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To probe the effects of hydrogel particle additives on the water-accessible pore structure of sandy
soils, we introduce a custom pressure plate method in which the volume of water expelled from a wet
granular packing is measured as a function of applied pressure. Using a capillary bundle model, we
show that the differential change in retained water per pressure increment is directly related to the
cumulative cross-sectional area distribution f(r) of the water-accessible pores with radii less than
r. This is validated by measurements of water expelled from a model sandy soil composed of 2 mm
diameter glass beads. In particular, the expelled water is found to depend dramatically on sample
height and that analysis using the capillary bundle model gives the same pore size distribution for
all samples. The distribution is found to be approximately log-normal, and the total cross-sectional
area fraction of the accessible pore space is found to be f0 = 0.34. We then report on how the
pore distribution and total water-accessible area fraction are affected by superabsorbent hydrogel
particle additives, uniformly mixed into a fixed-height sample at varying concentrations. Under
both fixed volume and free swelling conditions, the total area fraction of water-accessible pore space
in a packing decreases exponentially as the gel concentration increases. The size distribution of the
pores is significantly modified by the swollen hydrogel particles, such that large pores are clogged
while small pores are formed.

PACS numbers: 47.55.nb, 47.56.+r, 68.08.Bc, 91.65.My

Capillary storage of water is an important property
that contributes to the plant water availability in soils,
especially in sandy soils. When the capillary forces are
strong compared to gravity, the rain water is trapped in-
side the pores and may be used to support the growth
of plants. Since capillary forces depend on pore size, the
amount of capillary water inside a sandy soil is tightly
linked to its pore structure. An improvement in the wa-
ter retention of a sandy soil usually couples with a change
in the water-accessible pore structure. As a popular soil
additive, superabsorbent hydrogel particles have been
proven to efficiently enhance water retention of sandy
soils by swelling and hence locking water inside them-
selves [1–9]. However, it is yet to be clarified the extent
to which the improvement is also due to the modifica-
tion of the water-accessible pore structure caused by the
presence of the hydrogel particles.

A standard way to determine the soil water retention is
to use a pressure plate apparatus, introduced by Richards
in 1940’s [10, 11]. The basic idea is to measure the
amount of solution expelled from a wet soil under a given
pressure head. For this, a water-saturated soil sample is
placed on an extraction chamber whose bottom is embed-
ded with a wet porous plate. When an extra gas pressure
is applied, the wet porous plate allows soil water to flow
out but prevents the escape of the compressed gas in
the chamber. In the past several decades, this apparatus
has been widely used in soil research to determine the
so-called soil-water characteristic curve (SWCC), θ(P )
vs P , which is defined as the ratio of the water volume
Vwater retained in soil under a given suction pressure P

to the initial volume of the dry soil Vsoil:

θ(P ) =
Vwater(P )

Vsoil
. (1)

This is also referred to as the soil-water retention curve
(SWRC), the degree of saturation, and the volumetric
water content. The characteristic curve allows a direct
comparison of the water-holding capacity of soils; see,
e.g., Ref. [12] for example data and empirical fitting
forms. The characteristic curve also contains informa-
tion about the soil pore structure; see, e.g., Ref. [13] for
a review of mathematical models. In spite of this body
of work, the experimental accuracy and reproducibility
of this approach have been long-standing issues. Studies
[14–18] have shown that the soil water content results ob-
tained from this technique vary when different operating
procedures and measuring time scales are used. Most of
these previous studies focus on high gas pressures, un-
der which the equilibrium state become extremely hard
to reach and its influence limits accuracy. In this regime
flow and dynamic effects due to viscosity, including fin-
gering instabilities, play an important role [19–21]. Less
attention has been paid to the influence of soil packing
height in comparison with a natural capillary rise height,
and to operation under low driving pressure essentially
at hydrostatic static equilibrium; this is our focus. Note
however that the system is not in thermodynamic equi-
librium, since the expulsion of water is not reversible due
to hysteresis due to microscopic effects such as contact
angle hysteresis and a pressure threshold to move the
air-water interface between adjacent pores.

Mercury porosimetry [22–25] is a popular method for
characterizing the pore structure for rocks, rather than
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soils, but has close parallels to the pressure plate method.
For mercury porosimetry measurements, the mercury is
forced to penetrate into the pores of a dry sample as
the gas pressure is reduced. The variation of the intrud-
ing mercury volume with the reduced gas pressure gives
the cumulative pore size distribution of the sample. Data
analysis relies upon two assumptions: first, that the sam-
ple pores have a cylindrical geometry; second, that the
pressure difference due to the sample packing height can
be ignored when compared to the applied pressure [25–
27]. However, due to the high density of the mercury
(e.g., 1 cm mercury column corresponds to a pressure of
1.3 kPa.), the second assumption may cause large devi-
ations when data is obtained at low pressure values or
from a relatively high sample packing. Considering the
similarity between the pressure plate measurement and
the mercury intrusion measurement, we may convert the
soil water retention data to the soil pore size distribution
in the same way, except that the advancing contact angle
of mercury used in the deduction should be replaced by
the receding contact angle of water.

In this paper we address basic issues relating to wa-
ter retention and irrigation efficiency. Our orientation is
to re-think the measurement process, to work with easily
controlled systems rather than real soils, and to introduce
a simplified model that ignores geometrical complexity
as well as chemical and wetting film details. We begin
with construction of a custom pressure plate apparatus
for measuring the volume of the expelled water from a
soil sample as a function of applied pressure P . Rather
than use the characteristic curve θ(P ) to analyze the re-
sults, we introduce a new dimensionless parameter, the
differential expelled water curve

E(P ) =
ρg

A0

dVw
dP

, (2)

where dVw is the incremental volume of water expelled
by increasing the pressure across the sample from P to
P + dP , A0 is the sample cross-sectional area, ρ is the
density of the expelled water, and g = 9.8 m/s2. To an-
alyze the results, we develop our own capillary bundle
model for extracting the area distribution of pore radii
from the E(P ) curves. The bundles are vertical, rather
than horizontal [26], and their height plays an impor-
tant role for water retention that, we emphasize, must
be explicitly accounted for in order to correctly analyze
pressure plate data. Failure to do so would introduce
a systematic error, and hence an uncontrolled source of
irreproducibility, that we make obvious.

The paper is organized as follows. First we describe
our custom pressure plate apparatus, the model soils,
and the procedures for taking data. Then we introduce a
capillary bundle model that directs the extraction of the
water-accessible pore size distribution from experimen-
tal data. The validity of the model is demonstrated by
comparison of results obtained for model sandy soil sam-
ples with several different packing heights, which have
extremely different E(P ) curves. Finally, the samples of

uniformly mixed model soils and hydrogel particles are
examined. The effects of gel concentration, gel size, and
external confinement on the soil pore structure are de-
termined respectively.

I. EXPERIMENT

Our custom pressure plate apparatus for measuring
E(P ) curves is illustrated schematically in Fig. 1. A
cylindrical glass column (Knotes, NJ) holds the soil sam-
ple. It is 30 cm height with a constant inner cross-
sectional area of A0 = 18 cm2, and is designed to safely
pressurize up to 340 kPa. Two PTFE end fittings with
20 µm porosity polyethylene bed supports are supplied to
seal the top and the bottom of this sample column. The
bottom of the sample column connects to a gear pump
(Micropump Inc.), a collection burette (Knotes, NJ), and
a drain outlet through two three-way valves and Tygon
tubes. The pump can provide flow rates ranging from
3 to 60 mL/min. It is used to pre-saturate a soil sam-
ple by a slow upward infiltration of water from below.
The collection burette is about 40 cm height with an
inner cross-sectional area of a0 = 7.5 cm2. It collects
the water expelled from the soil sample during the pres-
surization. The top of the sample column connects to
atmosphere, a compressed-gas source (cylinder of com-
pressed N2, Airgas Inc.), and a differential pressure sen-
sor (26PCA, Omega, CT) through two three-way valves.
The output of the pressure sensor (∆P ) is measured by
a voltmeter (Keithley Inc.) with a resolution of 0.1 mV.
We calibrate the pressure sensor by water columns with
controlled heights and get a linear dependence with a
sensitivity of 0.29 kPa/mV.

A. Materials

The model sandy soil we choose are glass beads (Pot-
ters Industries, PA) with a diameter of 2 mm (±10%).
To clean the surface, they were first burnt in a furnace
at 500◦C for 72 hours and then soaked in a 1 M HCl
bath for an hour. After that, the beads were rinsed with
deionized (DI) water thoroughly and baked in a vacuum
oven at about 110◦C for 24 hours. The dry glass beads
have very hydrophilic surfaces.

The hydrogel particles used in the experiments
are a commercial product provided by Degussa
Inc.(Stockosorb SW), made by grinding a bulk gel. The
particle shape is randomly faceted but compact. The
main chemical component of these particles is cross-
linked polyacrylamide-co-potassium acrylate. A small
amount of salts is present from the industrial polymer-
ization. If allowed to freely swell in DI water (the salt
concentration in the final fluid is less than 10−3 M) under
atmosphere, a gel particle can hold several hundred times
of water than its weight in dry. And 95% of the absorbed
water is available to plants [28]. In our experiments, two
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FIG. 1: (Color online) Schematic of the custom pressure plate
measurement set-up. A cylindrical glass column with inner
cross-sectional area of A0 holds a soil sample packing with
a height of H0. It connects to a pump and a burette from
the bottom. The pump is used to pre-saturate the soil sam-
ple, while the burette with an inner cross-sectional area of a0
collects the water expelled out during the pressurization. A
compressed-gas source is used to pressurize the sample col-
umn. The amount of the pressure in sample column that is
higher than the gas phase in burette (∆P ) is measured by a
differential pressure sensor combined with a high-resolution
voltmeter. The pressure across the sample packing is then
determined as P = ∆P − ρghw (Eq. (3)). For the fixed vol-
ume experiments, centimeter-size balls are added on the top
of the sample packing to fill the remaining empty space of the
sample column before pre-saturation; this prevents expansion
of the medium due to swelling of the hydrogel particles when
the sample is wetted.

different sizes of dry hydrogel particles are chosen. They
come from the same sample bag but were sieved by differ-
ent sized copper meshes. The smaller ones (0.2−0.3 mm
diameter) are used in most of the measurements, while
the larger ones (0.9 − 1.1 mm diameter) are only used
for comparison. For comparison, the tetrahedral hole for
our glass beads has diameter 0.225× 2 mm = 0.45 mm.

The gel particles are mixed into the glass beads at four
different concentrations: 0.01, 0.05, 0.10, and 0.20 weight
percent. The corresponding gel:bead number ratios are
about 1:15, 1:3, 2:3, and 4:3. To ensure good mixing, a
small amount of sample is prepared at a time. For the
desired concentration, carefully weighted dry gel parti-
cles are poured into 50 grams of dry glass beads and
the entire volume is thoroughly stirred in a large bowl.
The mixture is then gently poured into the sample col-
umn. The process is repeated typically three times, until
enough mixture is obtained to fill the sample column to
the desired height. After the sample is wetted, the hy-
drogel particles become more visible due to the swelling,
and we can visually confirm uniform mixing.

Since water is pulled upwards against gravity into a

dry hydrophilic sample, other important parameters for
our system include the liquid mass density ρ = 1 g/cm3,
the liquid-gas surface tension γ = 73 dyne/cm, and the
contact angle θ = 0◦ between the liquid-gas interface and
the hydrophilic grain surfaces.

B. Procedures and example data

In this subsection we describe how our samples are
prepared and how our apparatus is used to measure both
the pressure P and the dimensionless differential expelled
water curve E(P ) vs P .

To prepare a soil packing, we first clean and dry the
sample column to make sure that the inner surface is hy-
drophilic. A piece of filter paper (Whatman, NJ) is added
on the bottom and the dry granular sample is poured into
the sample column carefully, 1-2 cm height each time, un-
til reaching the desired packing height H0. The sample
column is then lightly patted so that the top surface is
level and the packing fraction of grains is 0.62 ± 0.01,
within error of random-close packing [29]. Two differ-
ent conditions are used for each mixture: fixed volume
and free swelling. For fixed volume, centimeter-size plas-
tic balls are added on the top of the granular packing
to fill the remaining empty space in the sample column
and maintain the packing at constant volume against
the pressure of the swelling hydrogel particles. For free
swelling, no plastic balls are added and the sample col-
umn has enough empty space for the mixture packing
to freely expand when the intially-dry hydrogel particles
absorb water.

The packing is then pre-saturated with DI water from
the bottom at a slow flow rate of 3 mL/min with the
top open to atmosphere. For the pure glass beads pack-
ings, the pre-saturation procedure does not modify the
pore structure and the extra confinement has no effect on
the results. However, for the mixed packings of hydro-
gel particles and glass beads, the swelling hydrogel parti-
cles tend to expand the packing during the pre-saturation
procedure, so free versus fixed volume conditions are dif-
ferent. After pre-saturation, each mixture packing is left
for 24 hours to ensure the full swelling of the hydrogel
particles.

The final preparation step is to open the top of the
sample and collection columns to atmosphere, and to
drain liquid in the collection column down to the same
level as membrane filter at the bottom of sample column
– i.e. the location indicated by a horizontal line labeled
P0 in Fig. 1. Once this level is reached, the drain outlet
is closed; however, over the course of several hours, the
liquid level in the sample column falls and the level in the
collection column rises. This extra liquid is then drained,
and the whole process is iterated as many times as nec-
essary so that the liquid level in the collection column
remains constant and even with the bottom of the sam-
ple column. When this is finally achieved, both columns
are sealed at top. Referring to the quantities labeled in
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Fig. 1, the initial conditions are thus such that P0 equals
atmospheric pressure, P = 0, ∆P = 0, hw = 0, and h
equals the equilibrium capillary rise of water pulled into
the sample against gravity.

The dimensionless expelled water curve, E(P ) vs P , is
now measured by pressurizing the space above the sam-
ple and measuring the resulting expulsion of water from
the increase in the height hw of water in the collection
burette. This is done in a step-wise fashion, by repeat-
edly bleeding in a small quantity of compressed gas (N2)
and then waiting for the liquid levels to come to equilib-
rium before hw is recorded. The two quantities directly
measured are thus the pressured difference ∆P between
the columns, and the height hw of liquid in the collec-
tion burette. In order to deduce the pressure P across
the sample, first note that the pressure in the collection
burette at the level of the membrane filter is the same
value, which we call P0, as at the bottom of the sample.
This reference pressure is now greater than atmospheric,
but its value is not of interest. The gas pressure in sam-
ple column equals P0 + P , and the gas pressure in the
collection burette equals P0−ρghw (see Fig. 1). The gas
pressure in the sample column is also greater than that
in the collection burette by the measured quantity ∆P .
Altogether this gives the pressure across the sample as

P = ∆P − ρghw. (3)

Note that P gives the amount by which the pressure is
greater in the gas above, than in the liquid underneath,
the sample – and hence is sometimes referred to as “suc-
tion”. In order to deduce E(P ), note that the incremen-
tal volume dVm of water expelled by a small increase in P
is simply the product a0dhw of the inner area of the col-
lection burette times the change in collected water level.
The dimensionless differential expelled water curve for
our apparatus is thus

E(P ) = (a0/A0)ρg dhw/dP, (4)

which may be found by numerical differentiation of hw
versus P data.

Example data for hw versus P obtained by the above
procedures are shown in Fig. 2a, for 2 mm glass beads
(no hydrogel particles) packed to different heights H0 as
indicated in the legend. For all, hw increases monotoni-
cally with P towards an asymptotic value corresponding
to the complete expulsion of all water from the sample.
To reach this limit, the presence of a wet filter paper
membrane beneath the sample was necessary to prevent
the penetration of compressed gas out from underneath
the sample. Note that the results for the highest packing
heights are nearly identical, and display an initial rise
from zero that is linear. But the results for the lowest
packing heights are sigmoidal in shape, and asymptote
to values that decrease for smaller H0. Thus the soil-
water characteristic curves (SWCC), given by Eq. (1) as
θ(P ) = 1 − hw(P )/hw(∞), clearly depend on packing
height. This can be understood as follows. When the
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FIG. 2: (Color online) (a) Height of water in the collection
burette, and (b) dimensionless differential water expulsion
parameter, versus applied pressure for 2 mm diameter glass
beads packed to different heights H0 as labeled. As shown in
Fig. 1, A0 and a0 are the inner cross-sectional areas of the
sample column and the burette, respectively The y-axis in
(b) represents the expelled water per pressure increment per
sample area, made dimensionless by the fluid density ρ and
g = 9.8 m/s2. In (a) the solid curves represent the smoothed
data used for differentiation. In (b) the solid curves are a
simultaneous fit to Eq. (11) for a log-normal pore size distri-
bution with f(r) given by Eq. (15), and the dashed curves
are the expectation for the low packing height data based on
the high packing height data and Eq. (11). The plateau in
(b) labeled f0 represents the cross-sectional area fraction of
water-accessible pore space in the packing.

packing is taller than the equilibrium capillary rise, the
upper portion of the sample is dry and has no influence
on water retention. When the packing is smaller than
the equilibrium capillary rise, the entire sample is wet
and a minimum height-dependent pressure head must be
exceeded in order for water expulsion to commence. This
intuition will be made quantitative with a capillary bun-
dle model in the next section.

The differential dimensionless expelled water curves,
E(P ) versus P , obtained from the example hw versus P
data and Eq. (4), are plotted in Fig. 2b. For numer-
ical differentiation, we first smooth the data using the
LOESS algorithm [30] available in Igor. This fits the
data to a quadratic polynomial by sub-regions of size set
by a user-specified smoothing parameter. The advantage
of this algorithm is that it is very flexible and does not re-
quire a specific function to fit the entire data set. During
the smoothing process, we vary the smoothing parameter
between 0.25 to 0.5 to obtain the smoothest curve that
does not systematically deviate from the data. Then we
do central finite differencing on both the smoothed curve
and the original data to ensure that the smoothed curve
describes the original data well even after differentiation.
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For small packing heights, the E(P ) curves rise to a peak
and then fall toward zero as P increases. For the two
tallest packings, the E(P ) results are indistinguishable,
monotonically decreasing with P , are equal to a constant
f0 ≈ 0.34 for small P . The value of f0 represents the to-
tal cross-sectional area fraction of the water accessible
pore space, as will be shown next with a capillary bundle
model.

II. CAPILLARY BUNDLE MODEL

To extract physical meaning from the differential E(P )
versus P water expulsion curves, we now construct a
model in which the granular packing is pictured as a set
of vertical capillary tubes of height H0 and with some dis-
tribution of radii r, as depicted schematically in Fig. 3.
Such “capillary bundle” approximations may seem rather
severe and uncontrolled, but they have a long history of
use in the modeling of fluids in porous media [26, 27, 31–
34], including evaporative drying [35]. Here, the rise h of
liquid into a tube of radius r may be computed by con-
sidering how the pressure increases from P0 in the liquid
at the bottom of the sample to P0 + P in the gas above.
In going upwards from the bottom to a height h just be-
low the liquid-gas interface, the pressure drops according
to Pascal’s law by ρgh. And in crossing the interface,
the pressure goes up according to Laplace’s law by 2γ/r
where γ is the liquid-gas surface tension and where com-
plete wetting is assumed. In other words, the gas pressure
P0 +P above the sample is equal to P0−ρgh+2γ/r, and
this gives the capillary rise as

h =
2γ

ρgr
− P

ρg
. (5)

The first term represents the usual capillary rise formula,
which would be multiplied by the cosine of the contact
angle for the case of partial wetting. The second term
represents the reduction in height due to an applied pres-
sure (or suction), and is independent of r and wetting
properties.

Note that Eq. (5) holds only if r is neither too small
nor too large. In particular if r is smaller than

rsmall =
2γ

P + ρgH0
(6)

then the tube is too short and the rise of fluid will be
pegged at h = H0, with water entirely filling the tube.
And if r is larger than

rlarge =
2γ

P
, (7)

then the applied pressure is too great and the rise will be
pegged at h = 0, with all water completely expelled from
the tube. Tubes of radii in the range rsmall < r < rlarge
are partially filled with fluid, and are “active” in the sense
that their filling height h responds to pressure changes
according to Eq. (5).

P0

H0

P0 + P

emptyfilled active

rlargersmall

g

FIG. 3: (Color online) Schematic of the capillary bundle
model. In the model, a bundle of capillaries with height of H0

is placed vertically in a water reservoir. The pressure in the
water reservoir is P0 and the pressure in gas phase is P0 + P
(P ≥ 0). Here, rsmall = 2γ/(P + ρgH0) sets the radius limit
for the filled capillaries; rlarge = 2γ/P sets the radius limit
for the empty capillaries; and the capillaries with radius be-
tween them are the active ones. Only the water in the active
capillaries is expelled out when an small pressure increment
dP is applied to the system.

The simplest case to consider, first, is a sample with
tall packing height and with small applied pressure –
then all tubes are active. Therefore, in response to a
small increase dP of applied pressure, the change in rise
height for all tubes is given by differentiating Eq. (5) as
dh = −dP/(ρg). The resulting volume of expelled wa-
ter is −f0A0dh where A0 is the cross-sectional area of
the sample and f0 is the total cross-sectional area frac-
tion of the pore space. By continuity, the change dhw in
height of liquid in the collection burette is such that the
expelled volume equals a0dhw. In other words, we have
a0dhw = −f0A0[−dP/(ρg)]; therefore, when all tubes
are active, the cross-sectional area fraction is

f0 = (a0/A0)ρg dhw/dP, (8)

which is recognized as our dimensionless differential wa-
ter expulsion parameter. This holds for tall samples and
low pressures, for which the E(P ) versus P sample data
in Fig. 2b are indeed constant. For that sample, the in-
ferred total cross-sectional area fraction of the pore space
may be read off the graph as f0 = 0.34± 0.01. Note that
this argument relies only upon continuity and the second
term in Eq. (5); therefore, we believe its validity tran-
scends any limitations of the capillary bundle approxi-
mation.

Now we generalize to the case that only some of the
tubes are active. For this we introduce a new quantity,
the fraction f(r) of the cross-sectional area having pores
with radii less than r. By definition, f(r) increases mono-
tonically from 0 and asymptotes to f0 as r increases from
zero to infinity. Also by definition, f(r) is a cumulative
distribution function and therefore the associated prob-
ability distribution function (PDF) is

p(r) =
df

dr
, (9)
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which is normalized to f0 rather than to one. As above,
the volume of water expelled by an increase dP of applied
pressure is a0dhw and equals the active area times the de-
crease in liquid level inside the sample, −dh = dP/(ρg).
Whereas before the active area was f0A0, it is now more
generally [f(rlarge) − f(rsmall)]A0 where the term in
square brackets is the fraction of active area with radii
in the range rsmall < r < rlarge that obey Eq. (5). Alto-
gether the capillary bundle model thus gives

(a0/A0)ρg
dhw
dP

= f(rlarge)− f(rsmall), (10)

= f

(
2γ

P

)
− f

(
2γ

P + ρgH0

)
, (11)

=

∫ 2γ/P

2γ/(P+ρgH0)

p(r)dr. (12)

where the left hand side is recognized as our dimension-
less differential water expulsion parameter, E(P ), and
the large and small radii are taken from Eqs. (6-7). Note
that the right hand sides reduce to f0, and Eq. (8) is re-
covered, in the limit that all pores are active such that
the integration limits lie between rsmall and rlarge. These
equivalent expressions are the main result of the capillary
bundle model. In essence, the raw data from pressure
plate measurements of hw versus P are seen to be di-
rectly linked to a double integral of the cross-sectional
area distribution of the pore radii.

As a remark, note that while our model thus shows
that the cross-sectional area distribution of pore radii is
the key structural quantity accessible from water reten-
tion/expulsion data, prior work has been in terms of the
volumetric distribution of pore radii [13].

III. MODEL SANDY SOIL

In this section we describe how to use the capillary
bundle model, Eqs. (10-12), to deduce pore size infor-
mation from experimental data for E(P ) versus P . And
we demonstrate the procedures using the example data
of Fig. 2 for packings of 2 mm glass spheres of various
heights.

A. Direct fitting

One straightforward method of analysis is to assume
a particular form for f(r) and then simply fit E(P ) =
(a0/A0)ρgdhw/dP data to the right hand side of Eq. (11).
In soil science, the approach is often to perform a similar
empirical fit to the soil water retention curve. By con-
trast, we work not with the measured quantity but with
an underlying quantity of direct physical significance. In
absence of theoretical guidance, we try three different
empirical forms of f for which the PDF is a peaked func-
tion:

f(r) = f0[1− e−(r/r0)
α

], (13)

f(r) = f0[1− (1 + (r/r0)β)e−(r/r0)
β

], (14)

f(r) =
f0√

2πσ02

∫ r

0

x−1e
− (ln x−ln r0)2

2σ0
2 dx. (15)

All three cumulative distribution functions are sigmoidal
in shape, rise from f(0) = 0, and asymptote to f0 as
r → ∞. The last form, Eq. (15), is the cumulative dis-
tribution function for a log-normal PDF. These forms
are used to directly, and simultaneously, fit the data for
all five packing heights in Fig. 2b by keeping f0 = 0.34
fixed and adjusting the other two parameters. The fits
are all satisfactory and give r0 = 0.40 mm and α = 4.2
for Eq. (13); r0 = 0.30 mm and β = 2.7 for Eq. (14);
and r0 = 0.36 mm and σ0 = 0.29 for Eq. (15). The log-
normal fits are displayed in Fig. 2b and have the small-
est chi-squared deviation of the three candidate forms.
A log-normal form is consistent with simulation results
for the pore size distribution for a random packing of
spheres [36–38]. We emphasize that, while the E(P ) ver-
sus P curves are all very different and height dependent,
in effect they all give the same pore radii distribution.
The good agreement of the simultaneous fits for all data
sets demonstrated both the consistency of our data and
validity of the capillary bundle model.

B. Extraction of f(r) for tall packings

For large enough packing heights H0, such that the
capillary rise of liquid never extends to the top of the
sample, f(rsmall) vanishes and the right hand side of
Eq. (11) reduces to f(2γ/P ). Then the cumulative area
fraction of pore space with radii less than r is given by

f(r)
∣∣
2γ/P

= (a0/A0)ρg dhw/dP, (16)

and a plot of f(r) versus r is obtained directly by plotting
E(P ) = (a0/A0)ρgdhw/dP data versus 2γ/P . Results
are shown in Fig. 4a based on the Fig. 2b water expul-
sion curves for the two tallest packings. For comparison,
the direct fitting results for the three candidate sigmoidal
forms are also included. The associated probability dis-
tributions obtained by differentiation, for both the data
and the fits, are shown in Fig. 4b.

C. Extraction of p(r) for short packings

For small enough packing heights, such that ρgH0 �
P , the right hand side of Eq. (10) may be well approxi-
mated as df/dr = p(r) evaluated at r = 2γ/P and mul-
tiplied by rlarge − rsmall ≈ 2γρgH0/P

2. Thus the radius
distribution for the area fraction of pore space is given
as

p(r)
∣∣
2γ/P

=
(a0/A0)ρg dhw/dP

(2γ/P )(ρgH0/P )
. (17)

In other words, a plot of p(r) versus r is obtained
directly by dividing the E(P ) data by the length
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FIG. 4: (Color online) Variation of (a) cumulative area frac-
tion of water-accessible pore space with pore radii smaller
than r and (b) associated probability density, which is nor-
malized to the total area fraction f0 of the pore space. These
results are based on the water expulsion data of Fig. 2 for
2 mm glass beads with packing heights H0 as labeled. These
samples are tall enough that f(r) could be extracted directly
by use of Eq. (16). The solid curve is the log-normal form,
Eq. (15), found by simultaneous fit of Eq. (11) to all data
in Fig. 2. The dashed curves are similarly obtained fits to
Eqs. (13-14). The PDF equals df/dr, and the data points
were computed by finite differencing with no further smooth-
ing.

(2γ/P )(ρgH0/P ) and plotting versus 2γ/P . The right
hand side of Eq. (17) is computed for the three shortest
packing height data of Fig. 2, for the 2 mm glass spheres,
and is plotted in Fig. 5 along with the log-normal dis-
tribution found from previous fits. We see that results
become spurious at small r. But more importantly, for
larger r, we see that the results underestimate the ex-
pectation but become progressively better for the smaller
packing heights. Therefore, analysis of water expulsion
curves with Eq. (17) would require even shorter samples
than measured here.

IV. SOFT HYDROGEL PARTICLES AS SOIL
ADDITIVES

A. Gel concentration

When hydrogel particles are uniformly mixed into
sandy soils, the pore structure is modified according to

both the concentration and the size of additives. Small
gel particles (0.2 − 0.3 mm axis in dry) are used to ex-
amine the influence of gel concentration. In dry, they
can fit into the existing soil pores without disturbing the
soil matrix, since the tetrahedral hole for 2 mm diam-

0 . 1 1 1 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0
  H 0 = 5 . 1 c m
  H 0 = 2 . 5 c m
  H 0 = 1 . 1 c m

 l o g - n o r m a l  f i t

 

p(r
)   

(1/
mm

) 

 r   ( m m )

FIG. 5: (Color online) The distribution of the area fraction of
pore space for 2 mm glass beads, deduced from Eq. (17) using
the water expulsion data of Fig. 2 at the three shortest pack-
ing heights H0 as labeled. The log-normal fit was obtained
previously, by the simultaneous fit of all data in Fig. 2.[Note:
the data cut-off used in this figure is set to be P = 0.8 kPa]

eter beads is about 0.45 mm. After pre-saturation of
the sample, however, their maximum swelling size may
exceed the pore size. Whether they can reach this size
or not depends on the strength of the soil matrix con-
finement during pre-saturation. Fig. 6 shows the E(P )
data at four different gel concentrations in both (a) free
swelling and (b) fixed volume conditions. The data for a
“no gel” packing is included for comparison. As the gel
concentration increases, it become harder and harder to
expel water out of the soil packing. Note that there is no
dramatic difference between free swelling data and fixed
volume data.

Direct fitting is applied to extract the water-accessible
pore structure in these mixture packings. Data in
Fig. 6(a) and in Fig. 6(b) are fitted simultaneously by
following function respectively:

f(r) = f0

(
δ

σ0
√

2π

∫ r

0

x−1e
− (lnx−lnr0)2

2σ0
2 dx+

1− δ
σ1
√

2π

∫ r

0

x−1e
− (lnx−lnr1)2

2σ1
2 dx

)
. (18)
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FIG. 6: (Color online) Dimensionless differential water expul-
sion parameter, versus applied pressure for 2 mm diameter
glass beads with different concentration small hydrogel par-
ticles in (a) free swelling condition and in (b) fixed volume
condition. The solid curves are a simultaneous fit to Eq. (11)
for a combined log-normal pore size distribution with f(r)
given by Eq. (18). The fitting parameters are shown in Fig. 7
and Fig. 8.

This is a combination of the cumulative distribution func-
tions for two log-normal PDFs. The first one represents
the pores existing between soil particles; while the second
one represents the pores that may exist between gel par-
ticles or between gel particle and soil particle. In each fit,
we fixed r0 = 0.36 mm and σ0 = 0.29 from the previous
section on pure glass bead packings, but let the values of
r1 and σ1 vary simultaneously for all four set of mixture
packing data. The parameter δ represents the percentage
of the unoccupied soil pores in a mixture packing thus its
value depends on gel concentration. It is allowed to ad-
just freely for each set of data. f0 is the maximum value
of f(r) at r → ∞ and represents the total area fraction
of water-accessible pore space in a packing. It also is
allowed to adjust freely in fits to each set of data.

The fitting curves are shown in Fig. 6 by solid curves.
We determine that the value of r1 is 0.18 mm in free
swelling condition and 0.19 mm in fixed volume condi-
tion. The value of σ1 is 0.42 and 0.39 for free swelling
condition and fixed volume condition respectively. The
results obtained in different conditions are very close to
each other. The pores existing between gel particles or
between gel particle and soil particle are only about half
of the size of the major pores in soil matrix. For further
discussion, we plot the PDFs for packing with different
gel concentrations at different conditions in Fig. 7(a) and
(b) respectively. We clearly see that as the gel concen-
tration increases the height of the major peak decreases
monotonously and finally disappears when gel concentra-

tion exceeds 0.1 wt%. This corresponds to a gel to bead
number ratio of about 2:3. We also notice that the height
change of the secondary peak does not follow the same
trend as the major one.

The behavior as a function of gel concentration is sum-
marized in Fig. 8. Fig. 8(a) shows the packing height,
H0, the results of which are used in the fits. In dry,
all the mixture packings have the same height. When
pre-saturated in free swelling condition, the height of the
mixture packing varies as the gel concentration varies
by up to about thirty percent. When pre-saturated in
fixed volume conditions, all concentration packings are
of course forced to maintain their original height.

Fig. 8(b) shows the variation of the total area fraction
of pore space with gel concentration. In both conditions,
the total area fraction f0 decays exponentially as gel con-
centration increases. This result is consistent with our
prior studies on the water permeability in the same mix-
ture system [39]. Again, no significant difference is seen
between two conditions when correct packing heights are
applied. The characteristic value of gel concentration in
the exponential fits is around 0.1wt%, which corresponds
to the loss of the primary peak in the PDF seen in Fig. 7.

Fig. 8(c) shows the variation of Soccupy, the effective
percentage of soil pores blocked by gel particles. This is
defined as

Soccupy = 100

(
1− f0δ

0.34

)
, (19)
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FIG. 7: (Color online) The distribution of the area fraction of
pore space for 2 mm glass beads with different concentration
small hydrogel particles in (a) free swelling condition and in
(b) fixed volume condition, deduced from the simultaneous
fit of all data in Fig. 6. In both conditions, the major peak,
whose location and width are fixed to be the result in the
model sandy soil alone (r0 = 0.36 mm and σ0 = 0.29), reduces
its height as gel concentration increases; while a secondary
peak grows in small r region at the same time. In free swelling
condition, the secondary peak is located at r1 = 0.18 mm with
σ1 = 0.42; in fixed volume condition, it is at r1 = 0.19 mm
with σ1 = 0.39.

where 0.34 is the value of f0 at cgel = 0. From the figure,
we see that the value of Soccupy grows linearly, until all
soil pores are filled, and thus can be fit to an exponential
function of bead concentration. The gel concentration
required to fill all soil pores is around 0.1wt%, consistent
with the characteristic value obtained from the exponen-
tial fit in Fig. 8(b). When the gel concentration exceeds
this value in free swelling conditions, the swollen gel par-
ticles may occupy extra space by expanding the packing.
But in fixed volume conditions, the swollen gel particles
have to share that soil pores with others and cannot swell
to their desired size.

B. Gel size

Lastly, to probe the influence of gel particle size, we
fixed the gel concentration to be 0.1 wt% and compare
the results for large gel particle additives (0.9 − 1.1 mm
axis in dry) to those above for the small gel particle ad-
ditives (0.2 − 0.3 mm axis in dry) in the same external
conditions. The large gel particles have a dry size larger
than the average soil pore size, and thus may perturb the
soil matrix structure even in dry. After pre-saturation,
the free swelling packing with large gel particles expands
to a height of H0 = 7.4 cm while the fixed volume packing
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FIG. 8: (Color online) (a) Packing height and parameters de-
termined from the simultaneous fit shown in Fig. 6: (b) the
total area fraction, and (c) effective soil pore occupation rate
by gel particles. The error bars are smaller than the symbol
sizes. As gel concentration increases, the total area fraction of
the pore space decays exponentially for both free swelling con-
dition and fixed volume condition. The soil pore occupation
rate is defined by Eq. (19). It grows almost linearly as gel con-
centration increases until all major pores are fully-occupied,
and hence can be fit to an exponential.

maintains a height of H0 = 5.1 cm.

Fig. 9(a) shows the E(P ) data for packings with dif-
ferent size gel particles in free swelling and fixed volume
conditions, along with the “no gel” data for comparison.
Under fixed volume, note that the curves are very similar
for the two different gel particle sizes. Thus, the parti-
cle size is relatively unimportant, presumably as long as
it is not very much greater than the bead size. Instead,
the weight percent of the additives is the more important
parameter for affecting behavior.

Fits to the bimodal log-normal pore size distribution
of Eq. (18) are also included in Fig. 9(a). Since there is
only one set of data in each condition, we fix the values of
r0, σ0, r1, and σ1 to be the same as those obtained from
the fits of small gel packings. In free swelling condition,
the total area fraction is determined as f0 = 0.22 and the
soil pore occupation rate is determined as Soccupy = 69%.
Comparing to the corresponding small gel packing, the
large gel one has a higher total pore area fraction of space
and a lower soil pore occupation rate. In fixed volume
condition, we determine that the total area fraction is
f0 = 0.15, which is very close to that of a small gel
packing. The soil pore occupation rate is determined
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FIG. 9: (Color online) (a) Dimensionless differential water
expulsion parameter versus applied pressure, and (b) the dis-
tribution of the area fraction of pore space for 2 mm glass
beads with 0.1 wt% large and small hydrogel particles in both
free swelling condition and fixed volume condition. The solid
curves are a fit to Eq. (11) for a combined log-normal pore
size distribution with f(r) given by Eq. (18). The fitting pa-
rameters for packings with small gel particle additives have
been shown in Fig. 8. For packings with large gel particle
additives, the values of r0, σ0, r1, and σ1 are fixed to be the
same as those obtained from corresponding small gel pack-
ing. In free swelling condition, the packing height is mea-
sured as H0 = 7.4 cm, the total area fraction is determined
as f0 = 0.22, and the soil pore occupation rate is determined
as Soccupy = 69 %. In fixed volume condition, the packing
height is measured as H0 = 5.1 cm, the total area fraction
is determined f0 = 0.15, and the soil pore occupation rate is
Soccupy = 74%.

as Soccupy = 74%, which is also lower than that in the
small gel packing.

The resulting fitting function for the PDFs are plotted
in Fig. 9(b). From this figure, we clearly see that under
free swelling condition more soil pores are left unoccupied
in the packing when its small gel particle additives are
replaced by the same mass of large gel particles. How-
ever, this is a relatively small effect. By contrast, the
role of external confinement is more important. Namely,
a strong external confinement helps the gel particles to
swell into and efficiently block the pore spaces.

V. CONCLUSION

In summary, we developed a custom pressure plate ap-
paratus for measuring the expulsion of water from model
soils as a function of applied pressure, and we developed a

capillary bundle model to analyze the results in terms of
pore-scale structure. We verified the apparatus and the
model by obtaining consistent results for the pore struc-
ture for packings of different heights, where the soil-water
characteristic curves are all different. And we applied our
methods to study the effect of superabsorbent gel particle
additives, which can swell to block the pores.

One general conclusion is that the height of the sam-
ple in comparison with capillary rise can strongly af-
fect experimental results. Only for very tall samples,
not initially filled completely via capillarity, are data in-
dependent of sample height. This point is not widely
appreciated in prior experiments, where sample heights
tend to be small and are often not even reported, much
less varied. This point is also not widely appreciated in
prior modeling efforts, none of which to our knowledge
accounts for the influence of sample height.

The capillary bundle model we developed here has gen-
eral significance for several reasons. First, the sample
height is now explicitly included in the analysis. Sec-
ond, it points to the importance of two key concepts
not considered in prior work: (1) The differential dimen-
sionless expelled water curve, E(P ) versus P , defined
by Eq. (2) as the incremental volume dVw of water ex-
pelled per pressure increment dP , made dimensionless
by the sample cross sectional area A0, the density ρ of
water, and g = 9.8 m/s2; and (2) The cumulative cross-
sectional area fraction f(r) of pores with radii less than
r. Whereas prior experiments focus on the volumetric
water content and, prior modeling is in terms of the vol-
umetric distribution of pore radii, the capillary bundle
model shows how E(P ) is simply and directly related to
f(r) via

ρg

A0

dVw
dP

= f

(
2γ

P

)
− f

(
2γ

P + ρgH0

)
, (20)

where γ is the liquid-air surface tension and H0 is the
sample height. In words, the dimensionless differential
volume of water expulsion per pressure increment is equal
to the cross-sectional area fraction of active pores. This
expression makes explicit both the connection between
pressure plate data and pore-scale structure, as well as
the role of sample height.

In terms of our specific model-soil systems, we can
make several conclusions based on our new data and
its analysis via the capillary bundle model. For ran-
domly packed monodisperse spherical beads, the area
distribution of the pore radii is well-approximated as a
log-normal, peaking around one third the sphere radius
and extending with full-width half-max between about
0.2− 0.5 sphere radii; the total cross-sectional area frac-
tion of the pore space is found to be 0.34. With the ad-
dition of superabsorbent hydrogel particle additives, this
pore space is modified by the swelling of the gels. The
particle size is not crucial, provided it is not very much
larger than the bead size. Then only about 0.1 weight
percent is required to clog up the original pores between
beads and reduce the water-accessible pore space. This
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can have a very significant effect on the permeability of
the medium [39].

There are several follow-up questions that would be
of interest to the broader physics community. What is
the role of hydrogel particle shape and stiffness? With
regards to stiffness, to what extent can cohesion in real
soils serve the same role as confinement in our lab exper-
iments? If soft and confined, then the swelling gels must
conform to fixed pore space; if stiff and unconfined, then
the swelling gels can unjam the soil. The latter could lead
to interesting dynamical effects, both regarding sample
preparation protocol and also for cyclic wetting and dry-
ing. At what level does the capillary bundle model break
down, and the irregular geometry of the pore space mat-
ter? Perhaps this could appear via hysteresis in retained
water for cyclic variation of the pressure head. Can our
measurement of cross-sectional pore area distributions be
confronted directly with simulation of sphere packings? If
the pore size is reduced, at fixed geometry, eventually wa-
ter storage in wetting films must become important. Can

this be observed and understood by extension of the cap-
illary bundle model? Beyond these immediate questions,
we hope that the general experimental and theoretical
methods presented here may find future use for study-
ing real soils in nature. And we hope our work provides
a general set of tools for reliable quantitative testing of
trial additives designed to improve water usage efficiency
in agriculture.
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