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Complex dynamics associated with multistability has been studied extensively in the past but mostly for low-
dimensional nonlinear dynamical systems. A question of fundamental interest is whether multistability can arise
in high-dimensional physical systems. Motivated by the ever increasing widespread use of nanoscale systems,
we investigate a prototypical class of nanoelectromechanical systems: electrostatically driven Si-nanowires,
mathematically described by a set of driven, nonlinear partial differential equations. We develop a computation-
ally efficient algorithm to solve the equations. Our finding is that multistability and complicated structures of
basin of attraction are common types of dynamics, and the latter can be attributed to extensive transient chaos.
Implications of these phenomena to device operations are discussed.
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I. INTRODUCTION

Multistability and transient chaos are common in nonlin-
ear dynamical systems. Phenomena associated with mul-
tistability such as fractal basin boundaries, riddled and in-
termingled basins, and noise-induced hopping have been
extensively studied in the past three decades1. However,
most previous studies on multistability were focused on rel-
atively low-dimensional dynamical systems2 that, mathemat-
ically, are often described by ordinary differential equations
(ODEs). The aim of this paper is to examine multista-
bility in terms of complex dynamics and implications in a
class of high-dimensional, physically significant, nanoelec-
tromechanical (NEM) systems at the frontier of interdisci-
plinary research: electrostatically driven nanowire systems.
Such systems are characterized by their small size, extremely
low power consumption, and ultra fast speed. Applications
range from Zeptogram scale mass sensing3 and single elec-
tron spin detection4 to RF communication5, semiconductor
superlattice6,7 and many others8,9. We note that multistabil-
ity in micro-scale systems has been previously uncovered and
studied, such as a mixed behavior in nonlinear micromechan-
ical resonators10 and multistable micro actuator with serially
connected bistable elements11.

A fundamental goal of science is to have an experimen-
tally validated, predictive theory based on a set of physical
laws. With such a theory, a question of concern is whether
the final state can be predicted from an initial state chosen
in the vicinity of a basin boundary, due to the inevitable er-
ror in the specification of the initial state. Here, the basinof
attraction of an attractor is the set of initial conditions in the
phase space that approach asymptotically the attractor, and the
basin boundary separates the initial states leading to different
final asymptotic states or attractors. In nonlinear dynamical
systems, it is common for basin boundaries to be fractal1. In
this case, the ability to predict the final attractor of the sys-
tem may be compromised dramatically. Whether multistabil-
ity can arise in nanosystems and its dynamical consequences
on device performance are thus fundamental issues that need

to be investigated for the design and development of nanoscale
devices.

There were previous works on nonlinear dynamics in
nanosystems, such as synchronized oscillations in cou-
pled nanomechanical oscillators12, signal amplification
and stochastic resonance in silicon-based nanomechani-
cal resonators13, and extensive chaos in driven nanowire
systems14. However, to explore multistability and complex
basin structures in driven nanowire systems is extremely chal-
lenging, because a physically realistic model of such systems
is mathematically described by a set of nonlinear partial dif-
ferential equations (PDEs), and it is necessary to examine
solutions from a very large number of initial states. In the
traditional framework of finite-element method (FEM)15, the
solution is obtained by solving a matrix equation, where the
matrix elements need to be evaluated in an iterative manner,
a task that can be computationally extremely demanding es-
pecially for physically detailed models. Taking advantage
of the specific physics associated with the driven nanowire
system, wefind that, surprisingly, a large set of matrix el-
ements arising from the finite-element paradigm can in fact
be evaluated analytically, reducing tremendously the integra-
tion time. Our mainfinding is that multistability can occur
in wide parameter regime of the driven Si-nanowire system,
and the origin of complex basin dynamics can be attributed to
high-dimensional transient chaos permeating the phase space.
A practical implication is that, because of the intrinsic diffi-
culty to predict the final state of the system, and because of the
tendency for the system to occasionally switch from one sta-
ble state to another under disturbances, parameter regimesin
which multistability and complex basin dynamics arise should
be avoided in the design and development of nanowire de-
vices.

Our model of physically detailed, electrostatically driven
Si-nanowire system is described in Sec. II. Transient behavior
and the dynamical mechanism of multistability are analyzed
in Sec. III with the aid of extensive frequency analysis. Basin
structures and their characterization are presented in Sec. IV,
and the ubiquity of multistability in the driven nanowire sys-
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FIG. 1: (Color online) Schematic diagram of a driven nanowire sys-
tem. A thin, electrostatically driven Si nanowire of lengthL and
diameterd is suspended on a U-shaped gate. The gap between the
wire and the gate ish. The oscillations can be non-planar in bothy
andz directions, even though the driving is alongz.

tem is demonstrated in Sec. V. Concluding remarks are of-
fered in Sec. VI, and our efficient numerical procedure for
solving the nonlinear PDEs of the driven nanowire system is
outlined in Appendix.

II. MODEL OF DRIVEN SI NANOWIRE

Consider a driven nanowire system, as shown schematically
in Fig. 1. For a beam with ends clamped and subject to large
deformation, the equations of motion are

ρA∂2
t Y + EI∂4

xY − EA

2L
I0∂

2
xY = FY

f ,

ρA∂2
tZ + EI∂4

xZ − EA

2L
I0∂

2
xZ = FZ

f + Fe, (1)

whereY (x, t) andZ(x, t) are the displacements iny, z direc-
tions, respectively,E is the Young’s modulus,ρ is the vol-
ume density,L is the original wire length,A is the cross-
sectional area,I = πr4/4 is the cross-sectional moment of
inertia of the wire, andI0 is an integral proportional to the
length increment of the wire under stretch, which is given by
I0 =

∫ L

0

[

(∂xY )2 + (∂xZ)2
]

dx. In Eq. (1),Fe is the applied
electrostatic force on the nanowire in the−z direction due to
an externally applied electric potential between the nanowire
and the substrate. The potential has a dc componentVdc and
an ac componentVac with adjustable frequencyf . The terms
FY
f andFZ

f in Eq. (1) represent the viscous damping forces in
they andz directions, respectively, which are modeled to be
proportional to the velocity of the wire. Explicitly, the electri-
cal force is given by14

Fe = − πǫ0V
2(t)

(Z + h)
[

ln
(

4Z+h
d

)]2 , (2)

and the viscous damping forces are

F
{Y,Z}
f = −πPd

4vT
∂t{Y, Z}, (3)

whereh is the vertical distance between the clamped ends of
the nanowire and the surface of the substrate,d = 2r is the
cross-sectional diameter of the wire,P is the air pressure, and
vT =

√

kBT/m is the air molecule velocity at temperature
T . The expression ofFe is valid under the conditionh ≫ d.
In this regime, the oscillation amplitude is about one order
of magnitude smaller than that for the onset of the pull-in
effect16,17. Also note that, the electrostatic force isa priori
conservative and, thus, it would not lead to any net loss dur-
ing a driving cycle. In general, the Ohmic loss associated with
electrical force can be modeled18 by a term proportional to the
time derivative ofZ(x, t), as in a typical mechanical system.
While this “electrical” source of dissipation can be included
in a more accurate model of the driven nanowire system, the
dominant source of dissipation in our study is fluid (viscous)
damping. The Ohmic loss will become comparable in mag-
nitude to viscous damping when the size of the nanowire is
significantly reduced, say by at least one order of magnitude
below the regime of our present study of multistability. For
this reason the “electrical” dissipation term is neglectedin the
present work.

It has been known that surface effects19–21can become sig-
nificant for nanosystems due to the reduction in the surface-to-
volume ratio. However, such effects can still be modeled us-
ing the continuum model19, and are negligible when the local-
bending curvature is small. For example, tensile or compres-
sive stress can be implemented in Eq. (1) by modifying the
stretching elastic nonlinear terms in theZ andY directions as
−Zxx[SA + EA/(2L)2LI0] and−Yxx[SA + EA/(2L)I0],
respectively, whereS is the residual tensile or compressive
stress. The tensile force can harden the beam and enhance
the linear resonant frequency. This effect can shift the onset
of non-planar motion22 of the nanowire and affect the onset
of chaotic motion14. Another issue concerns the geometrical
shape of the nanowire. In experiments or nanodevice fabri-
cation processes, a rectangular cross-sectional shape maybe
favored over a circular one. Such an alteration will affect
the moment of inertia of the nanowire as well as the viscous
damping coefficient. However, this will not lead to qualita-
tively different dynamical behaviors.

To solve Eq. (1), we begin with the standard FEM method15

to derive element equations using a weighted residue formu-
lation. We then assemble element equations to obtain a global
matrix representation of the PDE system. After the FEM for-
mulation, Eq. (1) is reduced to an initial value problem (IVP),
which can be solved using the standard numerical integra-
tion methods. Specifically, we use the Runge-Kutta4th-order
Dormand-Prince pair embedded method23 with adaptive step
size control. Details of our method can be found in Appendix.
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FIG. 2: (Color online) (a,b) ForP = 0.5 atm, oscillations in they
(blue, left) andz (red, right) directions, respectively, of the center
point of the nanowire, (c,d) similar plots but forP = 0.01 atm.
The wire typically exhibits transient chaotic behavior before settling
into a final state. For (a-d), the driving frequency isf = f0. (e)
Average transient time as a function of pressure. The threshold used
for calculating the transient time is1%. Note that allY andZ values
are represented in meters, if not specifically mentioned otherwise.

III. TRANSIENT DYNAMICS AND EMERGENCE OF
MULTISTABILITY

The driven nanowire typically exhibits transiently chaotic
motion before settling into a final steady state, which can be
seen from Figs. 2(a-d), oscillations of the central point ofthe
nanowire in thez andy directions for two values of the en-
vironmental pressure. Figure 2(e) shows the average transient
time as a function of the pressureP . For each fixed value
of P , the average time is obtained by using a number of ini-
tial configurations of the wire and calculating the time that
the wire reaches the final state to within1% for the first time.
We observe that the average time scales with the pressure as a
power law, with the exponent being approximately−1.

Insights into the inverse scaling law of the average transient
time can be gained by considering a simple mechanical oscil-
lator: ẍ+2βω0ẋ+ω2

0x = 0, whereω0 is the angular frequency
andβ is the damping ratio. The amplitude solution follows an
exponential decay form:exp(−t/τ), whereτ is the character-
istic time. For damped oscillations, we haveτ ∼ 1/β. Since
pressureP is directly proportional to the damping ratio, we
haveτ ∼ 1/P . Similar effect can occur through variations in
the temperature, as the quantity1/

√
T plays a similar role as

P in the dynamical evolution of the nanosystem.
In general, the role of damping due to collision with air

molecules is important to the final vibration mode of the
driven nanowire system. We find that, at low pressure (in con-
trast to ultrahigh vacuum), due to multistability and complex
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FIG. 3: (Color online) Frequency response of nanowire at pressure
P = 0.01 atm. The motion of the center of the nanowire is mon-
itored and the time-averaged amplitudes after the system reaches a
steady state are computed. The average amplitudes in they andz
directions versus the driving frequency are shown in (a) and(b), re-
spectively. The initial conditions are sinusoidal spatialfunctions with
zero velocities in bothy andz directions, and are fixed for all simu-
lations at different frequencies. The parameter setting is: E = 169
GPa,ρ = 2332 kg/m3, Vdc = 5V, Vac = 1V, L = 3 µm, d = 20
nm, andh = 0.2 µm.

basin dynamics, the vibration amplitude can show an extreme
sensitive dependence on the driving frequency of the external
electrical force. At room conditions (∼ 300 K, 1 atm), such
a sensitive dependence is replaced by extensively chaotic mo-
tion of the nanowire14. In particular, the nanowire can exhibit
a cascade of period-doubling bifurcations to relatively small-
size chaotic attractors as a parameter, e.g., the magnitudeof
the ac component of the driving force, is increased. When the
parameter exceeds a critical value, the small chaotic attractors
can merge to generate extensive chaos, which has been sug-
gested for potential applications such as extremely high fre-
quency pseudo-random number generators14. Since the aim
of the present work is complex dynamics associated with mul-
tistability, we focus on the low-pressure regime.

To demonstrate multistability, we investigate the frequency
response of the nanowire system. The natural oscillation fre-
quency of the nanowire can be estimated by using its mechan-
ical and geometrical properties:f0 = 3.56

√

EI/(ρAL4).
This formula givesf0 = 16.84 MHz for the typical set of
parameters indicated in Fig. 3. However, this estimated value
f0 is only to within an order-of-magnitudeaccuracy and there-
fore should not be taken as the true intrinsic frequency. The
pressure is set to be10−2 atm, which is much lower than that
under room conditions but still far above that associated with
ultrahigh vacuum condition, facilitating experimental study of
the nanowire dynamics. Figure 3 shows simulation results for
both in- and out-of-plane frequency responses, where extreme
amplitude fluctuations are observed, implying multistability.
In fact, a frequency analysis revealswide parameter regions
in which multistability can arise, as we now describe.

To carry out a frequency analysis to uncover the dynami-
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cal mechanism for multistability in the driven nanowire sys-
tem, we calculate the frequency response of the wire at typical
low-pressure (P = 0.01 atm) and normal pressure (P = 1
atm) values, as shown in Figs. 3 and 4, respectively. Both
figures show the average amplitudes as a function of the nor-
malized frequencyf/f0 in the y, z directions after a tran-
sient time. Here, the normalized frequency is defined as
f0 = 3.56

√

EI/(ρAL4), and the average is carried out in a
large time interval. In Fig. 3, bothy andz amplitudes exhibit
an extreme type of fluctuations as the frequency is changed,
indicating that an arbitrarily small change in the frequency can
lead to a characteristically different final state. This provides
strong evidence for multistability. (Further support for the co-
existence of multiple states can be obtained by examining the
phase diagram, as we will discuss below.) Compared with the
case of low pressure (Fig. 3), the frequency responses under
normal pressure are considerably smooth due to the relatively
strong dissipation caused by collision with air molecules,as
shown in Fig. 4. Apparently, for most frequency values, there
is only one state remained after the transient phase. We note
that, in Fig. 4(a), the peak aboutf/f0 = 3, marked by the
golden arrow, is the frequency that a previous work14 used
to identify the transition between planar and non-planar mo-
tions in they direction (not the driving direction). This means
that this peak can be turned on and off just by increasing or
decreasing the ac component of the driving force. One can-
not expect the same behavior to occur with the first peak (at
f/f0 ≈ 2) or the third peak (atf/f0 ≈ 6.3), because they cor-
respond to resonances associated withy andz motions and the
magnitude of the external force will simultaneously affectthe
y andz responses. As a result, the oscillation mode will con-
sistently be non-planar near these frequency values. On the
contrary, the second peak iny does not correspond to a reso-
nance in thez motion [Fig. 4(b)]. In fact, the amplitude in the
z direction is always finite (not affected by the driving magni-
tude significantly), while the amplitude in they direction can
be switched on and off. A comparison between the low pres-
sure and the normal pressure frequency responses suggests
that all resonances in the normal pressure case are actually
present in exactly the same position as in the low pressure
case. One can thus think of the high pressure case as a derived
state from the low-pressure regime by continuously increas-
ing the pressure, and this can be explained by the fact that
dissipation tends to destroy higher-frequency oscillations. An
immediate conclusion is that, in a low-pressure environment,
the driven nanowire system can exhibit high-dimensional tran-
sient chaos, associated with which multistable states occur
typically.

To provide stronger support for the existence of multi-
stability in the driven nanowire system, we use the method
of continuous frequency scanin which a simulation starts
from an initial frequency value and continues while incremen-
tal changes to the frequency are applied adiabatically in the
sense that the frequency changes only when a steady state is
reached. Insofar as there is a finite volume in the phase space
surrounding the steady state (attractor), the trajectory tends
to remain in the vicinity of the attractor when the frequency
is changed adiabatically. The wild fluctuation patterns ob-
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FIG. 4: (Color online) Frequency response of nanowire at pressure
P = 1 atm. Other parameters are the same as Fig. 3.

served in Figs. 3(a) and 3(b) should then disappear. Nonethe-
less, some small peaks and valleys in the frequency response
can still remain, due to the extreme instability at such loca-
tions. In our simulation, we start from the static sinusoidal
initial condition in bothy andz directions, and then keep in-
creasing the frequency from0.1f0 to 10f0 (forward scan, blue
dashed lines in both panels of Fig. 5). When the frequency
reaches the maximum value10f0, we reverse the direction of
the scan process (backward scan) by decreasing the frequency
until it returns to0.1f0 (indicated by red lines). Two more
shorter forward scans are also performed starting from around
f/f0 ≈ 3.5 to f/f0 ≈ 6 (as shown by black and cyan lines
in both panels), but with different frequency resolutions.At
f/f0 ≈ 4.14, we observe a fourfold stable region as depicted
in the inset of Fig. 5(b). It is apparent from these results that
stable attractors coexist in a wide parameter regime.

Emergence of multistability in the driven nanowire sys-
tem can then be explained, as follows. To gain insights, we
note that, for a common class of electrically driven microelec-
tromechanical systems, a previous work based on a detailed
bifurcation analysis of a reduced ODE model revealed that
bistability can also be quite common24. In such a case, the
two coexisting states are typically associated with high and
low energy, respectively. Our driven nanowire system is an
infinite dimensional dynamical system. In this system, the
characteristic frequency response associated with bistability is
a mirrored hysteresis-like peak, where forward and backward
scan lead to relatively high- and low-energy states, respec-
tively. Figure 6 shows the phase-space diagrams associated
with the Z variable (Z versusvz) for different frequencies.
The panels (a,g,h), for example, show period 3, period 2, and
period 3 behaviors, respectively, corresponding to the three
small peaks around frequencyf/f0 ≈ 1. Label (b) marks
the small valley present in all frequency response diagramsat
the start of the first resonance. Some phase diagrams indicate
chaotic motions. The central panel compares responses from
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FIG. 5: (Color online) Continuous scan of frequency response of
nanowire at low pressureP = 0.01 atm, where the frequency is adi-
abatically increased or decreased during the simulation and, for each
fixed frequency, the average amplitudes associated with a steady state
are calculated. Panels (a) and (b) show responses in they, z direc-
tions, respectively. In both panels, blue (thick dashed) lines represent
forward frequency scan from0.1 to 10, red (solid) lines correspond
to backward scan where the frequency is reduced adiabatically from
10 to 0.1, and black (thin dashed) and cyan (dash-dotted) lines both
stand for forward scan from about3.6 to 6, but a smaller frequency
step size is used for the cyan (dash-dotted) lines. The insetof (b) is
the zoom-in view of frequency around4.14, where fourfold stability
is observed.

the forward and backward continuous scans to the separated
frequency response of the nanowire. We observe multiple,
mirrored, hysteresis-like peaks at different resonant frequen-
cies. The key feature is the overlap among the bistable fre-
quency responses, which naturally leads to multistability. For
example, the fourfold stable region in the inset of Fig. 5 is
formed by the overlap of the two largest bistable regions in
Fig. 6. The two states with largest amplitudes correspond to
the mode similar to Fig. 6(c), and the other two correspond
to Fig. 6(d) and 6(e), respectively. From these diagrams and
their frequency values, we can conclude that, whenever there
is a peak or valley emerging in the frequency response func-
tion, the system is at the boundary separating different basins
of attraction where the system behavior is extremely difficult
to be predicted. There are multiple directions or basins that the
system can evolve into, and the typical phenomenon when the
system is undergoing such change, as indicated by the phase
diagrams, is period increasing, and quite frequently, chaotic
motion will emerge. This is in fact transient chaos on the
boundaries of the different basins.

IV. BASIN STRUCTURE AND CHARACTERIZATION

A natural question in the presence of multistability con-
cerns the basin structure, because each coexisting stable state
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FIG. 6: (Color online) Phase diagrams (z versusvz) for differ-
ent frequencies. The central panel compares results from the for-
ward and backward scans to the separated frequency responseof the
nanowire. Multiple mirrored, hysteresis-like bistable regions are ob-
served. Phase-space diagrams forz are plotted at locations labeled
by letters, as shown in the upper and bottom rows.

or attractor has its own basin of attraction. For the electrically
driven nanowire system Eq. (1), a set of two coupled nonlin-
ear PDEs, a difficulty is that the phase-space dimension of the
system is infinite. In order to compute and visualize the basin
structure, a two-dimensional representation of the phase space
is desirable. While there are an uncountably infinite number
of initial configurations for the entire wire, we can limit the
choices of the initial configurations to those with spatially si-
nusoidal shape. For example, the initialz profileZ(t = 0, x)
and its velocityVz(t = 0, x) can be chosen as

Z(t = 0, x) = z0 sin(πx/L), Vz(t = 0, x) = vz0 sin(πx/L)
(4)

for x ∈ [0, L]. Fixing Z(t = 0, x) andVz(t = 0, x) as
in Eq. (4) and further fixingVy(t = 0, x) = 0, we see that
(z0, vz0) defines a two-dimensional “initial-condition” plane.
Each point in the(z0, vz0) plane thus corresponds to a partic-
ular initial configuration of the wire, and we can compute to
which attractor it leads to.

We choose the frequency to bef/f0 = 4.14, where a four-
fold stability region is observed. The initial configurations
are randomly chosen within the rectangular two-dimensional
representation of the phase-space region defined byz0 ∈
[−0.6h, 0.6h] andvz0 ∈ [−60, 60]m/s for the central point
of the nanowire. The basin structure is plotted in Fig. 7(a),
where different colors indicate the average amplitudes asso-
ciated with different final attractors. In panels (b,c,d), the se-
lected phase-space regions are successively magnified up to
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FIG. 7: (Color online) For initial configuration chosen according to
Z(t = 0, x) = z0 sin(πx/L) andVz(t = 0, x) = vz0 sin(πx/L)
(x ∈ [0, L]) and normalized frequencyf/f0 = 4.14, representative
basin structures and successive magnifications, where the basins of
different attractors are distinguished by different colors/gray-levels
in (a-d). Panel (e) is a histogram of the amplitude associated with
possible final states, where there are three large peaks, indicating at
least three coexisting attractors. Panel (f) shows the algebraic scaling
of the probability of error in the prediction of the final attractor,f(ε),
with ε, the error in the specification of the initial condition. The
scaling exponent isα ≈ 0.009.

103 times, where qualitatively similar structures are observed.
The coexisting attractors can also be implied from Fig. 7(e),
a histogram of the amplitude associated with the possible fi-
nal state. In particular, for each initial condition, we letthe
system evolve, record the time-averaged amplitude associated
with the final oscillatory motion, and construct a histogramof
the values of the time-averaged amplitude. We observe three
large peaks in the histogram, indicating that most initial condi-
tions lead to trajectories approaching asymptotically to these
attractors.

The intermingled basin structure that appears to be invariant
when successively smaller phase-space regions are examined
indicates the difficulty to predict the final attractor from initial
conditions having finite precision, because there are regions
with the property that, for any initial condition that goes to one
attractor, there are initial conditions arbitrarily nearby which
lead to different attractors. The degree of unpredictability
can be quantified by calculating the probability that a pair of
slightly different initial conditions lead to distinct attractors.
In particular, letε be a small difference in the initial-condition
pair andf(ε) be this probability. Asε is decreased, we expect
f(ε) to decrease and, in general, we havef(ε) ∼ εα, where
0 ≤ α ≤ 1 is the so-called uncertainty exponent25. A repre-

sentative example of the scaling behavior off(ε) is shown in
Fig. 7(f), where we obtainα ≈ 0.009. The near-zero value
of the uncertainty exponent indicates an extreme degree of
difficulty to predict the final attractor. For example, ifε is
reduced by a factor of one million (which means that the pre-
cision in the specification of the initial condition is increased
by six orders of magnitude), the probability of prediction er-
ror is reduced only by a factor of(106)0.009 ≈ 1.1 - hardly
any change. Such severe degree of unpredictability of the fi-
nal state can also occur in low-dimensional chaotic systems,
typically those with some kind of symmetry1.

The near-zero value of the uncertainty exponent impliesex-
tensive transient chaosin the system. To argue for this, we
recall the phenomenon of fractal basin boundaries in low-
dimensional dynamical systems25. For a system whose phase-
space dimension isN , if the basin boundary is smooth, then
its dimension isN − 1 (e.g., a smooth boundary in a two-
dimensional phase space is a one-dimensional curve). For
fractal basin boundaries, the dimension typically assumesa
value betweenN − 1 andN . There is mathematical proof26

that in smooth dynamical systems, the dimensionDB of the
fractal basin boundary is related to the uncertainty exponent
as:DB = N−α. Forα ≈ 0, we haveDB ≈ N , which means
that the fractal boundaries permeate the entire phase space.
Dynamically, it has been established that fractal basin bound-
aries are due to transient chaos on the boundaries25. That the
boundaries permeate the phase space stipulates that transient
chaotic behavior also occurs in the entire phase space. It isin
this sense which we say that transient chaos is extensive. In
our nanowire system, the phase-space dimension is infinite,
but the emergence of multistability and basin boundaries with
near-zero uncertainty exponent can still be taken as strongin-
dication that the underlying transient chaotic behavior isex-
tensive.

A physically important issue concerns the effect of noise.
For a nanowire system in a realistic operating environment
(e.g., modest pressure and room temperature), the dominant
noise sources are thermal fluctuations and pressure instability.
As for low-dimensional systems, we find that noise can in-
duce switching among the multiple coexisting states. In fact,
similar behaviors were observed in another nanoscale, high-
dimensional system: the semiconductor superlattice6,7.

V. UBIQUITY OF MULTISTABILITY IN DRIVEN
NANOWIRE SYSTEM

We have demonstrated the emergence of the multistable
states in the driven nanowire system, and the underlying dy-
namical mechanism. A question is how ubiquitous multi-
stability is in nanosystems. Here we address this question
by considering variations in several parameters, with the re-
sult that multistability can be expected to occur commonly in
nanoscale systems.

We first consider the effect of varying dc voltage. As
shown in Fig. 8, varying dc voltage can shift the unstable fre-
quency regions. Moreover, a larger dc voltage can lead to
stronger fluctuations at high frequency, due to the increasein
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FIG. 8: (Color online) Comparison of frequency responses for the
same system with different dc voltages (Vdc). The left and right
columns represent the frequency responses in they andz directions,
respectively. From top to bottom row, the dc values are1, 3, 5, 7, 9 V,
in order. All simulations are performed using parameters:Vac = 1
V, P = 0.01 atm,T = 300 K, L = 3 µm,h = 0.2 µm, d = 20 nm.

the total driving energy input. For example, forVdc = 1,
most unstable/frequency sensitive states can be found in the
low-frequency regime, but small amplitude fluctuations occur
in the high-frequency regime. AsVdc is increased, higher-
frequency states with larger amplitudes emerge and, at the
same time, low-frequency region becomes more stable, typ-
ically settling into one of the original states. This results in a
shift of the highly unstable regions towards higher frequency
values. This shifting behavior can be tracked by the move-
ment of the signature features indicated by golden arrows in
Fig. 8. Also, the peaks become sharper on edges for increased
dc values.

Besides ac and dc voltages, it is also of interest, espe-
cially from the point of view of experimental study, to vary
the system-design parameters such as the dimension of the
nanowire or the gate. Here, we present results of changing
two of these key parameters, the gate trench heighth and the
diameter of the nanowired. The two parameters both appear
in the formulation of the driving force, and thus should be con-
sidered concurrently. Because our formulation of the driving
force is based on the capacitance expression of the capacitor
from the nanowire segment in conjunction with the gate elec-
trodes, a valid force expression requiresh ≫ d. Taking these
into consideration, we study the oscillations of the systemfor
a series of combinations of (h, d) pairs, as shown in Fig. 9. We
see that, an increase in eitherh or d can stabilize the system.
However, a larger value ofh tends to stabilize the oscillation

0 2 4 6 8 10
0

2

4

x 10
−8

<
 |Z

(t
)|

 >

0

2

4

x 10
−8

<
 |Y

(t
)|

 > h = 200 nm
d = 10 nm

0 2 4 6 8 10
0

2

4

x 10
−8

0

2

4

x 10
−8

h = 200 nm
d = 20 nm

0 2 4 6 8 10
0

2

4

x 10
−8

0

2

4

x 10
−8

h = 200 nm
d = 30 nm

0 2 4 6 8 10
0

2

4

x 10
−8

<
 |Z

(t
)|

 >

0

2

4

x 10
−8

<
 |Y

(t
)|

 > h = 300 nm
d = 10 nm

0 2 4 6 8 10
0

2

4

x 10
−8

0

2

4

x 10
−8

h = 300 nm
d = 20 nm

0 2 4 6 8 10
0

2

4

x 10
−8

0

2

4

x 10
−8

h = 300 nm
d = 30 nm

0 2 4 6 8 10
0

2

4

x 10
−8

f / f
0

<
 |Z

(t
)|

 >

0

2

4

x 10
−8

<
 |Y

(t
)|

 > h = 400 nm
d = 10 nm

0 2 4 6 8 10
0

2

4

x 10
−8

f / f
0

0

2

4

x 10
−8

h = 400 nm
d = 20 nm

0 2 4 6 8 10
0

2

4

x 10
−8

f / f
0

0

2

4

x 10
−8

h = 400 nm
d = 30 nm

FIG. 9: (Color online) Effect of gate trench heighth and the nanowire
diameterd on the frequency response. From top to bottom row,
h = 200, 300, 400 nm, respectively. From left to right column,
d = 10, 20, 30 nm, respectively. Other parameters areVdc = 5
V, Vac = 1 V, P = 0.01 atm,T = 300 K, wire lengthL = 3 µm.
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FIG. 10: (Color online) Extreme case of hardening wire frequency
response. Excepth = 400 nm, andd = 40 nm, other parameters are
the same as in Fig. 9.

in different frequency regions uniformly, whereas a thicker
wire (larger values ofd) tends suppress high-frequency os-
cillations. Figure 10 shows an extreme example of the beam
hardening behavior, where most multistable states, especially
those with large amplitudes, disappear. Another interesting
behavior for is that, due to the hardening effect, in theY di-
rection, the beam stabilizes at about10nm instead of zero vi-
bration amplitude as in other cases. In addition, multiple states
of smaller amplitudes are present in theY oscillations.

Finally, we discuss the effect of varying environmental
pressure. As mentioned, the normal pressure (P = 1 atm)
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FIG. 11: (Color online) Comparison of frequency responses for the
same system with slightly changing pressure (P ). The left and right
columns represent the frequency responses in they and z direc-
tions, respectively. From top to bottom row, the pressure values are
0.005, 0.008, 0.01, 0.02, 0.05 atm, in order. All simulations are per-
formed using parameters:Vdc = 5 V, Vac = 1 V, T = 300 K, L = 3
µm,h = 0.2 µm, d = 20 nm.

regime can be regarded as an extension from the low pres-
sure regime, where the final stable state is a continuation of
one of the multiple stable states under low pressure. From
Fig. 11 we can see how high frequency oscillations are grad-
ually destroyed as the pressure is increased. An implication
of potential application from such “survival” process would
be to use pressure as a control parameter to select the relative
proportion of the multistable states.

VI. CONCLUSION

To summarize, we focus on the working regime in between
room conditions and ultrahigh vacuum. This regime can be
realized relatively readily in experimental studies, in which
we find a number of interesting dynamical phenomena such
as multistability, complex basin structures - leading to a fun-
damental difficulty in terms of prediction of the final state,
and extensive transient chaos as the dynamical origin of the
complex basin structure. To our knowledge, this is the first
comprehensive study of multistability in high-dimensional,
nanoscale physical systems.

A possible experimental scheme to test the findings of this
paper is as follows. Due to the extensive nature of transient
chaos leading to basin boundaries permeating the phase space,
random perturbations can cause the system to “hop” from one

attractor to another in an intermittent manner. Experimentally
one can add a stochastic voltage signal to the sinusoidal driv-
ing and monitor the motion of the nanowire. The occurrence
of intermittency, i.e., the system’s exhibiting one type ofpe-
riodic motion for a finite duration of time and then switch-
ing to another, is indication of multistability. Persistence of
the intermittent behavior regardless of how the amplitude of
the stochastic voltage signal changes implies complex basin
structure and extensive transient chaos.
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Appendix: Efficient finite-element method for electrostatically
driven Si-nanowire

The physically detailed model of electrostatically driven
Si-nanowire is a set of nonlinear PDEs with integrals of the
dynamical variables. While the system can be solved using
the standard finite-element method (FEM), where the partial
derivatives, the integrals, and the nonlinear forces are evalu-
ated completely numerically, the computations turn out to be
extremely intensive, prohibiting systematic and comprehen-
sive analysis of the model. We realize that many quantities
associated with the FEM for this class of systems can in fact
be evaluated analytically, which can help reduce the compu-
tation significantly. Motivated by this, we have developed an
improved FEM, which entails an efficient procedure that com-
bines analytic evaluation, numerical discretization and inte-
gration to solve the nonlinear PDE system. Below is a de-
scription of the mathematical formulation of our method.

Finite-element formulation. To formulate a finite-element
(FE) solution, we rewrite Eq. (1) in the following compact
form:

−Ÿ + c1Ẏ + c2Y
′′′′ + c3I0Y

′′ = 0,

−Z̈ + c1Ż + c2Z
′′′′ + c3I0Z

′′ + Fe = 0,
(5)

where primes and dots represent derivatives with respect tox
andt, respectively, the coefficients are

c1 = − πPd

4ρAvT
, c2 = −EI

ρA
, c3 =

E

2ρL
, (6)

and the electrical forceFe has been normalized by the fac-
tor 1/(ρA). The basic steps in a typical FE formulation are:
discretization, choosing approximation model and basis func-
tions, deriving element equations using the weighted residue
method, assembling element equations to get the global ma-
trix representation of the problem, and solving a set of initial
value problems (ODE set).
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Discretization. First we divide thex-axis equally intoN
element ranges, with the element indexe running from1 to
N , as shown in Fig. 12. For each elemente, we havex ∈
[xe−1, xe] andxe − xe−1 = ℓ = L/N . Because the two ends
of the wire are clamped, we have{Y, Z}({0, L}, t) = 0, and
{Y ′, Z ′}({0, L}, t) = 0, which are the boundary conditions
for generating a unique solution.

Basis functions. To preserve the physical condition of
continuity of beam deflections, the nodal displacement val-
ues must be matched between the neighboring elements. To
obtain physically correct results that require smoothness, a
second-order approximation can be used so that both the dis-
placement and the slope of the wire at the nodal points are
continuous between neighboring elements. Consequently, for
elemente, at least second-order or four degrees-of-freedom,
i.e., Z(xe−1), Z

′(xe−1), Z(xe), Z
′(xe), at both ends of the

element, are needed. In this setup, each node has two un-
known values, and there are2(N − 1) unknowns in total for
the whole nanowire (excluding the two clamped ends).

Having obtained the nodal values of elemente, we can use
the interpolation approximation model, for example, to ex-
pressZ(x, t) as

Ze(x, t) =

4
∑

i=1

φi(x)q
e
i (t) = φT qe, (7)

where φi(x) are the basis functions to be computed, and
qe(t) = [Z(xe−1, t), Z

′(xe−1, t), Z(xe, t), Z
′(xe, t)]

T is the
unknown vector for elemente. To compute a general set of
basis functions, we let̄x = x− xe−1, x̄ ∈ [0, ℓ], ands = x̄/ℓ,
s ∈ [0, 1]. Assuming that each element has four degrees-of-
freedom, we can express the displacement in terms of a third-
order polynomial, as follows:

Ze(x̄) =
[

1 x̄ x̄2 x̄3
] [

ae0 ae1 ae2 ae3
]T

= XAe,

so Ze′(x̄) = X ′Ae. Using the expression forZe(x̄) and
Ze′(x̄), and settinḡx = 0, ℓ, we obtain the following expres-
sion ofqe in terms ofAe:

qe =







1 0 0 0
0 1 0 0
1 ℓ ℓ2 ℓ3

0 1 2ℓ 3ℓ2






Ae = BAe.

The displacementZe(x̄) can then be written as

Ze(x̄) = XAe = XB−1qe. (8)

Comparing Eqs. (8) with (7), we find that the basis functions
in terms ofs areφ = XB−1 = [1 − 3s2 + 2s3, ℓs(1 − 2s+
s2), s2(3− 2s), ℓs2(s− 1)]T .

Element equations.We use a standard weighted-residue
method in finite-element analysis to derive the element equa-
tions, where the selection of weight functions is key. We use
Galerkin’s formulation15, where the basis functions are se-
lected as the weight functions. The method requires, for el-
emente, the following:
∫ xe

xe−1

(

−Z̈+c1Ż+c2Z
′′′′+c3I0Z

′′+Fe

)

φi(x)dx = 0, (9)

x

y

z

x0 = 0x1 x2 · · · xN = Lxe−1 xe

element e

Z(xe, t)

Y (xe, t)

clamped clamped

FIG. 12: Schematic picture of element division using Finite-Element
Method.

for i = 1, 2, 3, 4. Integrating by parts, we have
∫ xe

xe−1

Z̈φi(x)dx = c1

∫ xe

xe−1

Żφi(x)dx + c2

∫ xe

xe−1

Z ′′φ′′
i (x)dx

+ c1

(

Z ′′′φi − Z ′′φ′
i

)
∣

∣

∣

xe

xe−1

+ c3I0

∫ xe

xe−1

Z ′′φi(x)dx (10)

+

∫ xe

xe−1

Feφi(x)dx.

Substituting Eq. (7) into the above equation, we reduce it to
the following matrix representation:

M e
1 q̈

e = c1M
e
1 q̇

e+(c2M
e
2 +c3I0M

e
3 )q

e+fe
gen+fe

ext (11)

where the elements of the matrices are given by

M e
1 (i, j) =

∫ xe

xe−1

φi(x)φj(x)dx,

M e
2 (i, j) =

∫ xe

xe−1

φ′′
i (x)φ

′′
j (x)dx,

M e
3 (i, j) =

∫ xe

xe−1

φi(x)φ
′′
j (x)dx,

M4(i, j) =

∫ xe

xe−1

φ′
i(x)φ

′
j(x)dx.

Note that elementM4, which is used for calculatingI0, is
listed here for completeness. While the integral range is ele-
ment dependent, the basis functions are universal. The matrix
elements can be found by using the normalized variables for

integration. The termc1
(

Z ′′′φi − Z ′′φ′
i

)∣

∣

∣

xe

xe−1

is the gener-

alized force vector for the element, which can be expressed
as

fe
gen = [Qe

1, P
e
1 , Q

e
2, P

e
2 ]T,

where Qe
1 = −Z ′′′(xe−1), Qe

2 = Z ′′′(xe), P e
1 =

−Z ′′(xe−1), P e
2 = −Z ′′(xe), and subscripts1 and2 are for

the left and right nodes, respectively. These forces are also
required to satisfy the inter-element continuity condition if no
external forces, as in our case, are applied on the connecting
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nodes. In fact, the general forces of neighboring elementse
ande+ 1 must satisfy

Qe
2 +Qe+1

1 = 0, e = 1, 2, . . . , N − 1, (12)

and so doesP . These conditions can simplify the next step,
namely, assembly, substantially.

The last term in Eq. (11) is the external force vectorfe
ext.

The integral term on the external forceFe(x, t) can be com-
puted either by direct analytical integration or approximated
method, depending on the exact form of the force and its be-
havior over the whole domain. If the integral cannot be eval-
uated analytically, we can use numerical integration in case
the force has large deviation over a single element, or we can
simply expand the force if it is a spatially slowly varying func-
tion. For our nanowire system, the electrostatic forceFe is in
fact a slowly changing function with respectz, because of the
conditionh ≫ z. Thus, we can use linear approximation of
Fe

Fe(s, t) = (1− s)f1(t) + sf2(t), (13)

wheref1 andf2 are the forces exerted on the two nodes of
the element.The great advantage is that the integrals in the
external force vector can be analytically calculated sincethey
are over polynomials, making the whole computational pro-
cess extremely efficient.

Assembly.Having obtained the4 × 4 matrix representa-
tion of element equations, Eq. (11), we can assemble them in
a proper way to derive the global equation of motion by us-
ing the fact that each nodexi (i 6= 0, N ) is shared by two
elements. In the matrix representation, adding the contribu-
tions from the two neighboring elements on one shared node
is equivalent to shifting a direct sum of element matricesM e

i
′s

(i = 1, 2, 3), which can be expressed as

MAll
i =

(

⊕⌈N

2
⌉

k=1 M e
i

)

⊕ 01+(−1)N (14)

+ 02 ⊕
(

⊕⌊N

2
⌋

k=1 M e
i

)

⊕ 01−(−1)N ,

for i = 1, 2, 3, whereMAll
i is a2(N + 1)× 2(N + 1) global

assembled matrix forM e
i , and0j is aj × j zero matrix. This

assembly equation means the following: letting4 × 4 matrix
M e

i be the upper left block of the assembled matrixMAll
i ,

then increasing both row and column indices by2, and adding
M e

i again. We then repeat this process untilMAll
i reaches the

desired dimension,2(N + 1)× 2(N + 1).

Next, we assemble the general and external force vectors
into the corresponding global quantities by using the same
technique. Using the continuity condition Eq. (12) and the
approximation Eq. (13), we have, for the general and external

force vectors, the following:

fAll
gen =





















Q0

P0

0
...
0

QN

PN





















and (15)

fAll
ext =



























ℓ(7f0 + 3f1)/20
ℓ2(3f0 + 2f1)/60

ℓ(3f0 + 14f1 + 3f2)/20
ℓ2(−f0 + f2)/30

· · ·
ℓ(3fN−2 + 14fN−1 + 3fN)/20

ℓ2(−fN−2 + fN)/30
ℓ(3fN−1 + 7fN)/20

ℓ2(−2fN−1 − 3fN)/60



























,

where we have used global subscripts from0 to N . Notice
that the nodes0 andN represent the two clamped ends of the
wire, so their displacements and slopes are always zero. As
mentioned earlier, we have only2(N − 1) unknowns defined
as the assembledqe′s

Z = [Z1, Z
′
1, Z2, Z

′
2, . . . , ZN−1, Z

′
N−1]

T ,

andY can be defined in a similar way. The matricesMAll
i and

the force vectorsfAll
gen, fAll

ext should be modified accordingly.
As shown in Eq. (15), the first and last two components of the
vectors should be cut off so that

fgen = 0, fext(i) = fAll
ext (i+2), 1 ≤ i ≤ 2(N−1).

The first and last two rows and columns should be cut off for
MAll

i ,

Mk(i, j) = MAll
k (i + 2, j + 2)

for k = 1, 2, 3 and1 ≤ i, j ≤ 2(N − 1). After assembly and
modification, we convert Eq. (11) into the following global
matrix form of equations of motion:

Ÿ = c1Ẏ + (c2M
−1
1 M2 + c3I0M

−1
1 M3)Y , (16)

Z̈ = c1Ż + (c2M
−1
1 M2 + c3I0M

−1
1 M3)Z +M−1

1 fext.

Calculation ofI0. In Eq. (16), the only unknown coefficient
is I0, which is twice the change in the original length of the
nanowire under nonlinear stretching. We can rewriteI0 as
I0 = IY0 + IZ0 , where

IZ0 =

∫ L

0

(∂xZ)2dx.

To calculate this integral, we substitute the basis expansion of
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Z(x, t), Eq. (7), intoIZ0 , and obtain

IZ0 =

N
∑

e=1

∫ xe

xe−1

4
∑

i,j=1

φ′
i(x)φ

′
j(x)q

e
i q

e
jdx

=
4
∑

i,j=1

(

∫ xe

xe−1

φ′
i(x)φ

′
j(x)dx

)

N
∑

e=1

qei q
e
j

=

4
∑

i,j=1

M4(i, j)

N
∑

e=1

qei q
e
j .

Similarly, using the expansionY e(x, t) =
∑4

i=1 φi(x)p
e
i (t),

we can computeIY0 . Finally, we obtain

I0 =

4
∑

i,j=1

M4(i, j)

N
∑

e=1

(qei q
e
j + peip

e
j). (17)

Solving the initial value problem (IVP). Equation (16) rep-
resents an initial-value problem (IVP) which can be solved
using the standard numerical integration methods. For ex-
ample, in the absence of random fluctuations, we can use
the Runge-Kutta4th-order Dormand-Prince pair embedded
method23 with adaptive step size control to solve the following
transformed first order ODE set:

d

dt







Y

Y
t

Z

Z
t






= (18)









Y
t

c1Y
t + (c2M

−1
1 M2 + c3I0M

−1
1 M3)Y

Z
t

c1Z
t + (c2M

−1
1 M2 + c3I0M

−1
1 M3)Z +M−1

1 fext









with the initial condition







Y (0)
Y

t(0)
Z(0)
Z

t(0)






=







Y0

Y
t
0

Z0

Z
t
0






. (19)

In conventional MD simulations, due to the requirement of
energy conservation, relatively simple, second-order implicit
methods such as the Verlet leapfrog algorithm are usually
used. However, more sophisticated, 4th-order method such as
the traditional Gear algorithm27 exists for integrating Hamil-
tonian systems. The improved 4th-order method developed by
Martyna and Tuckerman28 retains the basic properties of the
Gear method but is both symplectic and time-reversible. Our
driven nanowire system, however, is dissipative, so a sym-
plectic reversible integrator is not necessary. We choose the
standard 4th-order Runge-Kutta method due to its high sta-
bility and efficiency. When random fluctuations are present,
Eq. (16) can be solved by the standard second-order method
for solving stochastic ODEs29.
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