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We introduce a mechanism for generating higher order rogue waves (HRWs) of the nonlinear
Schrödinger(NLS) equation: the progressive fusion and fission of n degenerate breathers associated
with a critical eigenvalue λ0, creates an order n HRW. By adjusting the relative phase of the
breathers at the interacting area, it is possible to obtain different types of HRWs. The value λ0

is a zero point of the eigenfunction of the Lax pair of the NLS equation and it corresponds to the
limit of the period of the breather tending to infinity. By employing this mechanism we prove two
conjectures regarding the total number of peaks, as well as a decomposition rule in the circular
pattern of an order n HRW.
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Introduction. Rogue waves(RWs) in ocean are catas-
trophic natural phenomena with a long history and fasci-
nating mariner stories [1]. Detailed studies of RWs have
only occurred during the past five decades [2–5]. A pro-
totype one dimensional rogue wave is the so called Pere-
grine soliton [6]; this soliton exhibits the two remarkable
characteristics of first order RWs: a) localized behav-
ior in both space and time, b) existence of one dominant
peak. RWs have been observed in several fields, including
optics [7–9], superfluid Helium [10], Bose-Einstein con-
densates [11], plasmas [12, 13], microwaves [14], capillary
phenomena[15], telecommunication data streams [16] and
inhomogeneous media [17].

A typical modeling equation for RWs in fibre optics is
the celebrated nonlinear Schrödinger(NLS) equation [18],

iqt + qxx + 2|q|2q = 0. (1)

Here q = q(x, t) is a complex smooth function of x and t,
and the subscripts denote partial derivatives. The Pere-
grine soliton [6], which is the first order RW[19] of the
NLS equation, has been observed experimentally in fibers
[20], in a water tank [21] and in multi-component plasma
[22]. Recently, a super rogue wave[23], i.e. a second order
RW, has also been observed in a water tank. In addition
to NLS equation, the Hirota equation [24, 25], the first
type derivative NLS(DNLS) equation [26], the third type
DNLS equation [27], the NLS-Maxwell-Bloch equations
[28], the discrete NLS equation [29], the two-component
NLS equations [30–32] and the Davey-Stewartson equa-
tion [33, 34], also admit RWs. These results show that
RWs may be generic phenomena in nonlinear systems.

The Peregrine soliton [6, 19] of the NLS is expressed
in terms of a simple rational formula, it corresponds to
a simple profile, and can be obtained from a breather
solution via the simple limit of the period of modula-
tion approaching infinity. However, higher order rogue
waves(HRWs) [35–38] are expressed in terms of com-
plicated formulae and their profiles exhibit several dif-

ferent interesting patterns [39–43]. These patterns in-
clude a fundamental pattern consisting of a simple central
highest peak surrounded by several gradually decreasing
peaks(see Fig 2a and Fig.3 in reference [43]), equal-height
triangular pattern(see Fig 2b in reference [43] and Fig-
ure 2 in reference [40]), and circular pattern(see Fig 4 in
reference [43]).

Taking into consideration the complexity of the rele-
vant formulae[44, 45], as well as the plethora of the dif-
ferent possible patterns, it is a challenging problem to
elucidate the mechanism of HRWs generation. There ex-
ist two important conjectures regarding HRWs.

• In the case of a single fundament pattern, an order
n RW has n(n + 1) − 1 non-uniform peaks[43]; in
the case when there exist several patterns, an order
n RW has n(n+ 1)/2 uniform peaks[36, 37].

• In the case when an order n RW displays a ring
structure, the outer ring has 2n− 1 uniform peaks,
and the inner structure is an order n− 2 RW[43].

In this work, we present a generating mechanism for
HRWs of the NLS equation, and using this mechanism,
we prove the above two conjectures. Furthermore, we
discuss several new interesting patterns of HRWs.

Degenerate n-fold DT and inverse DT. In order
to study the breather and the RW solutions of NLS,
we shall use the determinant representation of the Dar-
boux transformation(DT) introduced in [46–48]. Fur-
thermore, we shall use the notions and the main results
of these references regarding the n-fold DT (theorem 1 in
[48]) and the related functions (q[n], r[n], φ[n]) generated
by the n-fold DT(corollary 1 in [48]). In order to sat-
isfy the reduction requirement q[n] = −(r[n])∗,we choose
f2k = (−f∗2k−1 2, f

∗
2k−1 1)T , k = 1, 2, · · · , n, where T de-

notes matrix transposition and asterisk denotes complex
conjugation. Under this reduction, q[n] is a solution of
the NLS generated by an n-fold DT starting with the seed
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solution q. In the following we always use this reduction
condition.

Theorem 1 and corollary 1 cited above imply that
an n-fold DT Tn of the NLS, annihilates its indepen-
dent generating functions, which are the eigenfunctions
fi(i = 1, 3, 5 · · · , 2n−1) associated with n distinct eigen-
values λ1, λ3, λ5, · · · , λ2n−1. This means that if we fix
the given set of eigenvalues, we cannot apply DTs more
than once. Recall that the formulae for the eigenfunc-
tions fi(i = 1, 3, 5 · · · , 2n−1) differ only by the fact that
they involve different eigenvalues λi. However, in order to
obtain a HRW for a critical eigenvalue λ0, we must apply
repeatedly DTs. This difficulty can be overcome by not-
ing that the annihilated eigenfunctions can be re-created
by taking the limit λi → λ1 of the used eigenvalues in

the DT [40]. We set fi = φ(λi) and f
[n]
i = φ[n]|λ=λi . We

shall use the determinant representation of the n-fold DT
(see eq.(14) of [48]) to illustrate the relevant construction.

It is straightforward to verify that f
[1]
1 = 0, and hence

we cannot apply DT again with the eigenvalue λ1. Let
λ3 = λ1 + ε, then

f
[1]
3 =f

[1]
3 (λ1 + ε) = f

[1]
1 (λ1 + ε)

=f
[1]
1 (λ1) + (

∂f
[1]
1 (λ1 + ε)

∂ε
|ε=0 )ε+O(ε).

Hence, the limit

lim
ε→0

1

ε
f
[1]
3 =

∂f
[1]
1 (λ1 + ε)

∂ε
|ε=0 , f

[1]
1

yields a transformed eigenfunction associated with λ1,
which can be used to generate a new DT so that we
can apply this DT with the given eigenvalue λ1 for a sec-
ond time. Similarly, set the second degenerate eigenvalue

λ5 = λ1 + ε in f
[2]
5 ; the limit

lim
ε→0

1

ε2
f
[2]
5 =

∂2f
[2]
1 (λ1 + ε)

∂ε2
|ε=0 , f

[2]
1

re-creates a transformed eigenfunction associated with λ1
of the 2-fold DT. Note that the zero order and the first
order terms of ε in f

[2]
5 yield zero contributions. In gen-

eral, for an n-fold DT, we can use the following theorem
on φ[n](λ) and q[n] using the degenerate limit λi → λ1
by a similar analysis, based on the determinant represen-
tation given by theorem 1 and corollary 1 of [48]. The
following notations, including matrix elements ((t1)12)ij
and (W2n)ij , are given in [48].
Theorem 1 An n-fold DT with a given eigenvalue λ1 is
realized by the degenerate limit λi → λ1. This degener-
ate n-fold DT yields the transformed eigenfunction φ[n]

of λ,where

φ[n] =
1

|W ′2n|


∣∣∣∣φ̂(n) λnφ1
W ′2n ξ̂′2n−1

∣∣∣∣∣∣∣∣φ̂(n) λnφ2
W ′2n ξ̂′2n

∣∣∣∣

 , (2)

as well as a new solution q[n] of the NLS equation starting
with the seed solution q,where

q[n](x, t;λ1) = q − 2i
|Q′2n|
|W ′2n|

, (3)

with

W ′2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(W2n)ij(λ1 + ε)

)
2n×2n

,

ξ̂′2n−1 =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

ξ̂2n−1,i(λ1 + ε)

)
2n×1

,

ξ̂′2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

ξ̂2n,i(λ1 + ε)

)
2n×1

,

Q′2n =

(
∂ni−1

∂εni−1

∣∣∣∣
ε=0

(Q2n)ij(λ1 + ε)

)
2n×2n

,

ni = [ i+1
2 ], [i] denotes the floor function of i, Q2n is the

determinant in the numerator of (t1)12[48].
Starting with different seed solutions q, eq.(3) yields dif-
ferent degenerate solitons and breathers. Furthermore,
by choosing a special eigenvalue λ1 = λ0 associated with
φ(λ0) = 0 , Eq.(3) yields an order n RW. In the lat-
ter case, all orders of derivatives with respect to ε in
φ[n] and q[n](x, t;λ1) are increased by one because of
φ(λ0) = 0. The main idea of the above procedure for
constructing rogue wave is as follows: According to the
determinant representation in Theorem 1 and corollary 1
of reference([48]), there are two degenerate cases in T2k,
i.e., λi → λ1 and fi = φ(λi) = 0(i = 1, 3, · · · , 2k − 1). It
is easy to recognize that q[2k] generated by T2k is given by

an indeterminate form
0

0
in the above degenerate cases.

Thus, let λi = λ1 + ε or λi = λ0 + ε , smooth solutions
can be obtained by higher order Taylor expansion in de-
terminants with respect to ε as in Theorem 1.

In order to get an order n − 2 RW from an order n
RW by a simple limit, it is necessary to use an inverse
DT. For a general eigenvalue λ, the x−part of the Lax
pair of the NLS admits the solution φ(λ), as well as the
linearly independent solution ψ(λ) = (ψ1, ψ2)T . Further-
more ψ[n] = Tnψ and φ[n] = Tnφ are linearly indepen-
dent because Tn is a linear transformation of ψ and φ.
Let gk , (gk1, gk2)T = ψ(λk); then the Wronskian deter-
minant W (fi, gi) = fi1gi2 − fi2gi1 of fi and gi is a non-
zero constant. Using the determinant representation of
the one-fold DT, T (λ; f1, f2), generated by f1 and f2, we
find the transformed functions

g
[1]
1 =

(λ1 − λ2)W (f1, g1)

|W2|

(
f21
f22

)
,

g
[1]
2 =

(λ1 − λ2)W (f2, g2)

|W2|

(
f11
f12

)
,

which are not zero in contrast to f
[1]
1 = 0 and f

[2]
2 = 0.

Hence, we can use g
[1]
1 and g

[1]
2 to generate the second fold
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DT T (λ; g
[1]
1 , g

[2]
2 ). Using a straightforward calculation

with the help of Theorem 1 in [48], it can be shown that
the two-fold DT is given by

T2 = T (λ; g
[1]
1 , g

[1]
2 )T (λ; f1, f2) = (λ− λ1)(λ− λ2)I, (4)

where I is the unit matrix of size 2. Here we only present
the calculation of the element (T2)11. First note that

|W4(g1, g2, f1, f2)| = −(λ2 − λ1)2W (f1, g1)W (f2, g2);

(T̃2)11=− (λ−λ1)(λ−λ2)(λ2 −λ1)2W (f1, g1)W (f2, g2).

Hence,

(T2)11=
(T̃2)11

|W4(g1, g2, f1, f2)|
= (λ− λ1)(λ− λ2).

Thus T (λ; g
[1]
1 , g

[1]
2 ) is the inverse DT of T (λ; f1, f2).

In general, for an (n-2)-fold DT Tn−2 generated by
f1, f2, . . . , f2n−5, f2n−4, we can find a one-fold in-

verse DT as follows(note that g
[n−2]
2n−3 = Tn−2g2n−3 or

g
[n−2]
2n−2 = Tn−2g2n−2 and f

[n−2]
2n−3 or f

[n−2]
2n−2 are linearly

independent):
Theorem 2 Let the (n − 1)-th fold DT be

T (λ; f
[n−2]
2n−3 , f

[n−2]
2n−2 ) after a (n-2)-fold DT Tn−2,

and g
[n−1]
2n−3 = T (λ; f

[n−2]
2n−3 , f

[n−2]
2n−2 )g

[n−2]
2n−3 , g

[n−1]
2n−2 =

T (λ; f
[n−2]
2n−3 , f

[n−2]
2n−2 )g

[n−2]
2n−2 . Then the n-th fold DT

T (λ; g
[n−1]
2n−3 , g

[n−1]
2n−2 ) is the inverse of the (n − 1)-th fold

DT.
In other words, the n-th fold DT T (λ; g

[n−1]
2n−3 , g

[n−1]
2n−2 )

maps q[n−1] to q[n−2]. This gives an important connec-
tion between RWs of order (n-1) and order (n-2).
Higher order breathers and rogue waves The
first order breather of the NLS equation is a periodic
traveling wave. This solution, via the limit of the period
approaching infinity, gives the first order RW [6, 19].
However, it is still not clear how to generate HRWs
from multi-breathers, even for second order RWs [41].
Moreover, the collision of three breathers [49] does not
provide a satisfactory explanation for the appearance of
different patterns of order 3 RWs.

On the (x, t) plane, because of the conservation of the
number of the breathers, there exist n separate peaks in
each row before and after the interaction of n breathers.
The interaction area is localized near the origin of the
plane between the two closest rows( or periods) pos-
sessing n separate peaks. When the breathers are in
the interaction area, their peaks get closer. Based on
the detailed investigation of the interaction of breathers,
we claim the following mechanism for the generation of
HRWs: the progressive fusion and fission of n degenerate
breathers associated with a critical eigenvalue λ0, creates
an order n HRW. Furthermore, by adjusting the relative
phase of the breathers at the interacting area, it is pos-
sible to obtain different patterns of HRWs. Here λ0 is

a zero point of the eigenfunction φ(λ), i.e. φ(λ0) = 0,
which corresponds to the limit of the period of breathers
becomes infinitely large. The relative phase can be ad-
justed via the tuning of the parameters si in the eigen-
functions fi.

In this work, we shall take a periodic seed q = ceiρ with
ρ = ax + (2c2 − a2)t. The corresponding eigenfunctions
φ(λ) = (φ1, φ2)T is given by

φ(λ)=

(
cei(

ρ
2+d(λ))+ i(a2 + c1(λ)+λ)e−i(−

ρ
2+d(λ))

ce−i(
ρ
2+d(λ))+ i(a2 + c1(λ)+λ)ei(−

ρ
2+d(λ))

)
. (5)

Here c1(λ) =
√
c2 + (λ+ a/2)2, d(λ) = c1(λ)(x + (2λ −

a)t + s0 + Φ),Φ =
∑n−1
k=1 skε

2k[40], n denotes the num-
ber of the steps of the multi-fold DT, λ0 = −a/2+ ic is a
zero point of the eigenfunction φ(λ), ε denotes a small pa-
rameter when we consider the degeneration of the eigen-
values,i.e., λ = λ0 + ε, si are complex constants. The
functions fi = φ(λi) have the same form except for the
occurrence of different values of the eigenvalues which is
necessary to generate HRWs via the process of the eigen-
value degeneration λi 7→ λ1 (see Theorem 1). In the
following examples we set a = 0. Also, in order to ad-
just the relative phase of the breathers at the interaction
area according to Theorem 1 and corollary 1 of reference
[48], we set si = 0(i ≥ 1), but s0 has different values in
different fi. There exist three types of relative phases of
n breathers in the interaction area: synchronous, anti-
synchronous and quasi-synchronous.

In the interaction area of n synchronous breathers,
there exist progressively increasing fusion via n− 1 steps
from the n lower peaks to the central maximum peak, and
then progressively decreasing fission via n− 1 steps from
the central maximum peak to the n lower peaks. Here,
each step of fusion annihilates one peak and hence the
height of peaks increases; similarly, each step of fission
creates one new peak and hence the height of peaks de-
creases. These peaks are arranged as two triangles with
one joint vertex along their perpendicular bisector. Thus,
the total number of the non-uniform peaks in the inter-
action area is n(n+ 1)− 1. It is interesting to note that
the outermost row of the interaction area has n lower
peaks, which are closed to each other. Hence, peaks are
much lower than the ones in the nearest row of the non-
interaction area. This phenomena provides evidence for
the strong interaction of the breathers. When the eigen-
value used in the breathers approaches the critical value
λ0,i.e. λi 7→ λ0, the period of all breathers goes to infinity
simultaneously, so that only one profile in the interaction
area survives, and this gives the fundamental pattern of
a HRW. Therefore, this pattern of an order n HRW, has
n(n + 1) − 1 non-uniform peaks. The central profile of
the three breathers in Figure 1 is very similar with the
fundamental pattern of an order 3 RW(see Fig.3(a) in
reference [43]) of the NLS equation. The three breathers
are plotted according to Theorem 1 and corollary 1 of
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[48] with a = 0.01,c = 0.5, s0 = 0,and λ1 = −0.2 + 0.54i
in f1, λ3 = 0.1 + 0.55i in f3 and λ5 = 0.03 + 0.56i in f5.

The interaction of n anti-synchronous breathers is
simpler, although there also exists the fusion or fission
of peaks. In the interaction area, peaks are closer to
each other. By suitably adjusting the relative phases
of breathers, n synchronous breathers become n anti-
synchronous breathers, and the corresponding peaks in
the triangle disappear, so that only peaks in one triangle
survive. Specifically, by suitably changing the relative
phase, we observe the disappearance of the lowest peak
in the outermost row of the interaction area, followed by
the disappearance of the two nearest peaks, and so on.
This chain reaction continues until the coalescence of the
two triangles. The collapse of this triangle is stimulated
by the loss of the nearest-neighbour interactions. Thus,
there are n(n+ 1)/2 peaks in the interaction area, which
are allocated on the remaining triangle. If we set λi 7→ λ0
simultaneously, then the profile in the interaction area
of the order n breather yields a triangular pattern of
a HRW. Therefore, there are n(n + 1)/2 equal-height
peaks in the triangular pattern of an order n HRW. A
triangular structure of the 3 anti-synchronous breathers
is plotted in Figure 2 by using Theorem 1 of [48] with
a = 0.01,c = 0.5,and λ1 = 0.05 + 0.531i and s0 = 16 in
f1; λ3 = 0.55i and s0 = −20i in f3; λ5 = −0.05 + 0.551i
and s0 = −16 in f5. By suitably choosing different val-
ues of the parameters in n anti-synchronous breathers,
so that the relative positions of peaks are changed but
the total number of peaks is preserved, we obtain a ring
structure associated with the n(n + 1)/2 peaks in the
interaction area, which gives rise to the circular pat-
tern of an order n RW in the above limit possessing
n(n+1)/2 peaks. Figure 3 confirms the ring structure of
3 anti-synchronous breathers with a = 0.01,c = 0.5,and
λ1 = 0.05 + 0.54i and s0 = 1 + i in f1, λ3 = 0.55i and
s0 = 0 in f3, λ5 = −0.05 + 0.56i and s0 = 1 + i in
f5. There exist many other patterns appearing at the
interaction area of n anti-synchronous breathers, which
gives rise to several types of HRWs such as two poly-
gons (Figure 4 for an order 5 RW given by Theorem 1
with λ0 = ic, a = 0, c = 1/

√
2, s0 = 0, s1 = 0, s2 = 106,

s3 = 10 for a pentagon or s3 = (1 + I) × 5 × 105 for a
heptagon, and s4 = 0) and a triangle in circle (Figure 5
for an order 5 RW given by Theorem 1 with λ0 = ic, a =
0, c = 1/

√
2, s0 = 0, s1 = 15, s2 = 0, s3 = 0, s4 = 107).

By suitably choosing the values of the parameters in
fi, we observe n quasi-synchronous breathers from theo-
rem 1 and corollary 1 in [48]. There exist many different
patterns in the interaction area, which implies many in-
teresting types of HRWs when λi 7→ λ0. For example, one
can find the following interesting decomposition of an or-
der n HRW: an order n − 2 RW surrounded by 2n − 1
peaks [43]. The first nontrivial example of this decompo-
sition is given by the interaction of 4 quasi synchronous
breathers. Unfortunately, we are not able to plot the

profile in the interaction area in this case, due to the
complexity of order 4 breathers. However, we find two
complete decompositions of the circular pattern: an or-
der 5 RW in Figure 6 with λ0 = ic, a = 0, c = 1/

√
2, s0 =

s1 = s2 = 0, s3 = 8 × 104, s4 = 2 × 107, and an order 6
RW in Figure 7 with λ0 = ic, a = 0, c = 1/

√
2, s0 = s1 =

s2 = 0, s3 = 3× 104, s4 = 0, s5 = 108.
The inverse DT provides a technique enabling us to

prove the above interesting decomposition rule of an or-
der n RW. For simplicity we set a = 0 in the seed solu-
tion, and then we set λ0 = ic. Expanding φ(λ0 + ε) with
respect to ε, we find that the coefficient of the first order
term in ε is given by

f0 =

(
eic

2t(2icx− 4c2t+ 2ics0 + i)

−e−ic2t(2icx− 4c2t+ 2ics0 − i)

)
,

which is an eigenfunction associated with q and λ0. There
exist another eigenfunction

g0 =

(
eic

2t

−e−ic2t

)

of λ0. Note that f0 and g0 are two linearly independent
eigenfunctions of λ0. According to Theorem 1, an order
n RW is generated by a degenerate n-fold DT with the
critical eigenvalue λ0 from the periodic seed q = ce2ic

2

.
Let Tn−1 be a (n-1)-fold degenerate DT with λ0, so that

g
[n−1]
0 and f

[n−1]
0 are given by eq.(2), and are linearly

independent. By a tedious asymptotic analysis we find:

f
[n−1]
0 = f̃0 + sn−1g

[n−1]
0 , where f̃0 is a smooth bounded

function. According to Theorem 2, the n-th fold DT de-

fined by T (λ; g
[n−1]
0 ) is the inverse of the (n − 1)-th DT

defined by T (λ; f
[n−2]
0 ). Thus, by the limit sn−1 7→ ∞,

the n-th fold DT T (λ; f
[n−1]
0 ) = T (λ; g

[n−1]
0 ), gives an

inverse transform of the (n − 1)-th fold DT. Therefore,
under this limit, an order n RW q[n], reduces to an order
n−2 RW, q[n−2]. By taking sn−1 to be large (but finite),
an order n RW is decomposed into an order n − 2 RW
and 2n− 1 peaks located at an outer circle such that the
total number n(n+1)/2 of peaks can be realized either in
a triangular pattern or in a circular pattern. The inner
order n − 2 RW, can take any of these forms by choos-
ing si(i = 0, 1, · · · , n − 3). This decomposition rule of
HRWs was conjectured by Akhmediev’s group [43]. Fig-
ure 5 and Figure 6 show different patterns of the inner
lower order RW decomposed from an order 5 RW. The
fundamental pattern of inner order 3 RW reduced from
an order 5 RW is shown in Fig.4(c) of [43]. According
to this decomposition rule, Figures 6 and 7 provide the
first two non-trivial examples of a complete decomposi-
tion associated with three levels.

In order to show the applicability of the generating
mechanism, we present new types of decomposition of
the seventh order, eighth order and ninth order RWs in
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figures 8-13. In these figures, λ0 = ic, a = 0, c = 1/
√

2,
and the other non-zero parameters are s6 = 1010c0 in
figure 8; s6 = 1010c0, s4 = 105c0, s2 = 10c0 in figure 9;
s7 = 1010c0 in figure 10; s7 = 1010c0, s5 = 106c0 in figure
11; s8 = 1012c0 in figure 12; s8 = 1012c0, s6 = 105c0
in figure 13, where, c0 = 5 + 5i. In particular, Figures
9 and 11 provide the first two non-trivial examples of a
complete decomposition associated with four levels.

Conclusion The central theme of this paper is an at-
tempt to elucidate how normal waves can evolve into a
rogue wave. It is well known that when a classical en-
velope soliton interacts with a background plane wave,
then a breather is formed [4]. Thus, there exist different
types of breathers, depending on the various combina-
tions of envelope solitons and background plane waves.
It has been predicted that the maximum wave field gen-
erated due to the interaction of an envelope soliton with
a background plane wave, depends on the linear super-
position between the amplitudes of the soliton and the
background plane wave. The problem of early detection
of rogue waves is a challenging task. Indeed, since the
NLS breathers are homoclinic orbits, even the slightest
perturbation resulting from roundoff errors during nu-
merical simulation, can trigger a false rogue like behav-
ior. Akhmediev et al.[50] have devised a model for early
detection of rogue waves in a chaotic field, which would
help marine travel in stormy conditions, as it would pro-
vide an early warning system for rogue waves. Just before
the appearance of the high-peak wave in real space, the
spectra of unit patches of the chaotic wave fields show
a specific triangular feature. Thus, the analysis of the
formation of such specific features could help the early
detection of rogue waves.

The two conjectures described in this article eluci-
date the formation of higher order rogue waves. By un-
derstanding the generating mechanism for higher order
rogue waves as a result of the fission and the fusion n
degenerate breathers, the formation of the coveted tri-
angular pattern (and of a new class of circular pattern
reported in this paper) are relevant for the basic features
of rogue wave, which may have an important impact on
the early detection of rogue waves. The constructions of
specific triangular and circular patterns provide simple
implementations of the generic results presented in this
paper.

Acknowledgements This work is supported by
the NSF of China under Grants No.10971109 and
No.11271210, the K.C.Wong Magna Fund in Ningbo Uni-
versity and the Natural Science Foundation of Ningbo
under Grant No.2011A610179. We thank Prof. Yishen
Li(USTC,Hefei,China) for his useful suggestions on rogue
waves and also thank Shuwei Xu, Linling Li, Lijuan Guo,
Yongshuai Zhang for their help with figures. KP wishes
to thank the DST, DAE-BRNS, UGC and CSIR, Gov-
ernment of India, for the financial support. A.S. Fokas is
grateful to EPSRC,UK, and to the Onassis foundation,

USA, for their generous support.

[1] P.C.Liu, GEOFIZIKA 24(2007),57-70.
[2] L. Draper, Oceanus 10(1964), 13-15; L. Draper, Marine

Observer 35(1965), 193-195.
[3] R.G. Dean, Freak waves: A possible explanation, in

Water Wave Kinematics, Edited by A.Torum and O.T.
Gudmestad (Kluwer Academic, Dordrecht, 1990), pp.
609-612.

[4] C.Kharif, E.Pelinovsky and A.Slunyaev: Rogue Waves in
the Ocean(Berlin: Springer) (2009).

[5] A.R.Osborne, Nonlinear ocean waves and the in-
verse scattering transformation (Academic Press, San
Diego,2010).

[6] D.H. Peregrine, J. Austral. Math. Soc. B 25(1983), 16-43.
[7] D. R. Solli, C. Ropers, P. Koonath,B. Jalali,

Nature(London)450(2007),1054-1058.
[8] D. R. Solli, C. Ropers, B. Jalali,Phys. Rev.

Lett.101(2008),233902.
[9] J. M. Dudley, G. Genty, B.J. Eggleton, Opt. Express

16(2008), 3644-3651.
[10] A. N. Ganshin, V. B. Efimov, G.V. Kol-

makov, L. P. Mezhov-Deglin,P.V. E. McClintock,
Phys.Rev.Lett.101(2008),065303.

[11] Yu. V. Bludov, V. V. Konotop,N. Akhme-
diev,Phys.Rev.A.80 (2009),033610.

[12] M.S. Ruderman,Eur. Phys. J. Special Topics 185(2010),
57-66.

[13] W.M.Moslem, P.K.Shukla, B.Eliasson, Euro. Phys.
Lett.96(2011),25002.
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Fig. 1: (Color online) The fusion and fission of three
synchronous breathers on (x,t) plane. The lower panel is
a local profile in the interaction area of the upper panel
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Fig. 2: (Color online) The fusion and fission of three
anti-synchronous breathers on (x,t) plane. The lower

panel is a local triangle pattern in the interaction area
of the upper panel.

Fig. 3: (Color online) The fusion and fission of three
anti-synchronous breathers on (x,t) plane. The lower

panel is a local circular pattern in the interaction area
of the upper panel.
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Fig. 4: (Color online) The polygon pattern of an order 5
RW. The upper pentagon has three concentric circles,
and each of them has five peaks. The lower heptagon
has two concentric circles, and each of them has seven

peaks.

Fig. 5: (Color online) A triangle pattern in a circle for
an order 5 RW. The lower panel is a local central profile

of the upper panel.
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Fig. 6: (Color online) Decomposition of an order 5 RW.
The lower panel is a local central profile of the upper

panel.

Fig. 7: (Color online) Decomposition of an order 6 RW.
The lower panel is a local central profile of the upper

panel.
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Fig. 8: (Color online) Decomposition of an order 7 RW.
The lower panel is a local central profile of the upper

panel.

Fig. 9: (Color online) Decomposition of an order 7 RW.
The lower panel is a local central profile of the upper

panel.
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Fig. 10: (Color online) Decomposition of an order 8
RW. The lower panel is a local central profile of the

upper panel.

Fig. 11: (Color online) Decomposition of an order 8
RW. The lower panel is a local central profile of the

upper panel.
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Fig. 12: (Color online) Decomposition of an order 9
RW. The lower panel is a local central profile of the

upper panel.

Fig. 13: (Color online) Decomposition of an order 9
RW. The lower panel is a local central profile of the

upper panel.


