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Complex dynamics associated with multistability has beedisd extensively in the past but mostly for low-
dimensional nonlinear dynamical systems. A question af&mental interest is whether multistability can arise
in high-dimensional physical systems. Motivated by the évereasing widespread use of nanoscale systems,
we investigate a prototypical class of nanoelectromedahrsystems: electrostatically driven Si-nanowires,
mathematically described by a set of driven, nonlinearigladifferential equations. We develop a computation-
ally efficient algorithm to solve the equations. Our findisghat multistability and complicated structures of
basin of attraction are common types of dynamics, and tierlean be attributed to extensive transient chaos.
Implications of these phenomena to device operations acaised.

PACS numbers: 62.23.Hj, 05.45.Jn, 05.45.-a, 62.25.-g

I. INTRODUCTION to be investigated for the design and development of naf®sca
devices.

Multistability and transient chaos are common in nonlin- There were previous works on nonlinear dynamics in
ear dynamical systems. Phenomena associated with mutanosystems, such as synchronized oscillations in cou-
tistability such as fractal basin boundaries, riddled amd i pled nanomechanical oscillatdfs signal amplification
termingled basins, and noise-induced hopping have beeand stochastic resonance in silicon-based nanomechani-
extensively studied in the past three decadesiowever, cal resonatofs, and extensive chaos in driven nanowire
most previous studies on multistability were focused on rel System§’. However, to explore multistability and complex
atively low-dimensional dynamical systefritat, mathemat- basin structures in driven nanowire systems is extremedi ch
ically, are often described by ordinary differential eqoas  lenging, because a physically realistic model of such syste
(ODEs). The aim of this paper is to examine multista-is mathematically described by a set of nonlinear partial di
bility in terms of complex dynamics and implications in a ferential equations (PDEs), and it is necessary to examine
class of high-dimensional, physically significant, naegel solutions from a very large number of initial states. In the
tromechanical (NEM) systems at the frontier of interdisci-traditional framework of finite-element method (FEW)the
plinary research: electrostatically driven nanowire eyst.  Solution is obtained by solving a matrix equation, where the
Such systems are characterized by their small size, extyemematrix elements need to be evaluated in an iterative manner,
low power consumption, and ultra fast speed. Applicationg task that can be computationally extremely demanding es-
range from Zeptogram scale mass sensagd single elec- pecially for physically detailed models. Taking advantage
tron spin detectiohto RF communicatiot) semiconductor of the specific physics associated with the driven nanowire
superlattic®” and many othef®. We note that multistabil- System, wefind that, surprisingly, a large set of matrix el-
ity in micro-scale systems has been previously uncoverdd arements arising from the finite-element paradigm can in fact
studied, such as a mixed behavior in nonlinear micromechare evaluated analytically, reducing tremendously thegirete
ical resonator® and multistable micro actuator with serially tion time. Our mainfindingis that multistability can occur
connected bistable elemeHhts in wide parameter regime of the driven Si-nanowire system,

A fundamental goal of science is to have an experimenand the origin of complex basin dynamics can be attributed to
tally validated, predictive theory based on a set of physicahigh-dimensional transient chaos permeating the phasespa
laws. With such a theory, a question of concern is whethef practical implication is that, because of the intrinsiffieli
the final state can be predicted from an initial state chosefulty to predict the final state of the system, and becauseeof t
in the vicinity of a basin boundary, due to the inevitable er-tendency for the system to occasionally switch from one sta-
ror in the specification of the initial state. Here, the basfin ble state to another under disturbances, parameter regimes
attraction of an attractor is the set of initial conditionsthe ~ Which multistability and complex basin dynamics arise dtlou
phase space that approach asymptotically the attractbthan bg avoided in the design and development of nanowire de-
basin boundary separates the initial states leading terdift =~ VICES.
final asymptotic states or attractors. In nonlinear dynaimic ~ Our model of physically detailed, electrostatically drive
systems, it is common for basin boundaries to be fractal ~ Si-nanowire system is described in Sec. II. Transient biehav
this case, the ability to predict the final attractor of the-sy and the dynamical mechanism of multistability are analyzed
tem may be compromised dramatically. Whether multistabilin Sec. 11l with the aid of extensive frequency analysis. iBas
ity can arise in nanosystems and its dynamical consequencseguctures and their characterization are presented inl'8gec
on device performance are thus fundamental issues that neadd the ubiquity of multistability in the driven nanowiressy



and the viscous damping forces are
{y7z} - _7TPd
Ff - 4UT 815{}/7 Z}a (3)

whereh is the vertical distance between the clamped ends of
the nanowire and the surface of the substrdtes 2r is the
cross-sectional diameter of the wii s the air pressure, and
vr = /kgT/m is the air molecule velocity at temperature
T. The expression of, is valid under the conditioh > d.
In this regime, the oscillation amplitude is about one order
of magnitude smaller than that for the onset of the pull-in
FIG. 1: (Color online) Schematic diagram of a driven naneveiys-  effect®1”. Also note that, the electrostatic forceaspriori
tem. A thin, electrostatically driven Si nanowire of lengthand  conservative and, thus, it would not lead to any net loss dur-
diameterd is suspended on a U-shaped gate. The gap between thag a driving cycle. In general, the Ohmic loss associatet wi
wire and the gate i8. The oscillations can be non-planar in bgth  glectrical force can be modelétby a term proportional to the
andz directions, even though the driving is along time derivative ofZ(x,t), as in a typical mechanical system.

While this “electrical” source of dissipation can be inchad

in a more accurate model of the driven nanowire system, the
tem is demonstrated in Sec. V. Concluding remarks are ofdominant source of dissipation in our study is fluid (visgous
fered in Sec. VI, and our efficient numerical procedure fordamping. The Ohmic loss will become comparable in mag-
solving the nonlinear PDEs of the driven nanowire system isitude to viscous damping when the size of the nanowire is
outlined in Appendix. significantly reduced, say by at least one order of magnitude
below the regime of our present study of multistability. For
this reason the “electrical” dissipation term is negledteithe
present work.

I. MODEL OF DRIVEN SI NANOWIRE

It has been known that surface efféétd! can become sig-
Consider a driven nanowire system, as shown schematicallyificant for nanosystems due to the reduction in the surface-
in Fig. 1. For a beam with ends clamped and subject to larggolume ratio. However, such effects can still be modeled us-
deformation, the equations of motion are ing the continuum mod#&, and are negligible when the local-
bending curvature is small. For example, tensile or compres

EA sive stress can be implemented in Eq. (1) by modifying the
2 4 2 _ Y
pAGY + EIO,Y — 2L, Lo,Y = Fy, stretching elastic nonlinear terms in theandY” directions as
EA —Zo|SA+ EA/(2L)2LIy] and—Y,,[SA + EA/(2L)Iy],

2 4 2 _ Z ) . . . .
pAD; Z + E10,7 — EIO(QIZ = Fy +F, (1) respectively, wheré' is the residual tensile or compressive
stress. The tensile force can harden the beam and enhance
whereY (z,t) andZ(z, t) are the displacements ip = direc- the linear resonant frequency. This effect can shift theebns
tions, respectivelyE is the Young’s modulusy is the vol- of non-planar motioff of the nanowire and affect the onset
ume density, is the original wire length A is the cross- 0f chaotic motioA*. Another issue concerns the geometrical
sectional area] = nr*/4 is the cross-sectional moment of shape of the nanowire. In experiments or nanodevice fabri-
inertia of the wire, and, is an integral proportional to the cation processes, a rectangular cross-sectional shapéenay
length increment of the wire under stretch, which is given byfavored over a circular one. Such an alteration will affect
Iy = fL [(0,Y)2 + (0,2)?] da. In Eq. (1),F. is the applied the moment of inertia of the nanowire as well as the viscous
0 xT xT . . L e . . . . . .
electrostatic force on the nanowire in the direction due to damping coefficient. However, this will not lead to qualita-
an externally applied electric potential between the nareow tively different dynamical behaviors.
and the substrate. Th_e potgntlal has a dc comparigrand To solve Eq. (1), we begin with the standard FEM meffiod
an ac componernit,. with adjustable frequency. The terms : . . . .
v 7 . . . to derive element equations using a weighted residue formu-
F? andF¢ in Eq. (1) represent the viscous damping forces in, _.. . .
f fo = . ! lation. We then assemble element equations to obtain algloba
they andz directions, respectively, which are modeled to be . .
roportional to the velocity of the wire. Explicitly. theaeitri- matrix representation of the PDE system. After the FEM for-
Eal ?orce is given by y - EXplicitly, mulation, Eq. (1) is reduced to an initial value problem (P
9 which can be solved using the standard numerical integra-
5 tion methods. Specifically, we use the Runge-Kuttaorder
= — meoV(t) 5, (2)  Dormand-Prince pair embedded metfbaith adaptive step
(Z+ h) [In (422)] size control. Details of our method can be found in Appendix.
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FIG. 2: (Color online) (a,b) FoP = 0.5 atm, oscillations in the
(blue, left) andz (red, right) directions, respectively, of the center
point of the nanowire, (c,d) similar plots but fé* = 0.01 atm.
The wire typically exhibits transient chaotic behaviordrefsettling
into a final state. For (a-d), the driving frequencyfis= fo. (€)
Average transient time as a function of pressure. The tbidalsed
for calculating the transient time i$%. Note that all” and Z values
are represented in meters, if not specifically mentionedratise.

lll.  TRANSIENT DYNAMICS AND EMERGENCE OF

MULTISTABILITY

The driven nanowire typically exhibits transiently chaoti
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FIG. 3: (Color online) Frequency response of nanowire asgre

P = 0.01 atm. The motion of the center of the nanowire is mon-
itored and the time-averaged amplitudes after the systaches a
steady state are computed. The average amplitudes in émel »
directions versus the driving frequency are shown in (a) (@dre-
spectively. The initial conditions are sinusoidal spdtialctions with
zero velocities in botly andz directions, and are fixed for all simu-
lations at different frequencies. The parameter settindvis= 169
GPa,p = 2332 kg/m®, Vae = 5V, Voe = 1V, L = 3 um, d = 20
nm, andh = 0.2 um.

basin dynamics, the vibration amplitude can show an extreme
sensitive dependence on the driving frequency of the eatern
electrical force. At room conditions{ 300 K, 1 atm), such

a sensitive dependence is replaced by extensively chaotic m
tion of the nanowir&. In particular, the nanowire can exhibit

a cascade of period-doubling bifurcations to relativelyam
size chaotic attractors as a parameter, e.g., the magrofude

motion before settling into a final steady state, which can behe ac component of the driving force, is increased. When the

seen from Figs. 2(a-d), oscillations of the central pointhef
nanowire in thez andy directions for two values of the en-
vironmental pressure. Figure 2(e) shows the average éminsi
time as a function of the pressufé For each fixed value

parameter exceeds a critical value, the small chaoticcidirs

can merge to generate extensive chaos, which has been sug-
gested for potential applications such as extremely high fr
quency pseudo-random number generaforSince the aim

of P, the average time is obtained by using a number of ini-of the present work is complex dynamics associated with mul-
tial configurations of the wire and calculating the time thattistability, we focus on the low-pressure regime.

the wire reaches the final state to withit for the first time.

To demonstrate multistability, we investigate the frequyen

We observe that the average time scales with the pressure asesponse of the nanowire system. The natural oscillatien fr

power law, with the exponent being approximately.
Insights into the inverse scaling law of the average trantsie

guency of the nanowire can be estimated by using its mechan-
ical and geometrical propertiesfy = 3.56\/FI/(pAL*).

time can be gained by considering a simple mechanical osciffhis formula givesf, = 16.84 MHz for the typical set of

lator: #42Bwoi+wiz = 0, wherewy is the angular frequency

parameters indicated in Fig. 3. However, this estimatedeval

andg is the damping ratio. The amplitude solution follows an f; is only to within an order-of-magnitude accuracy and there-

exponential decay formexp(—t/7), wherer is the character-
istic time. For damped oscillations, we have- 1/3. Since
pressureP is directly proportional to the damping ratio, we
haver ~ 1/P. Similar effect can occur through variations in
the temperature, as the quantityx/7" plays a similar role as
P in the dynamical evolution of the nanosystem.

fore should not be taken as the true intrinsic frequency. The
pressure is set to b2 atm, which is much lower than that
under room conditions but still far above that associatetl wi
ultrahigh vacuum condition, facilitating experimentaldy of

the nanowire dynamics. Figure 3 shows simulation resuits fo
both in- and out-of-plane frequency responses, whereregtre

In general, the role of damping due to collision with air amplitude fluctuations are observed, implying multisiapil
molecules is important to the final vibration mode of theln fact, a frequency analysis revealide parameter regions
driven nanowire system. We find that, at low pressure (in conin which multistability can ariseas we now describe.

trast to ultrahigh vacuum), due to multistability and coexpl

To carry out a frequency analysis to uncover the dynami-
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cal mechanism for multistability in the driven nanowire sys x 10~
tem, we calculate the frequency response of the wire ataypic (a) ﬂN

w

low-pressure P = 0.01 atm) and normal pressuré(= 1
atm) values, as shown in Figs. 3 and 4, respectively. Botl

N
T
<
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figures show the average amplitudes as a function of the no
malized frequencyf/fo in the y, 2 directions after a tran-
sient time. Here, the normalized frequency is defined a

fo = 3.56/EI/(pAL*), and the average is carried out in a X 10

large time interval. In Fig. 3, bothh andz amplitudes exhibit )
an extreme type of fluctuations as the frequency is change: |
indicating that an arbitrarily small change in the frequecen

o

N

<1Z®l >

lead to a characteristically different final state. Thisvides
strong evidence for multistability. (Further support foe tco-
existence of multiple states can be obtained by examiniag th ‘
phase diagram, as we will discuss below.) Compared with th: 0 2 AP 8 10
case of low pressure (Fig. 3), the frequency responses und
normal pressure are considerably smooth due to the rdiative
strong dissipation caused by collision with air molecukes, FIG. 4: (Color online) Frequency response of nanowire asgiree
shown in Fig. 4. Apparently, for most frequency values, ¢éher © = 1 atm. Other parameters are the same as Fig. 3.

is only one state remained after the transient phase. We note

that, in Fig. 4(a), the peak aboy¥ fo = 3, marked by the

golden arrow, is the frequency that a previous wonksed

to identify the transition between planar and non-planar moserved in Figs. 3(a) and 3(b) should then disappear. Nonethe
tions in they direction (not the driving direction). This means |ess, some small peaks and valleys in the frequency response
that this peak can be turned on and off just by increasing ogan still remain, due to the extreme instability at such doca
decreasing the ac component of the driving force. One canions. In our simulation, we start from the static sinusbida
not expect the same behavior to occur with the first peak (ghitial condition in bothy and = directions, and then keep in-
f/fo = 2)orthe third peak (af / fo ~ 6.3), because they cor-  creasing the frequency frofnl f, to 10 f, (forward scan, blue
respond to resonances associated yahdz motionsandthe  dashed lines in both panels of Fig. 5). When the frequency
magnitude of the external force will simultaneously afff®  reaches the maximum valué f,, we reverse the direction of

y andz responses. As a result, the oscillation mode will con-the scan process (backward scan) by decreasing the fregquenc
sistently be non-planar near these frequency values. On thentil it returns to0.1f, (indicated by red lines). Two more
contrary, the second peak gndoes not correspond to a reso- shorter forward scans are also performed starting fromratou
nance in the: motion [Fig. 4(b)]. In fact, the amplitude in the f/fo = 3.510 f/fo ~ 6 (as shown by black and cyan lines

z direction is always finite (not affected by the driving magni in both panels), but with different frequency resolution.

tude significantly), while the amplitude in thedirection can  r/ s, ~ 4.14, we observe a fourfold stable region as depicted
be switched on and off. A comparison between the low presin the inset of Fig. 5(b). It is apparent from these resuls th
sure and the normal pressure frequency responses suggestgble attractors coexist in a wide parameter regime.

that all resonances in the normal pressure case are actuallyEmergence of multistability in the driven nanowire sys-

present in exactly the_ same pos_,ition as in the low PreSSUTR,m can then be explained, as follows. To gain insights, we
case. One can thus think of the high pressure case as a derlvl%l ' : ’

state from the low-pressure regime by continuously increas te that, f(_)r a common class Of. electrically driven mi I .
ing the pressure, and this can be explained by the fact th tri_omechanlcal systems, a previous work based on a detailed
SO ' . o Pifurcation analysis of a reduced ODE model revealed that
dissipation tends to destroy higher-frequency oscilletioAn bistability can also be quite comm#n In such a case, the
immediate conclusion is that, in a low-pressure envirorgnen '

) X L . . two coexisting states are typically associated with higt an
D oW ENEroy. respectel Out cren nanore sstem i an
typically ' infinite dw_ngnsmnal dynamical system. _ In th|st system, the

' characteristic frequency response associated with llisfag

To provide stronger support for the existence of multi-a mirrored hysteresis-like peak, where forward and bacttwar
stability in the driven nanowire system, we use the methodcan lead to relatively high- and low-energy states, respec
of continuous frequency scan which a simulation starts tively. Figure 6 shows the phase-space diagrams associated
from an initial frequency value and continues while increme with the Z variable ¢ versusv,) for different frequencies.
tal changes to the frequency are applied adiabatically én thThe panels (a,g,h), for example, show period 3, period 2, and
sense that the frequency changes only when a steady statepisriod 3 behaviors, respectively, corresponding to theethr
reached. Insofar as there is a finite volume in the phase spasenall peaks around frequengy fo =~ 1. Label (b) marks
surrounding the steady state (attractor), the trajectengld  the small valley present in all frequency response diagiems
to remain in the vicinity of the attractor when the frequencythe start of the first resonance. Some phase diagrams iadicat

is changed adiabatically. The wild fluctuation patterns ob-chaotic motions. The central panel compares responses from
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FIG. 5: (Color online) Continuous scan of frequency respoos 9
nanowire at low pressurB = 0.01 atm, where the frequency is adi-
abatically increased or decreased during the simulatidnfaneach
fixed frequency, the average amplitudes associated wittedgtate
are calculated. Panels (a) and (b) show responses i, thdirec-
tions, respectively. In both panels, blue (thick dasheddirepresent
forward frequency scan fromfi1 to 10, red (solid) lines correspond FIG. 6: (Color online) Phase diagrams Yersusv.) for differ-
to backward scan where the frequency is reduced adiabgtioain ent frequencies. The central panel compares results frenfioth
10 t0 0.1, and black (thin dashed) and cyan (dash-dotted) lines bottward and backward scans to the separated frequency respicihee
stand for forward scan from aboBit6 to 6, but a smaller frequency nanowire. Multiple mirrored, hysteresis-like bistablgioms are ob-
step size is used for the cyan (dash-dotted) lines. The aigb) is  served. Phase-space diagramszAare plotted at locations labeled
the zoom-in view of frequency arourdi4, where fourfold stability ~ by letters, as shown in the upper and bottom rows.

is observed.

or attractor has its own basin of attraction. For the elealhy
the forward and backward continuous scans to the separateldiven nanowire system Eq. (1), a set of two coupled nonlin-
frequency response of the nanowire. We observe multiplegar PDEs, a difficulty is that the phase-space dimensioreof th
mirrored, hysteresis-like peaks at different resonamues-  system is infinite. In order to compute and visualize therbasi
cies. The key feature is the overlap among the bistable frestructure, a two-dimensional representation of the phaasees
guency responses, which naturally leads to multistab#fior ~ is desirable. While there are an uncountably infinite number
example, the fourfold stable region in the inset of Fig. 5 isof initial configurations for the entire wire, we can limiteth
formed by the overlap of the two largest bistable regions inchoices of the initial configurations to those with spayizit
Fig. 6. The two states with largest amplitudes correspond tousoidal shape. For example, the initigbrofile Z (¢t = 0, x)
the mode similar to Fig. 6(c), and the other two correspondind its velocityV (¢t = 0, z) can be chosen as
to Fig. 6(d) and 6(e), respectively. From these diagrams and
their frequency values, we can conclude that, wheneveetherZ (t = 0,z) = zosin(rz/L), V.(t =0,z) = v.osin(rz/L)
is a peak or valley emerging in the frequency response func- (4)
tion, the system is at the boundary separating differerinbas for z € [0,L]. Fixing Z(¢t = 0,z) andV;(t = 0,z) as
of attraction where the system behavior is extremely difficu in EQ. (4) and further fixing/,(t = 0,x) = 0, we see that
to be predicted. There are multiple directions or basingttea (20, vz0) defines a two-dimensional “initial-condition” plane.
system can evolve into, and the typical phenomenon when theach point in thezo, v.) plane thus corresponds to a partic-
System is undergoing such Change’ as indicated by the phaghﬂr initial Configuration of the Wire, and we can Compute to
diagrams, is period increasing, and quite frequently, ihao Which attractor it leads to.

motion will emerge. This is in fact transient chaos on the We choose the frequency to lf¢ fo = 4.14, where a four-
boundaries of the different basins. fold stability region is observed. The initial configurat®

are randomly chosen within the rectangular two-dimengdiona
representation of the phase-space region definedby
[-0.6h,0.6h] and v,y € [—60,60]m/s for the central point
IV. BASIN STRUCTURE AND CHARACTERIZATION of the nanowire. The basin structure is plotted in Fig. 7(a),
where different colors indicate the average amplitudes-ass
A natural question in the presence of multistability con-ciated with different final attractors. In panels (b,c,tf se-
cerns the basin structure, because each coexisting statde s lected phase-space regions are successively magnified up to



sentative example of the scaling behaviorf¢f) is shown in
Fig. 7(f), where we obtainv ~ 0.009. The near-zero value
of the uncertainty exponent indicates an extreme degree of
difficulty to predict the final attractor. For example,dfis
reduced by a factor of one million (which means that the pre-
cision in the specification of the initial condition is inesed
by six orders of magnitude), the probability of prediction e
ror is reduced only by a factor @fl0%)%-%% ~ 1.1 - hardly
any change. Such severe degree of unpredictability of the fi-
nal state can also occur in low-dimensional chaotic systems
typically those with some kind of symmetty
The near-zero value of the uncertainty exponent impgies
tensive transient chads the system. To argue for this, we
recall the phenomenon of fractal basin boundaries in low-
dimensional dynamical systefisFor a system whose phase-
space dimension i%/, if the basin boundary is smooth, then
02 o-oo0-o60- S5 o © its dimension isN — 1 (e.g., a smooth boundary in a two-
dimensional phase space is a one-dimensional curve). For
. fractal basin boundaries, the dimension typically assuaes
10 -3 S - 5 = = value betweerV — 1 and N. There is mathematical pro§f
€ that in smooth dynamical systems, the dimension of the
fractal basin boundary is related to the uncertainty expbne
as:Dp = N—a. Fora =~ 0, we haveDg ~ N, which means
FIG. 7: (Color online) For initial configuration chosen amting to ~ that the fractal boundaries permeate the entire phase .space
Z(t = 0,x) = zosin(rz/L) and V., (¢t = 0,z) = v.osin(rz/L) Dynamically, it has been established that fractal basimbeu
(z € [0, L]) and normalized frequencg/ fo = 4.14, representative  aries are due to transient chaos on the bound@righat the
basin structures and successive magnifications, wherealinsbof  poundaries permeate the phase space stipulates thaetransi
different attractors are distinguished by different celgray-levels  chaotic behavior also occurs in the entire phase spaceinlt is
in (a-d). Panel (e) is a histogram of the amplitude assati@iéh i sense which we say that transient chaos is extensive. In
possible final states, where there are three large peaksaiim at -, |- hanowire system, the phase-space dimension is infinite,
least three coexisting attractors. Panel (f) shows théaigescaling but the emergence of multistability and basin boundarié¢is wi
of the probability of error in the prediction of the final aittor, f (), . .
with ¢, the error in the specification of the initial condition. The n_ear-lzero uncertainty eXPO”e”t an still be 'Faken as .sir[_ang
scaling exponent is ~ 0.009. dication that the underlying transient chaotic behavicexs
tensive.

A physically important issue concerns the effect of noise.

10° times, where qualitatively similar structures are obsgrve FOT @ nanowire system in a realistic operating environment
The coexisting attractors can also be implied from Fig.,7(e)(€-9- modest pressure and room temperature), the dominant

a histogram of the amplitude associated with the possible fil0iSe sources are thermal fluctuations and pressure fistabi
nal state. In particular, for each initial condition, we fee ~ AS for low-dimensional systems, we find that noise can in-

system evolve, record the time-averaged amplitude agsocia duce switching among the multiple coexisting states. I, fac

with the final oscillatory motion, and construct a histograim similar behaviors were observed in another nanoscale; high
the values of the time-averaged amplitude. We observe thr

Himensional system: the semiconductor superldtfice

large peaks in the histogram, indicating that most initiadati-
tions lead to trajectories approaching asymptoticallyhtese
attractors. V. UBIQUITY OF MULTISTABILITY IN DRIVEN

The intermingled basin structure that appears to be invaria NANOWIRE SYSTEM
when successively smaller phase-space regions are examine
indicates the difficulty to predict the final attractor fronitial We have demonstrated the emergence of the multistable
conditions having finite precision, because there are nsgio states in the driven nanowire system, and the underlying dy-
with the property that, for any initial condition that goesone  namical mechanism. A question is how ubiquitous multi-
attractor, there are initial conditions arbitrarily neashich ~ stability is in nanosystems. Here we address this question
lead to different attractors. The degree of unpredictgbili by considering variations in several parameters, with &e r
can be quantified by calculating the probability that a p&ir o sult that multistability can be expected to occur commonly i
slightly different initial conditions lead to distinct adictors.  nanoscale systems.
In particular, let be a small difference in the initial-condition ~ We first consider the effect of varying dc voltage. As
pair andf (¢) be this probability. Ag is decreased, we expect shown in Fig. 8, varying dc voltage can shift the unstable fre
f(e) to decrease and, in general, we hdie) ~ %, where  quency regions. Moreover, a larger dc voltage can lead to
0 < a < 1 is the so-called uncertainty expon€ntA repre-  stronger fluctuations at high frequency, due to the increase

v, [m/s]

f(e)
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FIG. 9: (Color online) Effect of gate trench heighand the nanowire
diameterd on the frequency response. From top to bottom row,
h = 200,300,400 nm, respectively. From left to right column,
d = 10,20,30 nm, respectively. Other parameters &g = 5

V, Voe =1V, P =0.01 atm,T = 300 K, wire lengthL = 3 um.
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FIG. 8: (Color online) Comparison of frequency responsestie
same system with different dc voltageg;{). The left and right
columns represent the frequency responses iy #ed z directions, &
respectively. From top to bottom row, the dc valueslai 5, 7,9V, x 10

in order. All simulations are performed using parametéfs; = 1 4r (a) i
V, P =0.01 atm, T = 300K, L = 3 pm, h = 0.2 pum, d = 20 nm. A 3 i
i 2r /stable atY~10%m ]
Vi A At Lt \'WWW "

0

the total driving energy input. For example, fof. = 1,
most unstable/frequency sensitive states can be founcein tt x10°°
low-frequency regime, but small amplitude fluctuationsuscc - (b) 1
in the high-frequency regime. Ag,. is increased, higher- |
frequency states with larger amplitudes emerge and, at th |
same time, low-frequency region becomes more stable, tyr ”VMN

ically settling into one of the original states. This restilt a W |
shift of the highly unstable regions towards higher frequyen g ! MWWWWMWMWWWMMWWM\MWW
values. This shifting behavior can be tracked by the move 2 4 fIf, ® 8 !
ment of the signature features indicated by golden arrows i

Fig. 8. Also, the peaks become sharper on edges for increas
dc values.

<zl >
o = N W »

0

o

EPG. 10: (Color online) Extreme case of hardening wire festy

response. Except = 400 nm, andd = 40 nm, other parameters are
Besides ac and dc voltages, it is also of interest, espeahe same as in Fig. 9.

cially from the point of view of experimental study, to vary

the system-design parameters such as the dimension of the

nanowire or the gate. Here, we present results of changing

two of these key parameters, the gate trench hdigind the  in different frequency regions uniformly, whereas a thicke

diameter of the nanowiré. The two parameters both appear wire (larger values ofl) tends suppress high-frequency os-

in the formulation of the driving force, and thus should be<o cillations. Figure 10 shows an extreme example of the beam

sidered concurrently. Because our formulation of the dgvi hardening behavior, where most multistable states, esiheci

force is based on the capacitance expression of the capacitdose with large amplitudes, disappear. Another intargsti

from the nanowire segment in conjunction with the gate elechehavior for is that, due to the hardening effect, in Yheli-

trodes, a valid force expression requites> d. Taking these rection, the beam stabilizes at abddhm instead of zero vi-

into consideration, we study the oscillations of the system bration amplitude as in other cases. In addition, multifees

a series of combinations of (d) pairs, as shownin Fig. 9. We of smaller amplitudes are present in tHieoscillations.

see that, an increase in eitheor d can stabilize the system.  Finally, we discuss the effect of varying environmental

However, a larger value df tends to stabilize the oscillation pressure. As mentioned, the normal pressiite= 1 atm)
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x10° x10” attractor to another in an intermittent manner. Experiraignt

P =0.005 atm) P =0.005 atm| . . R R .
one can add a stochastic voltage signal to the sinusoidal dri
ing and monitor the motion of the nanowire. The occurrence

2 4 6 8 10

IS

<1zl >
N

' o;ll\i M“WMM of intermittency, i.e., the system’s exhibiting one typepef

0 2 4 6 8 1 0

x10° x10° riodic motion for a finite duration of time and then switch-

4 P =0.008 atm P =0.008 atm| . .. . . . . .

2 ing to another, is indication of multistability. Persistenof

22 || e the intermittent behavior regardless of how the amplituide o
0 the stochastic voltage signal changes implies complexnbasi

0 2 4 6 10 . .
structure and extensive transient chaos.
P =0.01 atm
4

8
x 10" x10°
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Appendix: Efficient finite-element method for electrostatically

FIG. 11: (Color online) Comparison of frequency responsedte driven Si-nanowire

same system with slightly changing pressurg.(The left and right

columns represent the frequency responses inytlaed z direc- The physically detailed model of electrostatically driven
tions, respectively. From top to bottom row, the pressufeesare  Sj-nanowire is a set of nonlinear PDEs with integrals of the
0.005,0.008, 0.01, 0.02, 0.05 atm, in order. All simulations are per- dynamical variables. While the system can be solved using
formed using parametersy. = 5V, Vae = 1V, T'= 300K, L =3 the standard finite-element method (FEM), where the partial
pm, b= 0.2 pm, d = 20 nm. derivatives, the integrals, and the nonlinear forces aatuev
ated completely numerically, the computations turn outeo b
extremely intensive, prohibiting systematic and compnehe
sive analysis of the model. We realize that many quantities
. ) . X . )ssociated with the FEM for this class of systems can in fact
sure regime, where the final stable state is a continuation Qi o\ ajuated analytically, which can help reduce the compu-
one of the multiple stable states under low pressure. Fromion significantly. Motivated by this, we have developed a

Fig. 11 we can see how high frequgncy OSC'”at'On$ are gr‘F?‘q'mproved FEM, which entails an efficient procedure that com-
ually destroyed as the pressure is increased. An Impll(Iat'obines analytic evaluation, numerical discretization amig-i

of potential application from such “survival” process woul o aiion to solve the nonlinear PDE system. Below is a de-

be to use préssure as a control parameter to select th@’eelat'scription of the mathematical formulation of our method.
proportion of the multistable states.

Finite-element formulation To formulate a finite-element
(FE) solution, we rewrite Eq. (1) in the following compact
form:

regime can be regarded as an extension from the low pre

VI. CONCLUSION . .
Y +caY + CQY”H + C3I()YH =0, (5)

To summarize, we focus on the working regime in between ~Z+aZ+ 2" + 3l Z" + F. =0,
room conditions and ultrahigh vacuum. This regime can be . o .
realized relatively readily in experimental studies, inieth Where primes and dots represent derivatives with respect to
we find a number of interesting dynamical phenomena sucﬁndt' respectively, the coefficients are
as multistability, complex basin structures - leading taia-f TPd EI E
damental difficulty in terms of prediction of the final state, e Y T Co = ——, i3=5—-, (6)

) . . o pAvr pA 2pL

and extensive transient chaos as the dynamical origin of the
complex basin structure. To our knowledge, this is the firstand the electrical forcé, has been normalized by the fac-
comprehensive study of multistability in high-dimensibna tor 1/(pA). The basic steps in a typical FE formulation are:
nanoscale physical systems. discretization, choosing approximation model and basisfu

A possible experimental scheme to test the findings of thigions, deriving element equations using the weighted vesid
paper is as follows. Due to the extensive nature of transieniethod, assembling element equations to get the global ma-
chaos leading to basin boundaries permeating the phase, spatrix representation of the problem, and solving a set ofdhit
random perturbations can cause the system to “hop” from onealue problems (ODE set).



Discretization. First we divide thez-axis equally intoN
element ranges, with the element inderunning from1 to

N, as shown in Fig. 12. For each elementwe haver € Yy element e
[Te—1, ] andz, — z._1 = £ = L/N. Because the two ends J
of the wire are clamped, we hay#&”, Z}({0, L},t) = 0, and
{Y’,Z'}({0,L},t) = 0, which are the boundary conditions : Z (e, t)
for generating a unique solution. R TS
Basis functions. To preserve the physical condition of @™Ped [ LL==—"" S o S camped
continuity of beam deflections, the nodal displacement val- o % T2 Te—1  Te \ UN =L
ues must be matched between the neighboring elements. To Y (ze,t)

obtain physically correct results that require smoothnass
second-order approximation can be used so that both the digtG. 12: Schematic picture of element division using Firitement
placement and the slope of the wire at the nodal points argiethod.
continuous between neighboring elements. Consequeatly, f
elemente, at least second-order or four degrees-of-freedom,
ie., Z(xe—1), Z' (e-1), Z(2e), Z'(x.), at both ends of the )
element, are needed. In this setup, each node has two ufr 7 = 1,2,3,4. Integrating by parts, we have
known values, and there a2é N — 1) unknowns in total for o
the whole nanowire (excluding the two clamped ends). /
Te—1
+ a(270 - 2"9))

Zo(a)da =cr [ 278! (x)da

e—1

g - Z¢Z(l‘)d$ + 02/
Having obtained the nodal values of elemenive can use Te 1
the interpolation approximation model, for example, to ex-

pressZ(x,t) as

x

(10)

Te—1

+ 0310/ Z”¢i(l‘)dl‘
Te—1

Z%(x,t) =

bi(2)q (t) = T ¢, (7) + /IC1 Foo;(x)dx.

i=1

where ¢;(z) are the basis functions to be computed, andSubstituting Eq. (7) into the above equation, we reduce it to
¢“(t) = [Z(xe1,1), Z (xe1,t), Z(xe,t), Z' (2., 1)]T is the  the following matrix representation:

unknown vector for element. To compute a general set of
basis functions, we let = x — z._1, T € [0, 4], ands = z/¢,

s € [0,1]. Assuming that each element has four degrees-of- : .
freedom, we can express the displacement in terms of a third?here the elements of the matrices are given by
order polynomial, as follows:

M{§© = ex My q° + (caMy +c3loM5)q  + fen + oo (11)

Te

MiGg) = | ¢u@)e;(z)da,
Z¢@x)=[1 2z 2° 2| [a§ af a5 ag]T:XAe, ' Teo1 ’

so Z¢(z) = X'A°. Using the expression foZ¢(z) and Ms(i,j) = o7 (x)¢ (x)de,
Z¢ (), and settingc = 0, ¢, we obtain the following expres- Te—1
sion ofg® in terms of A°: ol e

! Ms5G,g) = [ éi(@)e] (@)de,
100 O Te—1
. 010 0 . . . e

q = 1 ¢ 02 03 A°=BA M4(Zv.7) = ¢;(I)¢;(x)dx
01 20 3¢ o

Note that elemenf\/y, which is used for calculatind, is
The displacement“(z) can then be written as . %

listed here for completeness. While the integral rangeds el
ment dependent, the basis functions are universal. Théxmatr

7%(z) = XA° = XB™ ¢ _ . .
elements can be found by using the normalized varialide

(8)

Comparing Egs. (8) with (7), we find that the basis functions

interms ofs are¢p = X B~ = [1 — 352 + 252, s5(1 — 25 +
5?),5%(3 — 2s),45%(s — 1)]T.

integration. The terna; (Z”’qbi
alized force vector for the ele

Element equationsWe use a standard weighted-residueas
method in finite-element analysis to derive the element-equa

tions, where the selection of weight functions is key. We use
Galerkin’s formulatiod®, where the basis functions are se- .
lected as the weight functions. The method requires, for elvhere Qi

emente, the following:

/me
x

e—1

(—Z+ClZ+CQZI/I/+03]0Z/I+F5) ¢1($C)d$€ =0, (9)

= —

gen [Qiple

_Z///(xe_l),
—7Z"Mxe1), P§ = =Z" (), @

xr
- Z”qbg) o is the gener-
ment, which can be expressed

,Q5, P31,

Q5 2" (xe), Py
nd subscript$ and?2 are for

the left and right nodes, respectively. These forces a als
required to satisfy the inter-element continuity conditibno
external forces, as in our case, are applied on the congectin
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nodes. In fact, the general forces of neighboring elements force vectors, the following:
ande + 1 must satisfy

Qo T
Py
Qs+QiT =0, e=1,2,...,N-1, (12 5
Al = ; and (15)
and so doe$’. These conditions can simplify the next step, 0
namely, assembly, substantially. O~
The last term in Eq. (11) is the external force vecfdy,. L Py |
The integral term on the external forég(x,t) can be com- r 0(7fo+3f1)/20 T
puted either by direct analytical integration or approxieda (?(3fo + 2f1)/60
method, depending on the exact form of the force and its be- 0(3fo + 141 + 3/2)/20
havior over the whole domain. If the integral cannot be eval- (= fo + f2)/30
uated analytically, we can use numerical integration irecas éiltl - ,
the force has large deviation over a single element, or we can 0(3fn—2+ 14fN_1 + 3fn)/20
simply expand the force if it is a spatially slowly varyingit+ (—fn_2+ fn)/30
tion. For our nanowire system, the electrostatic fafges in 13 fN_1+7fn)/20
fact a slowly changing function with respegtbecause of the 2(—2fn_1 — 3fn)/60
conditionh > z. Thus, we can use linear approximation of B
Fe

where we have used global subscripts frorto N. Notice
that the node8 and N represent the two clamped ends of the
1 wire, so their displacements and slopes are always zero. As
Fels 1) = (1 =) fa(t) + s2(0), (13) mentioned earlier, we have ory N — 1) unknowns defined
as the assemblegt’s
where f; and f, are the forces exerted on the two nodes of
the element.The great advantage is that the integrals in the Z=21,2,,Z9,Z%, ..., Zn_1,Zn )7,
external force vector can be analytically calculated sitioey

are over polynomials, making the whole computational pro-andy” can be defined in a similar way. The matridés'’ and

cess extremely efficient. the force vectorg;t!, f4!! should be modified accordingly.
Assembly. Having obtained thet x 4 matrix representa- AS shownin Eq. (15), the first and last two components of the

tion of element equations, Eq. (11), we can assemble them ifectors should be cut off so that

a proper way to derive the global equation of motion by us-

ing the fact that each nodg (i # 0, N) is shared by two  fgen = 0, feat(i) = fAIN(i+2), 1<i<2(N-1).

elements. In the matrix representation, adding the cantrib

tions from the two neighboring elements on one shared nod&he first and last two rows and columns should be cut off for

is equivalentto shifting a direct sum of element matritss A/,

(s = 1,2, 3), which can be expressed as

My (i, ) = MM (i + 2,5+ 2)

N
MA = (EB,[_ZJ Mf) © 014~ (14) fork =1,2,3andl <i,j < 2(N — 1). After assembly and
modification, we convert Eq. (11) into the following global
N . . . .
+ 0,0 (@]LzlJ Mf) ®0;_(_q)n, matrix form of equations of motion:
Y = oY + (oM My + c3lg M ' M3)Y, (16)

fori =1,2,3, whereM " is a2(N + 1) x 2(N + 1) global ~ Z = a1 Z + (caMy ' My + csloMy ' M3)Z + My " fea.
assembled matrix fab/?, and0, is aj x j zero matrix. This

assembly equation means the following: lettihg 4 matrix Calculation ofly. In Eq. (16), the only unknown coefficient
Mg be the upper left block of the assembled mattig*!, is 1y, which is twice the change in the original length of the
then increasing both row and column indice2band adding  nanowire under nonlinear stretching. We can rewfifeas
M¢ again. We then repeat this process uhfjf'!! reachesthe I, = I} + I#, where

desired dimensiorg(N + 1) x 2(N + 1).

Next, we assemble the general and external force vectors 17 — /L(a 7)2d
. . .. . 0 = - xX.
into the corresponding global quantities by using the same 0

technique. Using the continuity condition Eq. (12) and the

approximation Eq. (13), we have, for the general and externalo calculate this integral, we substitute the basis exjoansi



Z(x,t), Eq. (7), intolZ, and obtain

N
e=1

Z

Te 4
[ 3 d@ea
=1"7%e—1j j=1
4 m: N
> ( / ¢;<x><z>;<:c>d:c> > aiqs
i,j=1 \VTe-1 e=1

4 N
Z M4(’Lv]) quq;
e=1

ij=1

Similarly, using the expansio¥i¢(z,t) = Zle ¢i(x)ps(t),
we can computé} . Finally, we obtain

4 N
To=Y Ma(i,5) > (afqf + pips)-
1

(17)

ij=1 e=

Solving the initial value problem (IVPEquation (16) rep-

resents an initial-value problem (IVP) which can be solved
using the standard numerical integration methods. For ext
ample, in the absence of random fluctuations, we can us@d

the Runge-Kuttat’"-order Dormand-Prince pair embedded
method? with adaptive step size control to solve the following
transformed first order ODE set:

Y
Yt
VA
Zt
Yt
Clyt + (CQM;IMQ + CgIQMflMg)Y
Zt
1 Zt + (oM My + c3lgM{ " M3)Z + M fors

d

7 (18)

11

with the initial condition

Y (0) Yo
Y (0) Y}
Z((()) =1z (19)
z'(0) z;

In conventional MD simulations, due to the requirement of
nergy conservation, relatively simple, second-ordelfigitp
ethods such as the Verlet leapfrog algorithm are usually
used. However, more sophisticatet;drder method such as
the traditional Gear algorithfh exists for integrating Hamil-
tonian systems. The improvet-brder method developed by
Martyna and Tuckermé&f retains the basic properties of the
Gear method but is both symplectic and time-reversible. Our
driven nanowire system, however, is dissipative, so a sym-
plectic reversible integrator is not necessary. We cholose t
standard #-order Runge-Kutta method due to its high sta-
bility and efficiency. When random fluctuations are present,
Eq. (16) can be solved by the standard second-order method
for solving stochastic ODE
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