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We numerically explore gyrotactic bioconvection in large spatially-extended domains of finite
depth using parameter values from available experiments with the unicellular alga Chlamydomonas

nivalis. We numerically integrate the three-dimensional, time-dependent, continuum model of Ped-
ley et al. [J. Fluid Mech., 195, 223 (1988)] using a high-order, parallel, spectral-element approach.
We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio
of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern
dynamics which we compare with available theory and experimental measurement. There is good
agreement for the pattern wavelength at short-times between numerics, experiment, and a linear
stability analysis. At long-times we find that the general sequence of patterns given by the nonlinear
evolution of the governing equations correspond qualitatively to what has been described experi-
mentally. However, at long-times the patterns in numerics grow to larger wavelengths in contrast
to what is observed in experiment where the wavelength is found to decrease with time.

I. INTRODUCTION

The collective motion of many microorganisms in a
fluid environment is an ubiquitous phenomenon of na-
ture and is an important feature of a broad range of
important systems. It is a common feature of oceans,
streams, and lakes and occurs in fluids contained within
animals [1]. For example, the large-scale motion of vast
quantities of phytoplankton in the oceans plays an impor-
tant role in climate models via their production of cloud-
condensation nuclei which are central to descriptions of
the global thermostat (c.f. [2, 3]). In addition, swimming
microorganisms such as algae, bacteria, protozoa, and
spermatozoa can form suspensions with complex collec-
tive dynamics that play a vital role in the organism’s life
cycle and its impact upon its surroundings [1, 4].
In this paper we focus our attention on what is called

bioconvection which is a general term used to describe
the pattern formation caused by the upward swimming
of many microorganisms in a fluid [1, 5]. Free swimming
microorganisms often swim with a particular direction
relative to the variation of an external stimulus. Exam-
ples include chemical gradients (chemotaxis), variations
in light intensity (phototaxis), a gravitational field (grav-
itaxis), and variations in the rheological properties of the
surrounding fluid (rheotaxis). The study of these taxes

and others has a rich and growing literature [1].
In this study we are interested in gyrotactic microor-

ganisms that are slightly denser than water with an asym-
metrical mass distribution. The cells are bottom heavy
where the center of mass is below the geometrical center.
In the limit of small Reynolds number flow where inertia
is negligible the swimming microorganisms balance the
viscous torque with a gravitational torque which results
in an upward swimming direction at some angle with the
vertical.
We will focus our attention on the microorganism

Chlamydomonas nivalis. C. nivalis is a unicellular, fresh-
water, and biflagellate swimming green alga [6]. The
swimming stroke consists of a breast-stroke motion of
its two anterior flagella. Geometrically it is a prolate
spheroid with a typical length of approximately 10 µm
and typical swimming speed of 70 µm/s. It is about 5%
more dense than water. Using these typical parameters
yields a Reynolds number for the flow field caused by a
swimming microorganism of Re ≈ 7 × 10−4 ≪ 1 and is
essentially inertia free.

There are many experiments discussed in the litera-
ture that present the striking patterns of bioconvection
for a variety of different suspensions of swimming mi-
croorganisms [1, 6–10]. Typically, the experiments are
conducted in large shallow containers with aspect ratios
Γ = L/H ≫ 1 where L is the length of the domain andH
is the depth of the fluid layer. The experimental images
are photographs taken from above where the light inten-
sity can be related qualitatively with the spatial variation
of the local concentration of the microorganisms at the
top of the suspension. In this paper we will focus our
attention upon the experiments of Bees and Hill [6], typ-
ical experimental bioconvection patterns can be seen in
Figs. (2)-(4) of this reference.

There has been significant progress modeling the com-
plex processes that result in bioconvection. The first
models were continuous and deterministic and assumed
dilute suspensions of microorganisms whose swimming
results in low Reynolds number flow [8, 9, 11]. The in-
herent randomness present in a population of swimming
cells was modeled as deterministic diffusion. A linear
stability analysis yielded predictions for the wavelength
describing bioconvection that were found to be approxi-
mately 5 times too large when compared with long-time
experimental measurements [11, 12].

Subsequent efforts included stochastic effects by allow-
ing the swimming direction to be a random process. Ped-
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ley et al. [13] included a Fokker-Planck equation for the
probability density function representing the swimming
directions of the microorganisms. A linear stability anal-
ysis of this model for the wavelength of the bioconvection
also yielded wavelengths larger than the experimentally
measured values and was very similar to the result us-
ing the purely deterministic model of Ref. [11]. Hill and
Häder [14] modeled bioconvection as the continuous limit
of a correlated and biased random walk. In this work,
both gravitaxis and phototaxis were explored and the
model was used with careful experimental measurements
to quantify macroscopic quantities of potential interest
to theoretical modeling efforts.
There have been a number of numerical explorations

of bioconvection. Ghorai and Hill [15, 16] have per-
formed a series of numerical simulations using the con-
tinuous and deterministic model of Ref. [11]. Initially,
two-dimensional bioconvection in deep chambers was ex-
plored [15]. More recently [16] full three-dimensional bio-
convection was numerically explored in a small aspect ra-
tio domain capable of supporting a single bioconvection
plume.
There have been efforts to perform numerical simula-

tions of bioconvection that include stochastic effects as
well as the discrete nature of the individual microorgan-
isms. Hopkins and Fauci [17] accounted numerically for
the discrete microorganisms as point sources of gravita-
tional force in the governing equations for the fluid mo-
tion. In this work two-dimensional bioconvection was
explored for gyrotactic and chemotactic microorganisms
and yielded long-time patterns resembling those of ex-
periment.
In this paper we are interested in the long-time non-

linear evolution of the bioconvection patterns in spatially
extended domains that are typical in experiment. We
use the deterministic and continuous model of Pedley et

al. [11] and perform large-scale parallel numerical simula-
tions for parameter values relevant to the experiments of
Bees and Hill [6]. We exploit the significant progress of
computational research on Rayleigh-Bénard convection
in large domains (c.f. [18, 19]) to perform long-time nu-
merical simulations of bioconvection in large spatially ex-
tended domains. We are particularly interested in quan-
tifying the pattern dynamics in the nonlinear regime and
its comparison with experimental observations.

II. APPROACH

A. Mathematical Formulation

In the following we only provide the essential ideas to
describe the model, for more details see Ref. [11]. The
number density or concentration of the cells is given by
n(x, t) where x = (x, y, z) represents the spatial coordi-
nates in a Cartesian reference frame and t is the time.
For a dilute suspension of cells nv ≪ 1 where v is the
average volume of a single cell. The conservation of mo-

mentum and mass for the fluid suspension in dimensional
form yields

ρ
∂u

∂t
+ ρu · ∇u = −∇pe − nv∆ρ gẑ+ µ∇2u, (1)

∇ · u = 0 (2)

where pe is the pressure excess over hydrostatic, g is the
acceleration due to gravity, ẑ is a unit vector opposing
gravity, µ is the dynamic viscosity of the fluid, ρ is the
fluid density, and ρ+∆ρ is the mean cell density where
∆ρ is approximately 5% larger than ρ in typical exper-
iments. The second to last term on the right hand side
of Eq. (1) represents the Boussinesq approximation by
allowing density variations in the buoyancy term. Equa-
tion (2) is for an incompressible fluid and yields a diver-
gence free velocity field.
The equation for the cell concentration is given by

the conservation of the number of cells. It is typical to
neglect birth and death processes which occur on time
scales longer than those that describe the dynamics of
bioconvection. In addition, the sedimentation velocity is
much smaller than the swimming velocity and can also
be neglected. The resulting dimensional equation is,

∂n

∂t
= −∇ · J, (3)

where the flux of the cells J is given by,

J = nu+ nWcp−D∇n (4)

where D is the isotropic diffusion coefficient for the cells,
Wc is the constant cell swimming speed, and p represents
the unit vector of the orientation of the cells.
The algal cells are known to be slightly ellipsoidal

in geometry with typical values of cell eccentricity of
α0 ≈ 0.3 [12]. In our analysis we will proceed with the
assumption that the cells are spherical where α0 = 0 and
have a radius a and mass m. The cells are bottom-heavy
with a distance h between the center of mass and the ge-
ometric center. In the limit of low Reynolds number the
balance of the gravitational and viscous torques yields an
expression for the time variation of the orientation of a
swimming cell [16],

dp

dt
=

1

2B
[ẑ− (ẑ · p)p] +

1

2
ω × p, (5)

where the vorticity is ω = ∇ × u and the time scale
of reorientation is given by the gyrotactic reorientation
parameter,

B =
4πµa3

mgh
. (6)

It will be insightful to proceed by nondimensionalizing
Eqs. (1)-(5). We will follow the convention of using the
depth of the layerH as the length scale, the time required
for a cell to diffuse across the layer depth H2/D as the
time scale, the quantity ρD2/H2 as the pressure scale,
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and the mean cell concentration n̄ as the concentration
scale [16]. The governing nondimensional equations are,

∂u

∂t
+ u · ∇u = −∇pe + S∇2u− SRnẑ, (7)

∂n

∂t
+ u · ∇n = −∇ · (nVcp) +∇2n, (8)

∇ · u = 0. (9)

The nondimensional equation for the cell orientation is
given by,

dp

dt
=

1

2G
[ẑ− (ẑ · p)p] + 1

2
ω × p. (10)

These equations contain several important nondimen-
sional parameters. The Schmidt number

S =
ν

D
(11)

represents a ratio of the diffusion of momentum to the
diffusion of cells where where ν = µ/ρ is the kinematic
viscosity of the suspension. The Rayleigh number

R =
n̄v∆ρgH3

ρνD
(12)

represents the ratio of buoyancy to viscous forces. The
scaled swimming speed

Vc =
Wc

D/H
(13)

where the swimming velocity is normalized by a mass
diffusion velocity scale. The scaled swimming velocity
can also be interpreted as a ratio of length scales d where
d = Vc and is the ratio of the suspension depth to a
length scale describing the equilibrium concentration of
microorganisms located near the top surface [12]. For
d ≫ 1 the suspension can be described as a deep layer
and for d ≪ 1 the suspension is a shallow layer. Lastly,
the dimensionless gyrotactic number

G =
B

H2/D
(14)

represents the ratio of the time scale of reorientation to
the diffusion time scale.

B. Numerical Procedure

There has been significant progress in the numerical
simulation of bioconvection. From very early on the qual-
itative connection of bioconvection with the fluid mo-
tion of Rayleigh-Bénard convection has been observed [5].
Rayleigh-Bénard convection is the fluid motion that re-
sults when a shallow layer of fluid is heated from below in
an opposing gravitation field. As the temperature differ-
ence across the fluid layer increases, buoyancy eventually

overcomes viscosity resulting in patterns of convection
cells. Rayleigh-Bénard convection is a canonical pattern-
ing forming system where significant progress has been
made in improving our physical understanding of the dy-
namics of systems driven far-from-equilibrium [20, 21].
To solve the system of equations given by Eqs. (7)-(10)

we used a highly-efficient, high-order, parallel, spectral-
element approach that has been developed to solve the
Boussinesq equations (c.f. [18]). The numerical approach
has been used to explore a number of fundamental ques-
tions for Rayleigh-Bénard convection in large shallow do-
mains for the precise conditions of experiment [22–25].
In our numerical simulations we use a box geometry

with a solid bottom and a free surface at the top of
layer. For the sidewalls we have explored both the cases
of solid sidewalls and periodic sidewall boundary condi-
tions. At all material surfaces we impose the no-slip ve-
locity boundary condition and the free surface has zero
shear stress. For the case of solid sidewalls we enforce a
no-flux boundary condition for the concentration of the
cells on all boundaries,

J · n̂ = 0 (15)

where n̂ is the outward pointing unit normal with respect
to a boundary. For the case of periodic sidewall boundary
conditions the fluid velocity and the concentration of cells
are periodic in the horizontal directions.
In the numerical simulations the initial conditions are

a spatially uniform concentration field for the cells upon
which we have added a small random perturbation,

n(x, t = 0) = 1 + ǫδ(x) (16)

where ǫ = 10−8 is the small magnitude of the perturba-
tion and 0 ≤ δ(x) ≤ 1 is a random number selected from
a uniform distribution at each location in space.
Our approach is high-order and uses an exponentially

convergent spectral element discretization in space that
can asymptotically achieve higher accuracy for a given
number of numerical degrees of freedom than a finite el-
ement or finite difference code [26]. The code uses a
stable third-order-accurate semi-implicit (operator split-
ting) discretization in time that allows time steps cor-
responding to CFL numbers in excess of unity [27]. A
typical value of the numerical time step used in our calcu-
lations is ∆t = 10−4. The elliptic problems arising from
the viscous and pressure substeps of the time integra-
tor are solved iteratively with a multigrid preconditioned
conjugate gradient method [28, 29]. The code is highly
optimized for parallel architectures and readily scales to
thousands of processors.

III. RESULTS AND DISCUSSION

A. Comparison with Experiment

We have chosen the parameters in our numerical simu-
lations to correspond with the experimental investigation
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of Bees and Hill [6]. These experiments were conducted
using C. nivalis for a range of conditions. Thirty-nine
experiments were conducted in circular Petri dishes with
a typical radius of r0 = 2.5 cm with varying depths H of
fluid suspension to yield aspect ratios of 3 . Γc . 21. For
cylindrical geometries it is common to define the aspect
ratio as Γc = r0/H . These experiments are for weakly
gyrotactic suspensions of moderate depth that covers a
broad range of Rayleigh numbers where G ≈ 0.02 ≪ 1,
d ≈ 10, and 95 ≤ R ≤ 3500.

r0 H n̄ Γc

(cm) (cm) (cells/cm3)

2.5 0.469 1.89 ×106 5.3

TABLE I. Experimental parameters used by Bees and Hill [6]
to study the bioconvection of C. nivalis upon which we have
based our numerical simulations. r0 is the radius of the cylin-
drical Petri dish, H is the depth of the fluid suspension, n̄ is
the mean concentration of cells, Γc is the aspect ratio of the
cylindrical domain used in the experiment.

We initially focus our attention on experiments (17)
– (19) in Ref. [6] as a representative example of experi-
mental bioconvection. The experimental parameters are
shown in Table I. Using the parameters of Table I with
the typical properties of C. nivalis given in Ref. [16]
yields the nondimensional parameters listed in Table II
using Eqs. (11)-(14). The fluid properties for water are
used where the density ρ = 1000 kg/m3 and the dy-
namic viscosity µ = 1× 10−3 kg/m-s. The isotropic dif-
fusion coefficient for the microorganisms is D = 5× 10−8

m2/s, the ratio of the cell density to the density of wa-
ter ∆ρ/ρ = 0.05, the average swimming speed of a cell is
Wc = 100 µm/s, and the gyrotactic parameter is B = 3.4
s. We note that the aspect ratio Γ = 10 is for a box ge-
ometry where Γ = L/H and L is the side length of the
box. This yields a domain of similar size to those of the
experiment with Γc ≈ 5 where the aspect ratio is based
upon the domain radius.

S R G Vc Γ

20 955.38 7.7× 10−3 9.38 10

TABLE II. Nondimensional parameters used in our numerical
simulations. S is the Schmidt number, R is the Rayleigh num-
ber, G is the gyrotactic number, Vc is the scaled swimming
velocity, and Γ is the aspect ratio of the box geometry.

The spatial variation of the bioconvection patterns at
several times during the time evolution are shown in
Fig. 1. Color contours of the concentration field n(x, y)
are illustrated at the top surface (z = 1) of the suspen-
sion layer. Red (light grey) indicates a large concentra-
tion and blue (dark grey) indicates a small concentration.
The time increases from panel (a) through panel (d). The

pattern did not reach a steady state at long times but
continued to show slow and small scale dynamics with
the essential features of the pattern remaining similar to
what is shown in panel (d).

We have performed numerous numerical tests to en-
sure that our results are not a result of the underlying
spectral element grid nor a result of the particular choice
of initial conditions used. We have run simulations with
different spatial resolutions and also from different initial
conditions and we have found that the trends illustrated
in Fig. 1 are qualitatively correct in general [30].

Figure 2 illustrates the bioconvection pattern across a
vertical cross-section of the domain for each of the panels
of Fig. 1. The vertical cross section shown in Fig. 2 is
the x − z plane that crosses through the domain shown
in Fig. 1 from left to right. The exact location of the
slice is chosen to be near the center of the domain and
to also cut through the regions of large concentration
in order to visualize the plume structure and dynamics.
Color contours are shown that represent the cell concen-
tration n(x, z) with red (light grey) representing large
concentrations and blue (dark grey) representing small
concentrations. The arrows represent the vector for the
suspension velocity u. Figure 2 illustrates that in regions
of large concentrations the suspension velocity is down-
ward as indicated by the falling plume.

In our numerical simulations the suspension layer
evolves from the initial conditions toward the equilibrium
state where there is a dense layer of microorganisms near
the top surface. Theoretically, the equilibrium state is
one with zero suspension velocity and an exponential ver-
tical variation in the concentration field [11]. The suspen-
sion layer in the numerical simulations becomes unstable
before the equilibrium state is completely established. At
early times the instability is strongest near the sidewalls
and rapidly encompasses the entire layer. Figures 1-2 il-
lustrate that the pattern that grows initially has a smaller
wavelength than the pattern at long times. The central
region of the domain has a relatively small suspension
velocity at early times in the pattern evolution.

The general pattern evolution shown in Fig. 1 is in
qualitative agreement with what has been observed in
experiment where it was found that roll type patterns
became patterns of dots at long times (for example, see
Fig. 11 of Ref. [6]). A qualitative description of the pat-
tern evolution is as follows. At short times, the microor-
ganisms on average swim toward the upper surface and
result in a larger concentration which eventually passes
a critical threshold resulting in the formation of falling
plumes. These initial falling plumes are in stripe or line
type structures as shown in Fig. 1(a). These lines then
become unstable to a pattern of dot structures that are
formed in a somewhat regular array as shown in Fig. 1(b).
The dot structures then interact slowly in time to yield
a final state of dots that are often connected by lines to
yield star-like structures which can be seen in Figs. 1(c)-
(d). These star-like structures then exhibit very slow
dynamics that continue for the duration of our simula-
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tions. In the experiments [6], an annular pattern is ob-
served after the dots are formed which grows and then
becomes unstable again to dots which fill most of the do-
main. We did not find evidence of the annular phase of
the pattern evolution along the progression to the final
long-term patterns in the numerical simulations.

FIG. 1. (Color online) Bioconvection patterns at the top
surface (z = 1) of a box domain with aspect ratio Γ = 10.
Color contours are shown for the cell concentration n where
red (light grey) is large concentration and blue (dark grey) is
small concentration. The different panels are the patterns for
(a) t = 0.24, (b) t = 0.5, (c) t = 1.25, and (d) t = 8. The
dimensionless parameters used are given in Table II.

The initial dynamics and symmetry present in the pat-
terns of Fig. 1 suggest that the boundary conditions and
the planform of the domain geometry may have a signif-
icant effect upon the dynamics. In order to explore this
further we also computed the bioconvection dynamics in
a much larger domain and in domains with periodic side-
wall boundary conditions. Representative results from
these simulations at long-times are shown in Fig. 3. Fig-
ure 3(a) is for the same geometry and conditions of Fig. 1
(Γ = 10) but with periodic boundary conditions. Fig-
ure 3(b) shows results for a large domain with an aspect
ratio of Γ = 40 and periodic boundary conditions.
For the domains with periodic sidewall boundary con-

ditions the initial pattern emerges over the entire biocon-
vection layer and it is composed of domains of dots with
a square lattice like type structure. These domains of
dots are similar to what is shown in Fig. 1(c) however
the domains are at different orientations with respect
to each other and are separated by domain boundaries
and defect structures. These initial dynamics are in con-
trast to the inward propagating line structure from the

lateral boundaries that then evolve into a lattice of dot
structures as seen in the simulations with rigid sidewalls
at early times. Our results suggest that the initial line
structures found in the simulations with rigid sidewalls
are due to the planform of the geometry and the side-
wall boundary conditions. However, after these initial
dynamics where t . 0.25 the lattice of dot-like struc-
tures is a general feature of the dynamics that appears
independent of the sidewall boundary conditions. We
have also conducted long-time simulations in the large
domain Γ = 40 with rigid sidewall boundary conditions
and the long-time patterns are similar with what is shown
in Fig. 3(b).

Overall, we find that the long-time patterns do not
depend significantly upon the aspect ratio or the partic-
ular sidewall boundary condition used. This is evident
by comparing the patterns illustrated in Figs. 1 and 3.
These results suggest that our numerical simulations in a
Γ = 10 domain with rigid sidewall boundary conditions
are representative of the dynamics of large spatially ex-
tended domains. It would be interesting to break the
symmetry of the domain and use, for example, a cylin-
drical geometry however this is not something we have
explored here. In the remaining discussion we will focus
our attention upon numerical results with Γ = 10 and
rigid sidewalls.

Figure 4 illustrates the time evolution of the pattern
wavelength. The pattern wavelength is found at each
time using the structure factor in Fourier space [6, 20,
31]. The solid line represents the results from numerical
simulation. An estimate of the order of magnitude for
the time scale describing the initial growth of the pattern
in the linear regime is given by the time required for a
microorganism to swim from the bottom surface to the
top surface. In our nondimensional units this time scale
is τ0 = V −1

c ≈ 0.1. In light of this our simulations are for
very long times, in Fig. 4 the duration of the simulation
is τf = 8 = 80τ0. For comparison, the typical duration
of the experiments is on the order of 5 minutes which
corresponds approximately to a duration of τf = 6τ0.

In the numerical simulation there is an initial rapid
growth of the pattern dominated by structures near the
sidewalls as shown in Figs. 1(a) and 2(a). Since the mea-
sured wavelength is a global measure of the pattern this
yields the initial large spike in the value of the wave-
length. After this spike the pattern has become estab-
lished over the entire domain which yields a value that
describes the length scale of Fig. 1(b) which shows a fairly
regular grid of 42 plumes. At this point there is a very
slow coarsening process where the plumes merge and an-
nihilate to form a pattern of star-like structures that is
described by a larger length scale. This coarsening con-
tinued for the entire duration of the numerical simulation
and we did not explore the very long time limit of these
pattern dynamics.

The linear stability of a suspension has been analyzed
and it is insightful to compare our numerical results with
these predictions. Although the analysis can include the
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FIG. 2. (Color online) The vertical structure of the bioconvection patterns for the conditions of Fig. 1. An x− z cross section
is shown. Color contours are of the cell concentration n where red (light grey) is large concentration and blue (dark grey) is
small concentration. The arrows represent velocity vectors for the suspension velocity u. The different panels are (a) t = 0.24,
(b) t = 0.5, (c) t = 1.25, and (d) t = 8. The dimensionless parameters used are given in Table II.

ellipsoidal geometry of actual cells we will present only
the results for spherical cells in order to compare di-
rectly with our simulations. Pedley et al. [11] analyzed
the stability of a uniform base state in an infinite body
of fluid. The base state has a uniform concentration of
cells that are all swimming vertically upwards with zero
suspension velocity. For this case of an infinitely deep
layer it was found that the suspension is unstable to
two-dimensional disturbances larger than a critical value
given by λc = 2π/

√
VcGR. As a result, there is no crit-

ical value of the Rayleigh number and very long wave-
length two-dimensional disturbances are unstable. Fur-
thermore, there is a wavelength of maximum growth rate
given by λm = λc(2 + (S + 1)/

√
S)1/2 > λc where both

λc and λm decrease as R−1/2 with increasing values of
the Rayleigh number.

Pedley et al. [11] also provide an estimate for the lin-
ear stability of a uniform layer of finite depth by allow-
ing the finite depth to provide a cut-off for the allowable
maximum wavelength of the vertical variation of the dis-
turbance. These results are only estimates in the sense
that a uniform base state does not satisfy the governing
equations and the boundary conditions for a layer of fi-
nite depth. Under these approximations there is a critical

Rayleigh number given by R
(u)
c = 16π2/VcG where the

notation R
(u)
c indicates the critical Rayleigh number of

a layer of finite depth starting from uniform base state.

For our parameters R
(u)
c = 2178 > R indicating that our

suspension would be stable in this sense.

The linear stability analysis was extended by Hill et
al. [12] for the case of a layer of finite depth with real-
istic boundary conditions. In this case the base state is
the equilibrium state that has an exponentially varying
concentration of cells in the vertical direction that satisfy
the appropriate boundary conditions for a suspension of
finite depth. In addition, the cells are all swimming ver-
tically upward and there is zero suspension velocity. In
Ref. [12] results were presented for the case of a rigid bot-
tom and top surface. We computed the linear stability
for our case of a rigid bottom surface and stress-free top
surface using Eqs. (3.11)-(3.14) of Ref. [12].

For the parameters of Table II the results of the linear
stability analysis are shown in Fig. 5. Figure 5(a) illus-
trates the variation of the neutral curve where the growth
rate of disturbances σ is zero. This figure also yields a

value for the critical Rayleigh number R
(e)
c ≈ 60 where

the notation (e) indicates that this is for the case of a
layer of finite depth starting from the equilibrium base
state. It is clear that the critical value of the wavenum-
ber is zero indicating again that the layer is unstable to
long wavelength disturbances.

Figure 5(b) illustrates the variation of the growth rate
σ with wavenumber k where k = 2π/λ. It can be seen
that for wavenumbers less than kc the growth rate is
positive. In addition, the wavenumber of the maximum
value of the growth rate yields km.
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FIG. 3. (Color online) Bioconvection patterns at the top sur-
face (z = 1) of a box domain with periodic sidewall boundary
conditions at time t = 10: (a) Γ = 10, (b) Γ = 40. We note
that panel (b) has been scaled in size by a factor of two in
order to fit on the page. Color contours are shown for the cell
concentration n where red (light grey) is large concentration
and blue (dark grey) is small concentration. The dimension-
less parameters used are given in Table II.

Figure 4 includes horizontal lines representing several
wavelengths of interest. The experimentally measured
value of the wavelength at long-times is represented as
the dashed line at λexp

∞
= 0.70± 0.05 where we have used

the average value from experiments (17)-(19) in Ref. [6].
The ±0.05 is the standard deviation about the mean
value and represents the variation observed in the three
different experimental measurements which began from
different initial conditions. This indicates that the long-
time value of the wavelength in the experiments had little
variation with the initial conditions. However, in the ex-
periments it was reported that the short-time wavelength
λexp
0 was found to depend strongly upon the initial con-

ditions resulting from the initial stirring of the suspen-
sion layer. The variation of the experimentally measured
wavelength at short times is indicated by the shaded re-

t

λ

0 2 4 6 8

1

2

R = 955

m

λ∞
exp

λ c

FIG. 4. Variation of the wavelength of bioconvection λ with
time for R = 955, S = 20, G = 7.7 × 10−3, Vc = 9.38, and
Γ = 10. The horizontal dashed lines represent the critical
wavelength λc = 0.49, the wavelength of maximum growth
λm = 1.18, and the long-time wavelength measured in ex-
periment λexp

∞
= 0.70 ± 0.05. The value shown for λexp

∞
is

the average of three different experiments where the standard
deviation about the mean value is approximately 0.05. The
shaded region indicates the range of wavelengths measured
for the initial pattern at short times in experiment where
0.75 ≤ λexp

0 ≤ 1.29. The specific experiments used are (17)-
(19) in Ref. [6].

gion where 0.75 ≤ λexp
0 ≤ 1.29.

Our results indicate that for times t . 3 the wave-
length of the numerical simulation is similar to the wave-
length of maximum growth rate λm. For longer times,
the nonlinear evolution of the bioconvection pattern con-
tinues to grow to larger values as the pattern coarsens
into the star-like structures. The long-time wavelength
of the numerical simulation is over 3 times larger than the
experimentally measured value. In addition, the experi-
mental measurements exhibit the trend where the initial
pattern that is formed has a larger wavelength than the
long-time pattern. However, the numerical simulations
indicate that the deterministic model yields the oppo-
site behavior where the short time pattern (excluding the
very early transients) is of a smaller wavelength than the
long-time pattern. These results suggest that although
the linear regime is in agreement with the experiments
there are quantitative differences in the nonlinear long-
time evolution. As a result, this suggests that the long-
time wavenumber selection observed in experiment may
not be captured by the current form of the deterministic
model.
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FIG. 5. Results from the linear stability analysis of a suspen-
sion of infinite horizontal extent but finite depth where the
bottom surface is rigid and the top surface is free and the
base state is given by the equilibrium state. These results are
for S = 20, G = 7.7 × 10−3, and Vc = 9.38. (a) The neutral
curve. (b) The variation of the growth rate of two-dimensional
disturbances σ with the wavenumber k where k = 2π/λ and
R = 955. kc is the critical wavenumber in the sense that dis-
turbances with smaller wavenumber are unstable. km is the
wavenumber describing the disturbance with the maximum
growth rate.

B. Variation with Rayleigh Number

There are many interesting limits of the model that
one could explore using our numerical approach. How-
ever, the computations are quite expensive for spatially
extended domains and in the following we have chosen
to investigate the variation in the pattern dynamics with
the Rayleigh number. As shown in Eq. (12) the Rayleigh
number depends upon a number of parameters. However,
if we consider C. nivalis as the microorganism of interest
the parameters that can vary are the average cell concen-
tration n̄ and the suspension depth H . For example, one
way to increase the Rayleigh number would be to simply
increase the concentration of the cells while holding the
remaining variables constant. The Rayleigh number is an
important parameter in determining the dynamics and is

the typical control parameter used to describe convection
problems. The effect of increasing the Rayleigh number
results in a stronger contribution of buoyancy induced
motion relative to viscous dissipation.

In the following we have held all of the parameters
constant while varying the Rayleigh number over the
range 100 ≤ R ≤ 3000 to cover experimentally acces-
sible states. For all but one of our numerical simula-
tions R < R

(u)
c = 2178 indicating that a layer of fi-

nite thickness with a uniform base state would be stable
for these conditions. We have performed one simulation
with R = 3000 which would also be unstable to the uni-
form base state. For the conditions of our simulations
the linear stability analysis predicts a critical value of
the Rayleigh number for the equilibrium base state of

R
(e)
c ≈ 60. Our numerical simulation for R = 100 did

not yield a bioconvection pattern and resulted in a sta-
ble dense layer of microorganisms at the top surface. For
R ≥ 500 all of our simulations did yield bioconvection
patterns. It is possible that the finite size of our domain
in the lateral direction affects the value of the critical
Rayleigh number. In this paper we are more interested
in the long-time nonlinear evolution of the patterns and
did not explore this aspect in detail.

Figure 6 illustrates the long-time nonlinear evolution of
the bioconvection patterns for R = 500, 1000, 1500, 2000
in panels (a) through (d), respectively. Our results show
a transition from a pattern resembling a lattice of dots
joined by lines for small values of R to a pattern com-
posed of an irregular array of connected dots for large val-
ues of R. The red (light grey) regions of Fig. 6 represent
a large concentration of the microorganisms in downward
plumes.

The time variation of the pattern wavelength is shown
in Fig. 7 for all of the Rayleigh numbers that have been
simulated for the time range t . 7. Even at these late
times the pattern wavelength continues to meander in
time and does not appear to be approaching a steady
value except for the lowest Rayleigh number simulation
at R = 500. The simulation at R = 3000 required a
smaller time step and, as a result, it was only simulated
until t ≈ 4. An interesting feature of this simulation
was the presence of oscillations in the dynamics, these
oscillations can also be seen in the rapid time variation
of the wavelength. For this case, the long-time pattern
consists of star-like structures whose size oscillates slowly
in time. It is also clear from our results that the long-time
values of the bioconvection wavelength does not follow a
monotonic trend with the Rayleigh number.

The variation of the pattern wavelength with Rayleigh
number is shown in Fig. 8. The squares are the long-time
wavelength of the simulation measured at time t = 7
except for the R = 3000 case which was measured at
t = 4. As previously discussed this should not be taken
as a steady value but as a representation of the scale of
the magnitude at long times. The triangles are the pat-
tern wavelength from the numerical simulation at short-
times. This value of the wavelength is the value just after
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FIG. 6. (Color online) The long-time bioconvection patterns
at the top surface of a box domain with aspect ratio Γ = 10
for the range of Rayleigh numbers 500 ≤ R ≤ 2000. Color
contours of the cell concentration n are shown at the top sur-
face at time t = 7. Red (light grey) is large concentration and
blue (dark grey) is low concentration where (a) R = 500, (b)
R = 1000, (c) R = 1500, and (d) R = 2000. The remaining
parameters are given in Table II.

the large initial transients shown in Fig. 7. The dashed
lines are included to guide the eye. By comparing the
short-time and long-time values of the wavelength the
amount of wavelength growth with the nonlinear evolu-
tion is evident. The solid lines represent the variation
with Rayleigh number of the critical wavelength λc and
the wavelength of maximum growth λm for the case of a
finite layer starting from an equilibrium base state with
our boundary conditions. It is clear that the initial pat-
tern wavelength is quite similar to λm. For the case of
R = 955 we performed three long-time simulations that
started from different random initial conditions in order
to quantify the variation in our wavelength results. Us-
ing these results the standard deviation of the long-time
wavelength is 0.14 and for the short-time wavelength the
standard deviation is 0.06.

The circle and diamond symbols on Fig. 8 are the ex-
perimental results of Ref. [6] that have been rescaled us-
ing our conventions for nondimensionalization. The dia-
mond symbols are the experimental pattern wavelength
at early times λexp

0 and the circles are the pattern wave-
length at long times λexp

∞
. Although the different exper-

iments are for different values of d and G the variation
in these parameters is quite small and this provides a
way to visualize the general experimental trends of the
pattern wavelength with the Rayleigh number. For some

t

λ

2 4 6

1

2
R = 955

R = 700

R = 3000

R = 1500

R = 1000

R = 500

R = 2000

FIG. 7. Variation of the wavelength of bioconvection λ with
time. The solid curves are numerical results for 7 different
values of the Rayleigh number R. The remaining simulation
parameters are given in Table II.

values of the Rayleigh number it was not possible to ex-
perimentally measure λexp

∞
and in these cases a value is

not reported in Ref. [6].
From these results several comments can be made.

Both the short-time and long-time wavelengths of the
experimentally measured patterns decreases with increas-
ing values of the Rayleigh number. It is also evident that
the experimental patterns have a larger wavelength at
short-times which then decreases toward the long-time
value. The amount of variation in the experiments of the
short-time wavelengths with different initial conditions is
also evident. Overall, the numerical simulations, exper-
iment, and the linear stability analysis are in agreement
for short-times. However, for long-times there are quan-
titative differences between the numerical results and the
experimental measurements.

IV. CONCLUSION

We have explored numerically the continuum model of
bioconvection by Pedley et al. [11] in spatially-extended
domains for long-times to quantify the nonlinear pat-
tern evolution. We have used a highly-parallel spectral-
element numerical approach. In this investigation we
have focussed upon a box geometry with parameters ap-
propriate to compare with the experiments of Bees and
Hill [6]. We have found that the deterministic model
does a remarkably good job of describing the general
pattern evolution of bioconvection for the conditions of
experiment. However, quantitatively there are several
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FIG. 8. (Color online) Variation of the wavelength of biocon-
vection λ with Rayleigh number R. The squares (red) are the
long-time pattern wavelength from the numerical simulations
(the patterns are shown in Fig. 6). The triangles (blue) are
the short-time pattern wavelength from the numerical simu-
lations. The dashed lines are included to guide the eye. The
diamonds (cyan) and circles (green) are the experimentally
measured short-time and long-tome wavelengths, respectively,
from Ref. [6]. The two labelled solid lines are the critical
wavelength λc and the wavelength of maximum growth rate
λm that has been determined from a linear stability analy-
sis of a finite layer with an equilibrium base state and our
boundary conditions.

important differences. The experiments evolve toward
smaller wavelength patterns and the numerical simula-
tions evolve toward larger wavelength patterns. Our re-

sults suggest this model may be used, as one of the sim-
pler choices available, to study important open questions
regarding the phenomena of bioconvection in the linear
regime. Our results also suggest that model modifica-
tions may be required for quantitative agreement in the
long-time nonlinear regime.
There are a number of important approximations used

in our numerical simulations that we would like to high-
light. The experiments are in circular geometries whereas
the simulations are in a box geometry. For the aspect
ratios explored it is possible that the boundaries could
play a significant role in the pattern evolution. The ge-
ometry of C. nivalis is slightly elliptical whereas we have
assumed spherical cells. It is known that the elliptical
nature of the geometry affects the linear stability [11, 12]
and this could also affect the nonlinear evolution as well.
The numerical simulations are deterministic and a more
accurate representation would include the random varia-
tions of the cells and their properties such as geometry,
swimming directions, etc.
However, we emphasize that our numerical approach

is quite general and can be extended as models and ex-
periments improve to include, for example, much larger
domains, deeper or more shallow chambers, different ge-
ometries such a cylindrical domains, anisotropic diffusion
coefficients, etc. as well as a means to perform a more
exhaustive exploration of the parameter space. An im-
portant advance that results from performing realistic
numerical simulations using available nonlinear models
is the ability to test hypotheses in the long-time limit
which is important experimentally yet currently inacces-
sible to direct theoretical analysis.
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[14] N. A. Hill and D. P. Häder, J. Theo. Biol. 186, 503

(1997).
[15] S. Ghorai and N. A. Hill, Phys. Fluids 12, 5 (2000).
[16] S. Ghorai and N. A. Hill, Phys. Fluids 19, 054107 (2007).
[17] M. M. Hopkins and L. J. Fauci, J. Fluid Mech. 455, 149

(2002).
[18] M. R. Paul, K.-H. Chiam, M. C. Cross, P. F. Fischer,

and H. S. Greenside, Physica D 184, 114 (2003).



11

[19] M. Paul, K.-H. Chiam, M. Cross, and P. Fischer, Phys.
Rev. Lett. 93, 064503 (2004).

[20] M. C. Cross and P. C. Hohenberg, Rev. of Mod. Phys.
65, 851 (1993).

[21] E. Bodenschatz, W. Pesch, and G. Ahlers, Annu. Rev.
Fluid Mech. 32, 709 (2000).

[22] M. R. Paul, M. C. Cross, P. F. Fischer, and H. S. Green-
side, Phys. Rev. Lett. 87, 154501 (2001).

[23] J. Scheel, M. Paul, M. Cross, and P. Fischer, Phys. Rev.
E 68 (2003).

[24] K.-H. Chiam, M. Cross, H. Greenside, and P. Fischer,
Phys. Rev. E 71, 036205 (2005).

[25] A. Karimi and M. Paul, Phys. Rev. E 85, 046201 (2012).
[26] M. Deville, P. Fischer, and E. Mund, High order meth-

ods for incompressible flow (Cambridge University Press,
2002).

[27] Y. Maday, A. T. Patera, and E. M. Ronquist, J. Sci.
Computing 5, 262 (1990).

[28] P. F. Fischer and J. W. Lottes, in Domain Decomposition

Methods in Science and Engineering Series, Domain De-
composition Methods in Science and Engineering, edited
by R. Kornhuber, R. Hoppe, J. Priaux, O. Pironneau,
O. Widlund, and J. Xu (Springer, 2004).

[29] J. W. Lottes and P. F. Fischer, J. Sci. Comput. 24, 45
(2005).

[30] A. Karimi, Gaining new insights into spatiotemporal

chaos with numerics, Ph.D. thesis, Virginia Polytechnic
Institute and State University (2012).

[31] S. W. Morris, E. Bodenschatz, D. S. Cannell, and
G. Ahlers, Phys. Rev. Lett. 71, 2026 (1993).


