

 
(7)

comparing the characteristic scales of the instability Linst to the characteristic length of the mean-

flow deformation Lmean (see Fig. 1). In the present analysis, Linst is associated with the 

perturbation wavelength and Lmean is defined as 

Lmean = min v
dv / dz
⎛
⎝
⎜

⎞
⎠
⎟.  (8)

To assess the validity of the perturbation analysis, ε is evaluated from Eq. (7) over the range of 

operating conditions that are considered in this work. From the results, presented in Fig. 2, it can 

be seen that ε remains less than 0.1 for Bo≤1, therefore justifying a weakly non-parallel mean 

flow approximation.  

 

X = εz,

ε = Linst

Lmean

,
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(a) Re = 0.1 (b) Re = 10 (c) Re = 1000 

FIG. 2. (Color online) Variation of non-parallel flow indicator, ε, as function of We and Bo numbers for different 

Reynolds numbers: (a) Re = 0.1, (b) Re = 10, and (c) Re = 1000. 

Toward the spatial stability analysis of Eqs. (1), the perturbed radius and axial velocity 

are represented by normal modes of the form  

 (9a)

 (9b)

where   and    are amplitude components of disturbances of the jet 

radius and axial velocity, respectively. Since this study is concerned with a spatial instability 

analysis, ω is the real-valued frequency, and  is complex-valued, whose real and 

imaginary parts represent the wavenumber and the growth rate in the axial direction, 

respectively. As Eqs. (9) show, perturbed state variables are decomposed into a slowly varying 

spatial amplitude function and a fast varying complex phase function. Linearized expansion of 

Eq. (1) using Eqs. (4) and (9) yields the following set of perturbation equations: 
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(10)

and the matrix components are defined in the Appendix. Nontrivial solutions of the two 

homogeneous equations of (10), yield the following local dispersion relation: 
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The amplitude of the perturbations is found by solving the non-homogeneous equations in (10). 

After simplification, the following ordinary differential equation is obtained,  

 
(13)

where P(X) and Q(X) are defined in the Appendix. The solution of this ordinary differential 

equation can be written as 
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where  is the initial jet radius perturbation that is in the following assigned to be one 

percent of the initial jet mean-radius. It is noted that  and in Eqs. (9) do not appear 

in the final solution and are introduced for the purpose of obtained additional constraints to solve 

Eq. (10). 
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IV. RESULTS 

In the following, the multiscale formulation that was developed in the previous section is used to 

investigate effects of surface tension, gravity, and viscosity on the growth-rate and perturbation 

dynamics of liquid jets. In this investigation we consider a range of representative operating 

conditions with Bond numbers of 0.01, 0.1, and 1, Weber numbers of 5 and 50, and Reynolds 

number of 1000. Relating these parameters to physical properties, they are representative for a 

water jet exiting from a nozzle with diameter ranging between 0.5 – 5 mm. In this context it is 

noted that, without further modifications, the model is also applicable to a wider range of 

conditions, including fountains and rising jets. 

A. Model verification 

For the case of zero Bond number, dispersion curves as function of frequency for three different 

Capillary numbers are presented in Fig. 3. The maximum growth rate and the corresponding 

wavenumber characterize the fastest growing (or the most probable) waves on the liquid surface 

that are eventually responsible for the breakup. From this figure, it can be seen that viscosity 

dampens the growth rate and shifts the maximum growth toward lower frequencies, resulting in 

the formation of larger droplets.  The results obtained from the present multiscale formulation 

are compared with classical results by Leib & Goldstein [5], which are shown by symbols in Fig. 

3. The excellent agreement serves as verification of the developed stability formulation based on 

Cosserat’s equations. 
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FIG. 3. Comparison of the growth rate obtained from the present model (lines) and classical results by Leib & 

Goldstein [5] (symbols) for We=5, Bo=0. 

B. Critical Weber number 

The critical Weber number, below which a liquid jet (without gravity effects) is absolutely 

unstable, and above which the jet is convectively unstable, was found by Leib & Goldstein [4] 

using the criteria of Briggs [20]. Figure 2 shows that for small Bond numbers, a local mean-flow 

assumption is valid. By considering this condition, we evaluate the critical Weber number from 

the dispersion relation as function of capillary number and different Bond numbers. Results of 

this analysis are illustrated in Fig. 4, showing that the critical Weber number decreases with 

increasing Bond numbers. Form these results, it can also be seen that in the limit of Bo → 0, the 

critical Weber number approaches the asymptotic value of Rayleigh-Chandrasekhar calculated 

by Leib and Goldstein [5]. In addition, current results show that in the limit of Ca → 0  the critical 

Weber number resulting a value of 3.10 which is very close to π based on Leib and Goldstein 

analysis [4]. 
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FIG. 4. Critical Weber number versus Capillary number for various Bond numbers. 

Surface tension is the source of instabilities in low-speed jets. If the capillary force is 

sufficiently large compared to inertial forces, disturbances propagate both upstream and 

downstream, whereas in the opposite event, the inertia is dominant over the surface tension force 

and the disturbances can only propagate in the downstream direction. In a downward-pointing 

jet, gravity enhances the inertia. Therefore, disturbances are not able to propagate upstream 

except for very low Weber numbers. Dripping is a candidate for the manifestation of an absolute 

instability and the transition between absolute and convective instability is comparable with the 

transition from dripping to jetting [21]. In fact, part of the disturbances will propagate back to the 

nozzle tip to prevent the formation of a jet of any length. Results in Fig. 4 are in agreement with 

those of Clanet & Lasheras [22] and Ambravaneswaran et al. [6] and show that by increasing the 

Bond number, the transition from dripping to jetting occurs at lower Weber numbers.  

C. Effects of gravity 

Mean jet profiles that were obtained from the numerical solution of Eqs. (5) for different We and 

Bo numbers are plotted in Fig. 5. As shown in this figure, at low Weber numbers, the effect of 
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Bond number on the jet contraction is considerable. However, with increasing Weber number, 

the effect of gravity on the jet profile reduces. In addition, results show that the maximum jet 

slope occurs at the nozzle exit and further down the jet, the liquid jet converges to a near-parallel 

profile. 

 

 

FIG. 5. Variation of unperturbed jet radius (base flow) with axial distance for various Bond numbers (top: 

Ca=0.005, We=5,  bottom: Ca=0.05, We=50). 

Results from the stability analysis are summarized in Figs. 6 and 7 for the selected cases 

of We = 5 and 50, respectively. From left to right, results for increasing Bond number are shown 

(Bo={0.01, 0.1, 1}). The first row shows the growth rate αi as function of axial distance and 
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perturbation frequency, the second row shows the corresponding wavenumber αr, and the third 

row illustrates the perturbation amplitude, which is evaluated as: 

r − r̂0 exp −1
ε

αi dX
0

X∫⎛
⎝
⎜

⎞
⎠
⎟.  (15)

For reference, the blanked-out area indicates the break-up region for which relation (15) becomes 

less than zero. It is noted that this criterion provides only a qualitative indication for the reason 

that the break-up point is affected by the initial perturbation magnitude (which is here set to a 

numerical value of 1% of the mean-jet radius) and nonlinear processes, which are not considered 

in this analysis. Finally, the last row illustrates the mean (dashed) and instantaneous (solid line) 

liquid jet radii at the most unstable forcing frequency.  

From these results it can be seen that by increasing the Weber number, the instability 

growth rate decreases, which is in agreement with the well-known breakup curves as described 

by Lin & Reitz [21]. Importantly, the results also show that by increasing the Bond number the 

instability grows faster. In addition, the range of unstable wavenumbers increases and the peak of 

the curve shifts towards higher frequencies. These results are in agreement with experiments [23, 

24], showing that the breakup length is reduced under consideration of gravity, resulting in the 

formation of smaller droplets. The perturbed jet profile is also plotted in Figs. 6 and 7 for a range 

of We and Bo numbers. The fluctuating jet radius is obtained as solution to Eq. (14), assuming an 

initial amplitude of  Results confirm that for low Weber numbers and high Bond 

numbers, the mean flow is considerably contracting and a nonparallel analysis is required to 

perform the stability analysis. 

  

.01.0)0(0̂ =r
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Bo = 0.01 Bo = 0.1 Bo = 1 

 

 

  

   

FIG. 6. (Color online) Results from multiscale analysis for different Bond numbers with Ca = 0.005 and We = 5, 

showing (1st row) growth rate, (2nd row) wavenumber, (3rd row) jet magnitude, and (4th row) mean and instantaneous jet 

radius for most unstable perturbation frequency (dashed line: base flow, solid line: perturbed flow). 
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Bo = 0.01 Bo = 0.1 Bo = 1 

 

 

 

FIG. 7. (Color online) Results from multiscale analysis for different Bond numbers with Ca = 0.05 and We = 50, 

showing (1st row) growth rate, (2nd row) wavenumber, (3rd row) jet magnitude, and (4th row) mean and instantaneous 

jet radius for most unstable perturbation frequency (dashed line: base flow, solid line: perturbed flow). 
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As a result of the assumption that the perturbation magnitude remains small relative to the 

jet radius, linear analysis fails near the point of jet breakup. Therefore, linear methods do not 

provide an adequate description of the droplet size. Despite this shortcoming, the linear stability 

analysis provides a qualitative description of the physical mechanisms involved in the various 

regimes of the jet breakup process and this mechanism remains the same during the nonlinear 

evolution [17]. The liquid jet breaks up at a streamwise location at which the magnitude of the 

fluctuating part becomes equal to the mean jet radius (see Eq. (15)). The effect of gravity on the 

jet breakup length can be seen in Figs. 6 and 7. The results show that by increasing the Bond 

number, the breakup length decreases, providing a theoretical explanation for the experimentally 

observed behavior by Howes and coworkers [23, 24]. 

V. CONCLUSIONS 

A multiscale analysis was performed to examine the onset and growth of capillary instabilities in 

liquid jets under consideration of effects of surface tension, viscosity, and gravitational forcing. 

A theoretical formulation was developed using Cosserat’s equations, and dispersion relations and 

expressions for the spatio-temporal evolution of the perturbation amplitude were derived.  To 

confirm the validity of this approach, comparisons with classical linear stability results for the 

special case of zero Bond-number were presented, and excellent agreement is obtained. From the 

solution of the dispersion relation it was shown that the critical Weber number decreases with 

increasing Bond number, which explains the reason for shifting the transition between dripping 

and jetting to lower Weber numbers in the case of considering gravity effects.   

Following this characterization, the analysis was extended to investigate the instability 

dynamics over a range of relevant operating conditions that are represented in terms of Bond, 
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Weber, and Capillary numbers. The results presented in this work reveal that by increasing 

gravitational forcing, the jet instability increases, the maximum growth rate shifts toward shorter 

waves, and the cut-off frequency increases. 

Apart from the physical insight that is obtained from this analysis, results of this study 

could also be of value as canonical test cases for the algorithmic assessment and the verification 

of high-fidelity multiphase simulation codes [25]. Although only the linear regime is considered, 

the accurate numerical prediction of phase-speed and perturbation growth-rate represents 

considerable challenges to numerical methods that can be systematically addressed through 

direct comparisons against theoretical results from the present multiscale analysis. The herein 

presented stability results provide access to different instability behaviors (characterized by 

growth rate, forcing frequency, wavelength, and breakup point), so that the complexity of the test 

cases can be adjusted. 
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