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We investigate effects of boundary conditions on the surface of self-propelled spherical swimmers
moving in a viscous fluid with low Reynolds number. We first show that collisions between the
swimmers are impossible under the commonly used no-slip conditions. Next we demonstrate that
collisions do occur if the more general Navier boundary conditions, allowing for a finite slip on the
surface that produces drag, are imposed on the boundary of swimmers. The presence of a small
inertia for each swimmer does not influence whether collisions occur between swimmers.
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I. INTRODUCTION

Suspensions of autonomously moving microscopic
swimmers, both biological and synthetic, continue to at-
tract enormous attention of broad scientific community.
A number of intriguing phenomena was reported in these
suspensions, from the onset of collective motion to viscos-
ity reduction and increase of self-diffusivity etc, see e.g.
[1–10]. An accurate representation of swimmer-swimmer
interactions has proved to be essential for reproducing
physically observed phenomena [11–17]. One aspect of
swimmer-swimmer interactions that is clearly observed
in experiments are collisions between bacteria or bacte-
ria and walls [9, 18, 19]. The primary objective of this
study is to identify what features of the model allow for
the collisions between the swimmers in finite time. On
the other hand, no collisions occur in finite time in the
commonly accepted models of passive smooth bodies in
a Stokesian fluid, where no-slip boundary conditions are
imposed on the surface of the body. This is the well-
known no-collision paradox, see [20].

Here we show that the no-collision paradox is also valid
for self-propelled spheres. However, collisions between
self-propelled swimmers occur in finite time if instead of
no-slip conditions we apply a more general Navier bound-
ary conditions admitting finite slip on the surface of the
swimmer. In the same manner the results for the collision
time, both for no-slip boundary conditions and Navier
boundary conditions, remain true, if the inertia of the
spheres is taken into account. The corresponding slip
length β in the Navier condition is associated with sur-
face roughness, which is on nanometer scale for smooth
objects, and, therefore, does not play a significant role
in the dynamics of macroscopic objects. However, even
very small surface roughness become critical when inter-
actions of micron-size objects, such as bacteria are con-
sidered: body of many bacteria can be considered rough
on submicron scale. For example, many bacteria are
covered by multiple non-flagellar thin protein filaments
(pili), having the diameter of 2-10 nm. The pili play im-
portant role in the process of bacterial conjugation and

DNA transfer, may extend from the bacterial body to
10 µm [21, 22]. The pili length varies from bacteria to
bacteria, and may also vary from colony to colony of the
same bacteria depending on the growth conditions. For
Bacillus subtilis used in experiments in [2–4] no long pili
typically are observed, suggesting that a rough estimate
for β could be of the order of 100-200 nm. Another fac-
tor contributing to β is that Bacillus subtilis has multiple
flagella distributed over the body. Even when the flag-
ella are bundled, they make the surface of the bacterial
body somewhat non-smooth, giving roughly the same es-
timate for β. The goal of this paper is to illustrate that
natural (Navier) boundary conditions in the fluid/solid
model properly describe collisions of swimmers observed
in experiments. Therefore, we consider, for simplicity,
a perfect coaxial configuration of swimmers where colli-
sions occur with the highest probability. While this is
an idealized case, the qualitative conclusions apply to
swimmers in close proximity where the result would be
essentially independent from the angle.
We briefly survey facts related to collisions of passive

spheres and the no-collision paradox. First, consider two
spheres moving along the same axis due to a constant
external force of magnitude fext pushing them toward
each other. Let h(t) be the half-distance between the
spheres. In the following we neglect the inertia of the
spheres. The force balance is

−Fdrag + fext = 0, (1)

where Fdrag is a magnitude of the drag force of the
fluid. For low Reynolds number the drag force Fdrag

depends linearly on the speed of the spheres −h′(t):
Fdrag = −κpassh′(t), where κpass is the drag coefficient.
If the boundary conditions on the sphere’s surface are
no-slip, which are the most common for modeling rigid
impenetrable body motion in fluid, then

κpass ∼ 1/h (2)

for small h, see [23]. This relation, in particular, implies
that fext = Fdrag < −Ch′(t)/h(t), C > 0, resulting in
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h(t) > h(0)exp(−Cfextt). The positive constant C does
not depend on h. Thus, the half-distance h(t) tends to
zero in the limit of t→ ∞ but never vanishes completely.
Therefore no collisions are possible in finite time. This is
referred to as the no-collision paradox.
The formal absence of collisions in the model shows

that it is inadequate for suspensions where experimen-
tal evidence often shows collisions between the particles.
It turns out, that if one takes into account the tangent
slip on the surface of a sphere, i.e., replaces the no-slip
boundary conditions by the Navier boundary conditions
with a finite slip length β, then the no-collision paradox
does not hold. The motion of rigid bodies with a rough
no-slip surface is effectively described by the same Navier
boundary conditions (see, e.g., [24]), where β plays the
role of the mean surface roughness. The Navier boundary
conditions allow for modeling collisions matching exper-
iments without taking into account non-hydrodynamic
short-range interactions such as Van der Waals forces or
electrostatic forces due to charging of the bacterial body.
In good electrolytes, like bacterial growth medium, these
forces are screened on the scale of the Debye length which
is of the order of a few nanometers [25].
In Ref. [26] for the case of two passive spheres subject

to Navier boundary conditions the authors obtained

κpass ∼ ln(1/h) (3)

for small separation distances h. In this case Eq. (1)
reduces to the inequality:

Ch(t)(ln h(t)− 1)− fextt > Ch(0)(lnh(0)− 1),

which predicts a collision, h(T ) = 0, for some finite
time T . The slip length β is small (typically from a few
nanometers to a few hundreds of nanometers, depending
on material properties of the sphere’s surface).

II. MODEL

Here we consider two swimmers, each modeled by a
sphere (representing the body) and the propulsion force
(representing the action of flagella). We write the model
in a non-dimensional form given by the choice of the typ-
ical length a being half a diameter of a swimmer’s body,
typical swimming velocity V and viscosity of water µ.
The force and pressure scales are taken to be µV a and
µV a−1, respectively.
In the nondimensional form each swimmer is modeled

by a sphere of unit radius with a propulsion force fpd
i

applied to fluid at the point x
i
p distance (1 + λ) behind

the center x
i
c of the swimmer (see e.g. Fig. 1). Here

d
i = (xi

c−x
i
p)/|xi

c−x
i
p| is the orientation of the swimmer.

Let h(t) be the half-distance between the swimmers.
Then the velocity of the ith swimmer is v

i = −h′(t)di

and the acceleration of the ith swimmer is ai = −h′′(t)di.

FIG. 1: Schematic illustration of two swimmers.

Denote U = v
i · di = −h′(t), i = 1, 2. Due to reflection

symmetry U does not depend on i.
The motion of the fluid at low Reynolds number (with

fluid viscosity µ = 1) is described by the Stokes equation

{

−△u+∇p =
∑

i fpd
iδ(x− x

i
p)

div(u) = 0
in ΩF (4)

subject to the Navier boundary conditions
{

(u− Ud
i) · n = 0

(u− Ud
i)× n = −βσ(u, p)n× n,

on ∂Bi, (5)

where σ(u, p) =
(

∇u+ (∇u)T
)

− pI is the stress ten-
sor. The slip length β is non-negative. Taking β = 0,
one recovers the no-slip boundary conditions. The self-
propulsion is enforced through the force balance

ma
i = F

i
drag + fpd

i, i = 1, 2, (6)

It is known that due to the torque from a counter-
clockwise rotation of the flagella the body of bacterium
rotates clockwise. However, we ignore this effects here.
The force balance (6) can be written in the scalar form:

mh′′(t)− Fdrag + fp = 0, (7)

where Fdrag = −F
i
drag · di does not depend on i = 1, 2.

The inertial forces are typically neglected:

Fdrag = fp. (8)

To analyze (7) or (8) we need to evaluate Fdrag. Due to
the linearity of the problem (4-6) we have

Fdrag = κpassU + κpropfp, (9)

where the coefficient κpass is equal to the drag force of
the fluid onto spheres moving toward each other with
unit speed and the coefficient κprop is equal to the drag
force exerted by the fluid on stationary swimmers with
unit propulsion force. This means that κpass = Fdrag

evaluated for the solution of the problem (4-6) with U =
1 and fp = 0, and κprop = Fdrag evaluated for the solution
of the problem (4-6) with U = 0 and fp = 1.
The speed of a massless (m = 0) swimmer is a function

of the distance and, following (9), can be written as:

U = fp(1 − κprop)/κpass. (10)

To solve (4) and (5), we need to evaluate the coeffi-
cients κpass and κprop. We will do this first in the case of
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a single swimmer. We have two reasons to do so. Firstly,
the comparison between the velocities of a single swim-
mer and the a swimmer in the presence of another swim-
mers will characterize the role of interactions. Secondly,
this will allow us to use the coefficient κprop computed for
a single swimmer as an estimate for the same coefficient
for two interacting swimmers.

III. ONE SWIMMER

Let w and pw be, respectively, the flow velocity and
the pressure generated by a sphere moving in the direc-
tion of the unit vector d with unit speed. To evaluate
κpass we use the exact expression for the function w (see,
e.g., [27]): w(x) = (−B + 1/2 A∆)G(x)d, where G is a
fundamental solution of the Stokes equation,

A =
1

4
· 1

1 + 3β
, and B = −3

4
· 1 + 2β

1 + 3β
.

Hence, we can calculate κpass using the Gauss formula:

κpass =

∫

B

[∇ · σ(w, pw)] dx · d = −8πB = 6π
1 + 2β

1 + 3β
.

To evaluate κprop we use:

κprop = w|x=−(1+λ)d · d. (11)

One can derive this formula by using the Lorentz recip-
rocal theorem (see Appendix A). Thus,

κprop =
3(1 + 2β)(1 + λ)2 − 1

2(1 + 3β)(1 + λ)3
. (12)

The coefficient κprop depends on the “passive” parame-
ter β and the “active” parameters fp and λ, while κpass
depends only on the “passive” parameter β. In the case
of a single swimmer, (10) takes the form:

U

fp
=

(1− κprop)

κpass
=

6βλ(1 + λ)2 + λ2(3 + 2λ)

12π(1 + 2β)(1 + λ)3
. (13)

Sending λ → ∞, i.e., taking isolated sphere, we obtain
the relation between drag force and velocity for a moving
ball

lim
λ→∞

U(λ, β) =
1

6π

(1 + 3β)

(1 + 2β)
fp,

which gives the Stokes drag law, U = fp/6π, for β = 0.

IV. TWO COAXIAL SWIMMERS

Let w and pw be the flow and the pressure, respec-
tively, generated by two spheres moving toward each

FIG. 2: Dependence of the drag coefficient κprop of the fluid
on a stationary sphere from the propulsion point-force as a
function of semi-distance h between the swimmers. The pa-
rameter κprop for a single swimmer (dashed line) does not
depend on h and is always above the same parameter for two
coaxial swimmers (solid line). (Inset) Swimming speed U vs
tail length λ.

other with unit speed and without rotation. The ex-
pression for w can be found in [28]. The expression for
κpass is of the form:

κpass =
2
√
2π

c

+∞
∑

n=1

(bn + dn), (14)

where bn and dn are defined in [28] (see also Appendix
B). For no-slip conditions (i.e. β = 0) bn and dn can be
computed explicitly. For the Navier conditions (β > 0) bn
and dn are defined through a recurrence relation subject
to bn, dn → 0 as n → +∞, and need to be evaluated
numerically.

To evaluate κprop we use the Lorentz reciprocal theo-
rem (see Appendix A) and obtain (similar to (11)):

κprop = w|x=−(1+λ+h)d · d. (15)

This yields the following expression for κprop:

sinh ζ
2

c2

+∞
∑

n=1

[

bn sinh
(

n− 1
2

)

ζ + dn cosh
(

n+ 3
2

)

ζ
]

, (16)

where c = sinhα, α = ln(1 + h+
√
h
√
2 + h) and

ζ = ln
2 + λ+ h+

√
h
√
2 + h

2 + λ+ h−
√
h
√
2 + h

.

In contrast with the case of a single swimmer the coef-
ficients κpass and κprop also depend on h in the case of
two interacting swimmers. To obtain the expression for
U one needs to substitute (14) and (16) into (10).
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Now we demonstrate finite-time collisions between two

swimmers. The velocity of the i-th swimmer is Ud
i =

−h′(t)di. Rewrite the force balance (8)

Fdrag − fp = −κpassh′(t)− fp(1− κprop) = 0. (17)

In both situations, β = 0 and β > 0, the parameter
κprop is a bounded quantity with respect to h → 0, i.e.,
κprop = O(1) . Thus, if β = 0, then the balance equation
(17) reduces to ln (h(t)/h(0)) > −Ct, where C does not
depend on h(t) > 0. Here we integrated (17) with respect
to the time variable over interval [0, t]. The obtained
inequality implies that h(t) > h(0)e−Ct, which prevents
collisions (see Appendix D for rigorous proof).
We now consider the case of Navier boundary condi-

tions. Note that the parameter κprop is smaller than the

same parameter κprop calculated for a single swimmer,
see (12). This statement is illustrated by the numerical
plot in Figure 2 and it can be explained as follows. Recall
that κprop is the drag force exerted on a swimmer whose
velocity is zero and generated by unit propulsion. If there
are two swimmers in the fluid moving toward each other,
the propulsion of the second swimmer has the opposite
direction with respect to the direction of the first swim-
mer and, therefore, decreases the total drag force exerted
on the first swimmer. Thus, using (12) we obtain

κprop <
3(1 + 2β)(1 + λ)2 − 1

2(1 + 3β)(1 + λ)3
.

Hence, for any λ > 0 there exists δ > 0, such that
κprop < 1− δ. Therefore, collision happens in finite time
following the arguments used for passive spheres after (3)
with the force fext = fp. The time before collision is of
the order ln(1/β), also see Appendix C. A naive way of
estimating the collision time is the time it takes a single
free-moving swimmer to cover the half-distance between
two swimmers. We define the collision delay time (due
to interactions) as the discrepancy between this naive
collision time, where swimmer-swimmer interactions are
neglected, and the true collision time where interactions
are accounted for in the limit of large initial separations
between swimmers. The collision delay time can be seen
on Fig. 3 as the difference in times graphs intersect the
t-axis. For β = 0, the solid blue line gets infinitely close
to the t-axis, but never intersects it. Therefore, the col-
lisions delay time is infinite.
For the microswimmers with the parameters of Bacil-

lus subtillis the collision delay time is on the order of one
decisecond. Here we assumed the radius to be 1µm, the
slip parameter β = 0.2µm, the flagella length λ = 10µm
and the typical free-swimming speed of 20µm/s.
It is also useful to estimate the dependence of the

collision delay time on the slip parameter β. For two
swimmers of unit radius each, unit free-swimming speed
and tail length λ = 10 the collision delay time was ob-
tained numerically for β = {1, . . . , 100} × 10−4. We

also used Eureqa program [29] to find an interpola-
tion to the numerical data in a simple analytical form:

Tcol.del. ≈ 5.8−ln(β)
3.5 , see Fig. 4. In the dimensional

scales the collision time due to interactions has the form
Tcol.del. ≈ a

U0

5.8−ln(β/a)
3.5 ≈ 0.11 sec.

V. CONCLUSIONS

We considered two features involved in modeling of
swimmers: the boundary conditions and body inertia.
Our analysis showed that the key feature influencing the
possibility of collisions between swimmers is the type of
conditions imposed on the boundary of the swimmers.
For the no-slip conditions, typically used to model swim-
ming micro-organisms, no collisions are possible in finite
time. This result was proved analytically and is analo-
gous to the no-collision paradox for passive bodies. On
the other hand, if Navier conditions (slip with friction)
are imposed on the surface of the bodies of the swimmers,
the collisions are possible in finite time. Our estimate of
the collision time for microswimmers with parameters re-
sembling those of Bacillus subtilis shows that with Navier
boundary conditions the delay due to the interactions in
the collision time is small (fraction of a second) and does
not qualitatively change the course of collision. This is
observed in experiments.
Unlike the boundary conditions, including the body in-

ertia into the model does not influence the possibility of
collisions (see Appendix E). For no-slip boundary con-
ditions collisions are neither possible with nor without
inertia. For Navier boundary conditions collisions are
possible both with and without body inertia.
The results of this paper can be extended to the cases

where Navier and/or no-slip conditions are prescribed
only on part of the boundary of microswimmer and to

FIG. 3: Distance to the origin, h, as a function of time, t,
for a single swimmer and for two coaxial swimmers for no-slip
(β = 0, blue) and Navier (β = 0.1, red) boundary condi-
tions. Swimmers with Navier conditions are moving faster
than swimmers with no-slip conditions, in the presence or ab-
sence of another swimmer.
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the case of a “squirmer” [30]. When separation distance
2h is small, the drag force is concentrated on the front
edge of a bacterium. Therefore if Navier conditions are
applied here, then the logarithm estimate on κpass (3)
remains valid and collisions are possible. On the other
hand, if no-slip conditions are applied on the front part
of the boundary, collisions are no longer possible. We
can also extend the results of the paper to the case of a
swimmer approaching a wall. If either the swimmer or
the wall does not allow for slip then collision cannot hap-
pen. If both the swimmer’s and the wall’s surface allows
for slip, then collision happens in finite time.

The above analysis indicates that the Navier boundary
conditions are more appropriate for modeling swimming
micro-organisms than the no-slip conditions, while the
later are simply the limiting case case of the former.
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Appendix A: Formula for κprop

In this appendix we derive the relation (15). The rela-
tion (11) can be derived in the same manner. We use the
Lorentz reciprocal theorem (or the 2nd Green formula for
Stokes equation; see [23]) which is formulated in the next
paragraph.

Let the equations −∇·σ(u1, p1) = F1, −∇·σ(u2, p2) =
F2 and ∇ · u1 = 0, ∇ · u2 = 0 hold in a domain Ω. Here

FIG. 4: Dependence of the collision delay time due to inter-
actions Tcol.del. on the slip parameter β, β ≪ 1, λ = 10 and
sphere radius 1.

σ(u, p) = 1/2(∇u+ (∇u)T )− pI is a stress tensor. Then

∫

Ω

F1 · u2 +
∫

∂Ω

σ(u1, p1)n · u2

=

∫

Ω

F2 · u1 +
∫

∂Ω

σ(u2, p2)n · u1. (18)

We use the formula (18) with Ω = R
3\(B1 ∪B2), u1 = v

and u2 = w:

−
∫

Ω

∑

i=1,2

d
i · δ(x− x

i
p)w +

∫

∂Ω

σ(v, pv)n ·w

=

∫

∂Ω

σ(w, pw)n · v (19)

Rewrite the first term:

−
∫

Ω

∑

i=1,2

d
i · δ(x− x

i
p)w = −

∑

i=1,2

w|x=xi
p
d
i. (20)

To analyze the boundary terms we need the following
equality:

σ(v, pv)n ·w = σ(v, pv)n · di

−β(σ(v, pv)n× n) · (σ(w, pw)n× n). (21)

Analogously,

σ(w, pw)n·v = −β(σ(v, pv)n×n)·(σ(w, pw)n×n). (22)

Plugging (20),(21),(22) into (19) and using the definition
of κprop we get (15).

Appendix B: The exact solution for two spheres
with Navier BC

In this appendix we present coefficients bn and dn used
in (16). The formula (16) and the exact solution for the
problem of two spheres with Navier boundary conditions
were obtained in [28].
Coefficients dn solve the following infinite system of

linear algebraic equations:

4βAndn−1 + (Cn + 4βC̃n)dn + 4βBndn+1 = Fn + 4βF̃n.

The system is supplemented with the following restric-
tion:

dn → 0.

Coefficients An, Cn, C̃n, Bn, Fn and F̃n are determined
below (m = n+ 1/2):

An = −(m+ 1/2) sinhmα,

Bn = −(m− 1/2) sinh(m+ 2)α,

C̃n = 2m sinh(m+ 1)α coshα.
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Cn =
2

sinh(m− 1)α
[sinh 2mα−m sinh 2α] .

Fn = − c2√
2
· m

2 − 1/4

m+ 1
· 2

sinh(m− 1)α
×

×
{

me−α sinhα+ e−mα coshmα
}

.

F̃n =
e−(m+1)α(m+ 3)(m sinhα+ eα)

2m(m+ 1)(m+ 2)

Coefficients bn are evaluated according to the following
formula:

bn = Gm − dm
sinh(m+ 1)α

sinh(m− 1)α
,

where

Gm =
c2e−mα

2
√
2

m2 − 1/4

m2 − 1

[

(m+ 1)eα − (m− 1)e−α

sinh(m− 1)α

]

.

Appendix C: The collision time.

In this appendix we provide arguments how to obtain
estimate on the collision time.
The result for kpass from [26] may be rewritten in the

following form:

h < β : κpass =
1

c0β
ln 1/h+O(1/β) +O(ln 1/h),

h > β : κpass ≤ c/h

where c0 and c fromO(1), bounded uniformly with repect
to both β and h.
Define the collision time:

tcoll =

∫ h

0

dh

U(h)
,

where U(h) = −h′(t). Assume that the balance equaton
(1) holds. Then

tcoll =

∫ β

0

dh

U(h)
+

∫ 1

β

dh

U(h)
< c1 ln(1/β) + C1.

where c1 and C1 are some positive constant independent
from h and β.

Appendix D: Rigorous proof of no collisions for
no-slip BC

In this appendix we give the rigorous proof that no-slip
boundary conditions on the swimmers’ surface imply no
collision for finite time.
The proof is based on the Lorentz reciprocal theorem

(see Appendix A) and the estimate for κpass (2), which

implies the same result if the swimmers are replaced by
passive spheres.
First, we formulate the problem and the result.
The problem for two swimmers approaching each other

with speed U is considered:



















∆u−∇p = ∑

i=1,2

δ(x− x
p
i )fpd

i,

∇ · u = 0,
u = Ud

i,
Fi(u, p) = fpd

i.

(23)

Here we used the following notation:

Fi(u, p) =

∫

∂Bi

σ(u, p)n.

The result is written in the following paragraph.
There exist positive constants C1, C2 > 0 such that

h(t) > C1e
−C2t (24)

for all t > 0.
The rest of the section is devoted to the proof of this

statement. First, we will show that the result follows
from (29). Then we prove (29).
Let u satisfy (23). Then u = v + w where v and w

satisfy the following systems of equations:

I.:















∆v −∇q = 0,
∇ · v = 0,
v = V d

i,
Fi(v, q) = fpd

i,

II.:



















∆w −∇π =
∑

i=1,2

δ(x− x
p
i )fpd

i,

∇ · w = 0,
w =Wd

i,
Fi(w, π) = 0.

In both systems, I and II, equalities in the first and the
second line are satisfied in Ωh = R

3\(B1∩B2), equalities
in the third line are satisfied on ∂Bi for all i = 1, 2,
equalities in the fourth line are satisfied for all i = 1, 2.
Note that if fp is given we can find v and q from the
first, the second and the fourth equalities of system I.
After that we can find V ∈ R from the third equality.
Similarly, for system II. We note that

U = V +W. (25)

One can see that Fi(v, q) = V κpass. Then in view
of (2) we conclude that there exists a positive constant
C > 0 such that

V < Cfph. (26)

Assume that

W < 0. (27)

In view of (26) and (27) we obtain that−h′(t) = V +W <
Cfph(t). Substituting it to (25) we have

h′(t) > −Cfph(t),

which implies that h(t) > h(0)e−Cfpt and, thus, separa-
tion distance 2h(t) will never vanish.
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Therefore, the result follows if prove that W < 0.
We use the Lorentz reciprocal theorem. Take Ω =

Ω\(B1 ∩ B2), u2 = w, p2 = π and F2 = − ∑

i=1,2

δ(x −

x
i
p)fpd

i. Let u1 be such function that there holds ∆u1−
∇p1 = 0 (in other words, F1 = 0), and u1 satisfies the
following boundary conditions:

u1 =Wd
i on ∂Bi, i = 1, 2.

From the Lorentz reciprocal theorem we get:

W
∑

i=1,2

d
i ·

∫

∂Bi

σ(u1, p1)n = fp
∑

i=1,2

d
i · u1(xi

p).

We get the following equality:

W = − fp
F1(u1, p1)

u1z(x
1
p). (28)

Thus, we need to prove that

u1z(x
1
p) > 0. (29)

We recall that u1 satisfies the following system
{

∆u1 −∇p1 = 0, in Ωh

∇ · u1 = 0, in Ωh

u1 =Wd
i, on ∂Bi, i = 1, 2.

The proof of (29) is divided by three parts. First, the
result from [31, p.247, §3] is used to write the exact so-
lution of the system above. Second, we calculate u1 at
point x1

p and (29) is obtained in the third part.

Exact solution. Introduce cylindrical coordi-
nates x=(x, y, z)=(ρ cosφ, ρ sinφ, z). Denote
eρ = (cosφ, sin φ, 0) and ez = (0, 0, 1). Due to ax-
ial symmetry of the problem we have u1 = uρer + uzez
where scalar functions uρ and uz dont depend on φ.
Following [31],

uz(z, ρ) = −1

ρ

∂

∂ρ
ψ(z, ρ), uρ(z, ρ) =

1

ρ

∂

∂z
ψ(z, ρ).

In order to write function ψ we introduce the bipolar
coordinates ζ ∈ [0,+∞), η ∈ [0, π] (we need the case
z > 0 only)

z = c
sinh ζ

cosh ζ − cos η
, ρ = c

sin η

cosh ζ − cos η
, (30)

where c = sinhα and α is such positive number that
coshα = 1 + h. Note that due to the equality

(z − c coth ζ)2 + ρ2 = (c cosechζ)2

one can easily verify that surface {ζ = α} is sphere ∂B1.
Also we will need the formula:

ζ + iη = ln

(

ρ+ i(z + c)

ρ+ i(z − c)

)

. (31)

The function ψ is defined as follows

ψ(ζ, η) = (cosh ζ − cos η)−3/2
∞
∑

n=0

Un(ζ)C
−1/2
n+1 (cos η),

(32)
where

Un(ζ) = bn sinh(n− 1

2
)ζ + dn cosh(n+

3

2
)ζ,

C
−1/2
n+1 (x) =

Pn−1(x) − Pn+1(x)

2n+ 1
.

Here Pn(x) are Legendre polynomials

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

and the coefficients bn and dn are given by the following
formulas

bn = WR2 sinh2 α
n(n+ 1)√
2(2n− 1)

×

×
[

4 cosh2(n+ 1
2 )α+ 2(2n+ 1) sinh2 α

2 sinh(2n+ 1)α− (2n+ 1) sinh 2α
− 1

]

,

dn = WR2 sinh2 α
n(n+ 1)√
2(2n+ 3)

×

×
[

1− 4 cosh2(n+ 1
2 )α− 2(2n+ 1) sinh2 α

2 sinh(2n+ 1)α− (2n+ 1) sinh 2α

]

.

The evaluation of u1(x1
p). We need to calculate u1 when

z0 = 1 + h + ξ and ρ → 0+. In bipolar coordinates it
corresponds to

ζ0 = ln
z0 + c

z0 − c
and η0 = 0.

Then using (31) (to obtain ∂ζ
∂ρ and ∂η

∂ρ ), Pn(1) = 1,

P ′
n(1) = n(n+ 1)/2 and the equality

∂ψ

ρ∂ρ
=

∂ζ

ρ∂ρ

∂ψ

∂ζ
+
∂η

∂ρ

∂ψ

ρ∂η

we obtain

uz(z0, 0) = − lim
ρ→0+

1

ρ

∂

∂ρ
ψ(z0, ρ)

=
(cosh ζ0 − 1)1/2

c2

∞
∑

n=0

Un(ζ0). (33)

The inequality (29) follows, if we prove that Un(ζ0) > 0
for all n ∈ N.

Positivity of Un(ζ0). The relation Un(ζ0) > 0 is equiva-
lent to

(2n+ 3) sinh(n− 1
2 )ζ0

(2n− 1) sinh(n+ 3
2 )ζ0

>
K0 −K1

K0 −K2
(34)
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where

K0 = 2 sinh(2n+ 1)α− (2n+ 1) sinh 2α

K1 = 4 cosh2(n+
1

2
)α− 2(2n+ 1) sinh2 α

K2 = 4 cosh2(n+
1

2
)α+ 2(2n+ 1) sinh2 α

Observe that the left hand side of (34) is a decreasing
function of ζ0 and we may assume that ζ0 < α (since
ζ0 → 0 as h → 0). Thus, the left hand side in (34) can
be changed by

(2n+ 3) sinh(n− 1
2 )α

(2n− 1) sinh(n+ 3
2 )α

.

Inequality (34) follows if one appies the following inequal-
ity with m = n+ 1

2 :

(m+ 1) sinh(m− 1)α

(m− 1) sinh(m+ 1)α
>

(sinh 2mα−m sinh 2α)− 2
(

cosh2mα−m sinh2 α
)

(sinh 2mα−m sinh 2α)− 2
(

cosh2mα+m sinh2 α
) .

Rewrite the inequality above:

(m+ 1) sinh(m− 1)α

(m− 1) sinh(m+ 1)α
(35)

>
m sinh 2α+ 2 cosh2mα− sinh 2mα− 2m sinh2 α

m sinh 2α+ 2 cosh2mα− sinh 2mα+ 2m sinh2 α
.

First, let us simplify the right hand side:

m sinh 2α+ 2 cosh2mα− sinh 2mα± 2m sinh2 α
= 2[m sinhα · e±α + coshmα · e−mα].

Thus, the right hand side of (35) can be rewritten as

m sinhα · e−α + coshmα · e−mα

m sinhα · eα + coshmα · e−mα
.

Next, let us note that (35) is equivalent to

Inum − Iden < 0, (36)

where

Inum = (m−1) sinh(m+1)α·(m sinhα·e−α+coshmα·e−mα)

and

Iden = (m+1) sinh(m−1)α·(m sinhα·eα+coshmα·e−mα).

One can check that

4(Inum − Iden) =

= 4e−mα(coshα+m sinhα)(− sinh 2mα+m sinh 2α).

Due to the estimate

− sinh 2mα+m sinh 2α < 0,

(36) holds.
Thus, (29) holds and the proof of the no collision result

is complete.

Appendix E: Collisions with inertia

In this appendix we prove the result about collisions,
if inertia of swimmers is taken into account. Namely,
collisions do not happen for finite time, if no-slip BC
are imposed. Collisions do happen, if Navier BC are
imposed, and the collision time is of the order ln(1/β).
Consider a problem for two swimmer with inertia taken

into the account, i.e. the equation of motion given by

mh′′(t) + κpassh
′(t) + fp(1− κprop) = 0, (37)

with initial conditons h(0) = h0 and h′(0) = h1. Recall
that κpass and κprop admit the following relations

κpass ∼
{

1/h, for no-slip BC,
1/β ln 1/h, for Navier BC,

0 < κprop < 1−δ.

No-slip BC. The equation (37) implies that

mh′′(t) + Ch′(t)/h(t) + fp > 0.

Here we used that κpass ∼ 1/h and κprop > 0. This
inequality and h′(t) < 0 imply that C lnh(t) + fpt >
mh1 + C lnh0. Thus,

C ln
1

h(t)
< fpt−mh1 − C lnh0. (38)

The RHS of (38) can not be infinite in a finite time.
Therefore, no collisions are possible.

Navier BC. We assume h0 < β and h1 < 0, since it takes
time of the order 1 to cover distance to point h = β. The
equation (37) implies that

mh′′(t) +
h′(t)

β
ln

1

h(t)
+ fpδ < 0.

Here we used that κpass ∼ 1/β ln 1/h and κprop < 1 − δ.
Hence, after integration of the inequality we obtain

−mh′(t) > h(t)

β

(

1 + ln
1

h(t)

)

+fpδt−mh1−
h0
β

(

1 + ln
1

h0

)

(39)
Note that h/β ln(1/h) < 2 ln 1/β for h < β. Thus, RHS
of (39) is estimated from above by −C ln(1/β) + fpδt.

Using (39), h(T ) = 0 andmh(0)−mh(T ) = −
T
∫

0

mh′(t)dt,

we get mh0 > fpδT
2 − C ln 1/β · T. Thus, the collision

happens in finite time T , and T < c1 ln 1/β.
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