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The robustness of a network of networks (NON) under random attack has been studied recently
[J. Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to
targeted attacks is a major challenge when designing resilient infrastructures. We address here the
question how the robustness of a NON under targeted attack is affected by targeted attack on high
or low degree nodes. We introduce a targeted attack probability function that is dependent upon
node degree, and study the robustness of two types of NON under targeted attack: (i) a tree of n
fully interdependent Erdős-Rényi or scale-free networks, and (ii) a starlike network of n partially
interdependent Erdős-Rényi networks. For any tree of n fully interdependent Erdős-Rényi networks
and scale-free networks under targeted attack, we find that the network becomes significantly more
vulnerable when nodes of higher degree have higher probability to fail. When the probability that
a node will fail is proportional to its degree, for a NON composed of Erdős-Rényi networks we find
analytical solutions for the mutual giant component P∞ as a function of p, where 1− p is the initial
fraction of failed nodes in each network. We also find analytical solutions for the critical fraction
pc, which causes the fragmentation of the n interdependent networks, and for the minimum average
degree k̄min below which the NON will collapse even if only a single node fails. For a starlike NON of
n partially interdependent Erdős-Rényi networks under targeted attack, we find the critical coupling
strength qc for different n. When q > qc, the attacked system undergoes an abrupt first order type
transition. When q ≤ qc, the system displays a smooth second order percolation transition. We
also evaluate how the central network becomes more vulnerable as the number of networks with the
same coupling strength q increases. The limit of q = 0 represents no dependency, and the results
are consistent with the classical percolation theory of a single network under targeted attack.

PACS numbers: 89.75.Hc, 64.60.ah, 89.75.Fb

I. INTRODUCTION

Most studies of complex networks over the last decade have focused on single networks that do not interact with
other networks [1–21]. Most real-world networks, however, are actually “networks of networks” and are made up of
two or more networks that interact and are interdependent. Examples include various infrastructures such as water
and food supply networks, communication networks, fuel networks, financial transaction networks, and power-station
networks [22–26]. Recently, Buldyrev et al. [27] developed a theoretical framework for studying the robustness
of two fully interdependent networks subject to random attack. They found that due to the dependency coupling
between networks, they become extremely vulnerable to random failures and the system collapse in an abrupt first
order transition. Parshani et al. [28] generalized this framework and investigated networks that are only partially
interdependent. They found that reducing the coupling strength could lead to a change from first order (abrupt) to
a second order (continuous) percolation transition due to random attack. Recently Gao et al. [29] generalized this
theory to include the “network of networks” (NON) case—to a system of n interacting networks. They developed
an analytical framework for studying percolation under random failures and presented exact analytical solutions for
an interdependent NON system. The results for a NON suggest that the classical percolation theory extensively
studied in physics and mathematics is a limiting case of n = 1 of the general case of percolation in a NON. For
more recent studies of a NON, see Refs. [16, 30]. In real-world scenarios, however, failures may not be random but
may be the result of a targeted attack on specific central nodes [31–35]. Huang et al. [31] studied the robustness
of two interdependent networks when high or low degree nodes are under targeted attack by mapping the targeted-
attack problem in interdependent networks to the random-attack problem. They found that interdependent scale-free
(SF) networks are difficult to defend using strategies such as protecting the high-degree nodes. In this paper by
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introducing a probability function of targeted attack, we study the robustness of a NON system of any tree of n fully
interdependent networks and of a starlike NON structure of n partially interdependent networks (see Fig. 1).
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FIG. 1: Each circle represents one network. Two networks i and j form a partially interdependent pair of networks if a certain
fraction qji > 0 of nodes of network i directly depend on nodes of network j, i.e., they cannot function if the nodes in network
j on which they depend do not function. Two networks i and j are fully interdependent if qji = qji = 1, thereby establishing
a one-to-one correspondence. (a) an example of a treelike NON composed of five fully interdependent networks. (b) A starlike
NON composed of n partially dependent networks. The arrows pointing on q1i and qi1(i = 1, 2, 3, ..., n) represents partial
dependency of the central network,1, on a neighboring network i and q1i represents the dependency of the neighboring network
i on the central network respectively.

II. THE MODEL

Gallos et al. [35] proposed a probability function for a targeted attack on an isolated single network, Wα(ki) =

kαi /
∑N

i=1 k
α
i , which represents the probability that a node with degree ki will be removed. For the case α < 0, it was

assumed that ki 6= 0. This function was used to study the robustness of a single scale-free network to different attack
strategies [35], but in a system comprised of interdependent networks, zero-degree nodes strongly influence overall
system robustness. In order to understand the robustness of a NON under targeted attack and to solve the problem
analytically we must avoid singularities for ki = 0 in Wα(ki). We thus propose a new probability function for targeted
attack that represents the probability that a node i with degree ki has been removed,

Wα(ki) =
(ki + 1)α

∑N
i=1(ki + 1)α

,−∞ < α < +∞. (1)

When α < 0, nodes with higher ki are protected and nodes with lower ki have a higher probability of failure. In
order to avoid singularities for ki = 0 and α < 0, the term ki + 1 is taken. When α > 0, nodes with higher ki have a
higher probability of failure and are therefore vulnerable. The case α → ∞, corresponds to the targeted attack case
where nodes are removed in strict order, from high degree to low degree. When α = 0, all nodes in the networks
have the same probability of failure, W0 = 1

N , and the nodes are removed at random. The important special case =
1 corresponds to the acquaintance immunization strategy [13, 31, 32, 35] and can be solved analytically.
We assume that in an attack, a fraction of nodes 1− pi according to Eq. (1) in each network i is removed and only

nodes which belong to the giant connected component of each network i remain functional. The failure of these nodes
causes further failures in other networks and vice versa [27–29, 36], resulting in a cascade of failures. We now describe
the generating function and the giant component of one network i in the NON after a fraction of nodes are removed
with a probability Wα(ki), which can be applied to all networks in the NON system. The generating function of the
degree distribution of network i is defined

Gi0(x) ≡
∑

k

Pi(k)x
k. (2)

where Pi(k) is the degree distribution of network i. The generating function of the associated branching process is,

Gi1(x) =
G′

i0(x)
G′

i0(1)
[27–29, 31, 32, 40, 42]. The average degree of network i is k̄i =

∑
k Pi(k)k. We follow an approach

similar to that of attacking a pair of coupled networks [31].



3

Applying Eq. (1), after removing a fraction of 1 − pi of nodes of network i but keeping the edges of the remaining
nodes, the degree distribution Ppi

(k) of the remaining nodes is

Ppi
(k) =

Api
(k)

piN
, (3)

where Api
(k) is the number of nodes with degree k in network i.

When one more node is removed, Api
(k) changes to

A(pi−1/N)(k) = Api
(k)−

Ppi
(k)(k + 1)α∑

k Ppi
(k)(k + 1)α

. (4)

In the limit N → ∞, the derivative of Api
(k) with respect to pi is obtained from Eq. (4),

dApi

dpi
= N

Ppi
(k)(k + 1)α∑

k Ppi
(k)(k + 1)α

. (5)

By differentiating Eq. (3) with respect pi and using Eq. (5), we obtain,

−pi
dPpi

(k)

dpi
= Ppi

(k)−
Ppi

(k)(k + 1)α∑
k Ppi

(k)(k + 1)α
. (6)

In order to solve Eq. (6), we define Gα(x) ≡
∑

k Pi(k)x
(k+1)α and introduce a new variable ui ≡ G−1

α (pi) [31, 32, 38].
We find the solution of Eq. (6) to be

Ppi
(k) =

1

pi
Pi(k)u

(k+1)α

i , (7)

∑

k

Ppi
(k)(k + 1)α =

uiG
′

α(ui)

Gα(ui)
, (8)

which can be shown to satisfy Eq. (6). After removing a fraction 1− pi of nodes from network i according to Eq. (1)
and their links, the generating function of the nodes left in network i is

Gib(x) ≡
∑

k

Ppi
(k)xk =

1

pi
ΣkPi(k)u

(k+1)α

i xk. (9)

In this step, after removing the links between removed nodes and remaining nodes, the generating function of network
i composed of the remaining nodes is [42, 43],

Gic(x) ≡ Gib(1− p̃i + p̃ix), (10)

where p̃i is the ratio between the number of links of the remaining nodes and the number of original links in network
i,

p̃i =
piNik̄(pi)

Nik̄
=

∑
k Pi(k)ku

(k+1)α

i∑
k Pi(k)k

, (11)

where k̄(pi) =
∑

k Ppi
(k)k is the average degree of the remaining nodes in network i.

If we find the generating function G̃i0(x) of network ĩ after randomly removing the 1 − pi fraction of nodes, the
new generating function of the remaining nodes is the same as Gic(x). The targeted-attack problem on network i is

mapped to a random-attack problem on network ĩ, by solving the equation G̃i0(1− pi + pix) = Gic(x) [31],

G̃i0(x) = Gib(1 −
p̃i
pi

+
p̃i
pi
x). (12)

The generating function of the associated branching process is [42, 43],

G̃i1(x) =
G̃′

i0(x)

G̃′

i0(1)
. (13)
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When a fraction of 1 − pi of nodes in the ith network is removed with the probability given by Eq. (1), the fraction
of nodes that belongs to the giant component is given by

gi(pi) = 1− G̃i0[1− pi(1 − fi)], (14)

where fi ≡ fi(pi) satisfies a transcendental equation

fi = G̃i1[1− pi(1 − fi)]. (15)

In particular, for the case α = 1, from Eqs. (9), (10), and (12), Gib(x), Gic(x), G̃i0(x) become

Gib(x) =
ui

pi
ΣkPi(k)u

k
i x

k =
ui

pi
Gi0(uix), (16)

Gic(x) =
ui

pi
Gi0(ui(1− p̃i + p̃ix)), (17)

G̃i0(x) =
ui

pi
Gi0(ui(1 −

p̃i
pi

+
p̃i
pi
x)), (18)

where ui satisfies

ui ≡ G−1
i0 (pi), (19)

p̃i ≡
u2
iG

′

i0(ui)

G′

i0(1)
. (20)

Next we apply the framework of the n equations developed in Ref. [36] to the no-feedback condition. The n
unknowns xt,i represent the fraction of nodes that survived in network i at step t of the cascading failures after
removing the failed nodes and the nodes dependent upon the failed nodes in the other networks,

xt,i = pi

K∏

j=1

(1− qji + qjiyt,jigj(xt,j)), (21)

where for t = 1, xt,i = pi, and

yt,ji =
xt,j

1− qij + qijyt,ijgi(xt,i)
. (22)

The terms yt,ji represent the fraction of nodes in network j that survive after the damage from all the networks
connected to j is taken into account (except from network i at stage t of the cascading failure) and yt=1,ji = pj . The
giant component of each network i at t stage of cascading failures can also be found from the equation Pt,i = xt,igi(xt,i),
where gi(xt,i) is the fraction of the remaining nodes of network i at t stage of cascading failures that are part of its
giant component.
When t → ∞, the cascading failures have ended and the final giant component of network i is P∞,i = xigi(xi),

where

xi = pi

K∏

j=1

(1− qji + qjiyjigj(xj)), (23)

yji =
xj

1− qij + qijyijgi(xi)
, (24)

where xi is calculated over the K networks interlinked with network i by partial dependency links qji. The terms
yji represent the fraction of nodes in network j surviving after the damage from all the connected networks to
network j except from network i is taken into account [29, 36, 40]. When the dependency has a feedback between two
interdependent networks, Eq. (23) becomes simpler as yji = xj [40]. We next address two cases of n coupled networks:
(i) a treelike NON with fully interdependent networks, and (ii) a starlike NON with partially interdependent networks.
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III. TREELIKE FULLY INTERDEPENDENT NETWORK OF NETWORKS
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FIG. 2: The dynamic of cascading failures of treelike NON system composed of five fully interdependent networks. Each node
represents an ER network or SF network. The arrow (on the link) illustrates the direction of the damage spreading from one
network to another within the treelike NON, at step t. At t = 1, arrows point to five networks, which means that a fraction
1 − pi of nodes in the five networks are removed according to Eq. (1). Furthermore, we remove nonfunctional nodes, which
become disconnected from the largest component of each network. At t = 2, arrows from network 1 point to networks 2, 3,
which illustrating that all nodes that depend on the removed nodes in network 1 are removed and nonfunctional nodes are also
removed in networks 2, 3. In this step (t=2), network 1 spread the damage to networks 2, 3. At t = 3, 5, 7, ..., arrows from
networks 2, 3 point to networks 1, 4, 5. This reflects that networks 2, 3 spread damage to their neighboring networks 1, 4, 5. At
t = 4, 6, 8, ..., networks 1, 4, 5 spread damage to their neighboring networks 2, 3. Thus, the damage is spread between networks,
back and forth, until they arrive to a mutually stable giant components or collapse.

We now analyze the specific classes of a treelike NON formed of Erdős-Rényi (ER) or scale-free (SF) networks
[2, 3, 10, 11, 27, 31]. By using the dynamics of cascading failures shown in Fig. 2, we first compare our theoretical
results of Eqs. (16)-(20) with simulation results shown in Fig. 3 for a NON formed of five ER networks and SF
networks. The theory is in excellent agreement with simulations.
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FIG. 3: For the case of α = 1 which corresponds to the solvable “acquaintance immunization” strategy, we present the
giant component (theory and simulation) of network 1, Pt,1 during the t cascading failures for fully interdependent treelike
NON composed of five (a,b) ER and (c,d) SF networks. (a) For each ER network in the NON, we chose k̄i = k̄ = 4,
Ni = N = 104 and pi = p = 0.990 < pc = 0.9920. (b) The giant component of network 1 (Fig. 2) with the same parameters
as in Fig. 3(a) but for pi = p = 0.9940 > pc = 0.9920. (c) For each SF network in the NON, we chose α = 1, λ = 2.7,
Ni = N = 104 and pi = p = 0.9900 < pc = 0.9910. (d) The giant component with the same parameters as in Fig. 3(c) but for
pi = p = 0.9920 > pc = 0.9910. The results of simulations are obtained by averaging over 50 realizations.

For the case of treelike NON formed of n ER networks, the generating function of the ER network is Gi0(x) =

ek̄i(x−1). From Eqs. (13), (18)–(20), we obtain G̃i0(x) = G̃i1(x) = ek̄iu
2

i (x−1) for α = 1, where ui can be expressed

in term of the Lambert function ui =
W (pik̄ie

k̄i )

k̄i
. From Eqs. (14)-(15), we can get gi(xi) = 1 − G̃i0[1 − xi(1 − fi)],

fi = G̃i1[1− xi(1− fi)] and gi(xi) = 1− fi. For a treelike NON with fully interdependent, qij = qji = 1, we get

xi = pi

n∏

j=1

yji(1 − fj), (25)

yji =
xj

yij(1− fi)
, (26)

P∞ = P∞,i =

n∏

i=1

pigi(xi) =

n∏

i=1

pi(1− fi), (27)

xi =
P∞,i

gi(xi)
=

∏n
j=1 pj(1− fj)

1− fi
, (28)

where fi = G̃i1(1− xi(1 − fi)) = e−k̄iu
2

i

∏n
j=1

pj(1−fj), i = 1, 2, . . . , n.
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When pi = p and k̄i = k̄, we have ui = u, and fi = f satisfies

f = e−k̄u2pn(1−f)n . (29)

Then, from Eq. (27), we obtain

P∞ =

n∏

i=1

pigi(xi) = pn(1− f)n. (30)

From Eqs. (29) and (30), we can get

f = e−k̄u2P∞ . (31)

The size of the mutual giant component for all value of p, k̄, u and n becomes

P∞ = pn(1− e−k̄u2P∞)n, (32)

where

u =
W (pk̄ek̄)

k̄
. (33)

Let r = e−pnu2(1−f)n , then r = f
1

k̄ , f = rk̄, and Eq. (29) becomes r = e−pnu2(1−rk̄)n . Then the critical case

corresponds to the tangential condition: 1 = d
dre

−pnu2(1−rk̄)n , and the critical value of p = pc can be found,

pnc =
1

nf(1− f)n−1k̄u2
. (34)

Substituting Eq. (34) into Eq. (29), we can get the critical value of f = fc

fc = e
fc−1

nfc , (35)

where the solution can be expressed in terms of the Lambert function W (x), fc = −[nW (− 1
ne

−
1

n )]−1.
We support our analytical results, Eqs. (32)–(33) and Eqs. (9)–(15) and (23)–(24) by simulating the giant component

of the networks as a function of p as shown in Figs. 4(a) and 4(b). The results of the theory agree well with the
simulations. The average convergence stage 〈τ〉 as a function of p for several k̄ are simulated and shown in Figs. 4(c)
and 4(d). From Figs. 4(c) and 4(d) the first order transition threshold can be easily identified by the sharp peak,
which represents the divergence of the number of cascading stages [44].
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FIG. 4: (a)-(b) Comparison between theory and simulations of the giant component of network i, P∞,i of treelike NON system
formed of five ER networks as function of p. (c)-(d) Simulations of number of cascading stages < τ > as a function of p for
different k̄. In the simulations, Ni = N = 104 and the results are obtained by averaging over 50 realizations. The sharp peaks
represent the location of pc.

As an important characteristic of percolation theory, the critical threshold pc is analyzed to study the robustness of
a fully interdependent treelike NON in Figs. 5(a)–5(f). The threshold pc as a function of α obtained from Eqs. (9)–(15)
and (23)–(24) is shown in Fig. 5(a). Figure 5(a) shows that the critical fraction pc continuously increases with α for
a different number n of networks, which means that the NON becomes more vulnerable when the nodes with higher
k have a higher probability of failure. Figures 5(b) and 5(c) show that the NON becomes less robust with increasing
n. Moreover, for fixed n, pc decreases when k̄ increases as seen in Figs. 5(b)–5(f). Furthermore, for a fixed n, when k̄
is smaller than the minimum average degree k̄min(n), pc = 1. In this case (k̄ ≤ k̄min(n)) the NON will collapse even
if a single node fails. Using Eqs. (34), for pc = 1, we find

k̄min(n) =
1

nfc(1− fc)n−1
, (36)

which is independent of α (see Ref. [36] for α = 0). In fact, when all n interdependent ER networks have a minimum
average degree k̄min, the ER networks are at critical condition, and the NON collapses even if a single node fails
irrespective of whether it is high degree or low degree. This is an inherent property of interdependent networks and
is not influenced by the probability that nodes are attacked.
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FIG. 5: (a) The critical threshold pc as a function of α for different n. The critical threshold pc as a function of n for (b)
α = −1 and (c) α = 0 for several values of k̄. (d)-(f) For α = 1, 0,−1, pc as a function of k̄ for different n. Note that for
k̄ ≤ k̄min, pc = 1, i.e., the network collapse even if a single node is removed.

For the case of a treelike NON formed of n SF networks, Pi(k) = (k+1)1−λ
−k1−λ

(M+1)1−λ−m1−λ is the degree distribution of

nodes of network i, where k, M and m are the degree, maximum, and minimum degree of network i respectively
[4, 27, 31]. The critical thresholds pc of the NON are obtained from Eqs. (9)–(15) and (23)–(24), and are presented
in Fig. 6. Figure 6(a) shows that pc for interdependent SF networks is nonzero for the entire range of α, which differs
from that of a single SF network for which pc = 0 [4, 5, 31, 35]. For fixed n, pc increases when α increases since
the NON becomes less robust and the high degree nodes are removed with a higher probability. Also, with the same
probability of removing nodes (fixed α) the NON system becomes more vulnerable when the number of networks
increases, as seen in Fig. 6. When lower degree nodes are removed with a higher probability, Fig. 6(b) shows that the
NON becomes less robust with increasing λ. This is also illustrated for α = 0 and 1 in Figs. 6(c) and 6(d), where pc
becomes larger with larger λ.
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critical threshold pc as a function of n for α = −1 and different λ. (c)-(d) pc as a function of λ for α = 0, 1 and for different n
respectively. The lowerest degree of the SF networks is taken to be m = 2.

IV. THE PARTIALLY INTERDEPENDENT STARLIKE NON

We now study the robustness of a starlike partially interdependent NON (see Fig. 7) using the analytical framework
provided in Eqs. (23-24). Using the dynamics of cascading failures shown in Fig. 7, we compare the theoretical results
of Eqs. (9)–(15) and (21)–(22) with the simulation results in Fig. 8 for a starlike NON formed of five ER networks.
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FIG. 7: The dynamic of cascading failures for starlike NON with five networks. Each node represents a network and the arrow
(on the link) illustrates the damage spreading from one network to another network in the NON. At t = 1, we remove a fraction
1− pi of nodes in the five networks according to Eq. (1). Furthermore, non connected nodes in the networks are also removed.
At t = 2, 4, 6, ..., the central network 1 spreads damage to the neighboring networks 2, 3, 4, 5. At t = 3, 5, 7, ..., networks 2, 3, 4, 5
spread damage to central networks 1. At last, the mutual giant component of the NON becomes stable and no further removal
of nodes occurs.
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FIG. 8: For the case of α = 1 which corresponds to the solvable “acquaintance immunization” strategy, we present theory
and simulated results of the giant component of networks Pt,i, i = 1, 2, 3, 4, 5 during the t cascading failure for partially
interdependent starlike NON composed of five ER networks are shown. (a) For each network in the NON, k̄i = k̄ = 4,
Ni = N = 104, q1i = qi1 = 0.8 and pi = p = 0.9585 < pc = 0.9600. (b) Theory and simulations of the giant component Pt,i of
networks as function of t with the same parameters as in Fig. 8(a) but for pi = p = 0.7430 > pc = 0.7420 and q1i = qi1 = 0.4.
The results of simulation are obtained by averaging over 50 realizations.

For k̄i = k̄, qi1 = q1i = q, p1 = p2 = · · · = pn = p and α = 1, by using the generating function of ER networks and
Eqs. (16)–(20) and (23)–(24), we obtain

x1 = p(1− q + pqg2(x2))
n−1 = p(1− q + pq(1 − f2))

n−1, (37)

x2 = p(1− q(1 − y12g1(x1))), (38)

where

y12 =
x1

1− q(1− y21g2(x2))
. (39)

From Eqs. (37)–(39), we obtain

x2 = p[1− q + pq(1 − f1)(1 − q + pq(1− f2))
n−2], (40)
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where

f1 = ek̄u
2(f1−1)x1 , (41)

f2 = ek̄u
2(f2−1)x2 , (42)

ui = u =
W (pk̄ek̄)

k̄
. (43)

Substituting Eqs. (37) and (40) into Eqs. (41) and (42), we obtain

f1 = ek̄pu
2(f1−1)[1−q+pq(1−f2)]

n−1

, (44)

f2 = ek̄pu
2(f2−1)[1−q+pq(1−f1)(1−q+pq(1−f2))

n−2]. (45)

Furthermore, the giant components of networks are

P∞,1 = x1g1(x1) = p(1− f1)[1− q + pq(1− f2)]
n−1 = −

ln f1

k̄u2
, (46)

P∞,2 = x2g2(x2) = p(1− f2)[1− q + pq(1− f1)(1− q + pq(1− f2))
n−2] = −

ln f2

k̄u2
. (47)

where f1 and f2 are obtained from Eqs. (44) and (45).
Figures 9(a) and 9(b) show an excellent agreement between the simulations of the giant components and the results

in Eqs. (44) and (46). Furthermore, the central network, 1, shows a first and a second order percolation transition by
regulating the coupling strength q as shown in Figs. 9(a) and 9(b). Figures 9(c) and 9(d) present simulation results
of 〈τ〉 as a function of p. The first order transition point pIc can be easily identified by the sharp peaks of 〈τ〉.
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FIG. 9: (a) Comparison between simulation and theory for the giant component P∞,1 as a function of p for different q for
starlike NON. For weak coupling strength q = 0.4 and α = 1, the central network shows a second order phase transition, and
for strong coupling strength q = 0.6, 0.8, the central network shows a first order phase transition. (b) Comparison between
simulation and theory for the giant component P∞,1 with the same parameters in Fig. 9(a) but for α = −2. (c)-(d) The average
time at the convergence stage, < τ >, as a function of p for different α and q. The results are obtained by averaging over 50
realizations for N = 104.

From Eqs. (44) and (45), we obtain

f1 = 1−

ln f2
k̄pu2(f2−1)

+ q − 1

pq(1− q + pq(1− f2))n−2
, (48)

f2 = 1−
1

pq
((

ln f1

k̄pu2(f1 − 1)
)

1

n−1 + q − 1), (49)

where u = W (pk̄ek̄)

k̄
.

From Eqs. (46) and (48)–(49), the critical threshold pc as a function of n for different q is obtained and shown
in Fig. 10(a). We see that for α = 1 the central network becomes significantly more vulnerable with increasing n
for the same coupling strength q. In addition, for the same n the central network becomes more robust when the
coupling strength q is reduced. Figure 10(b) shows that using Eqs. (9)–(15) and (23)–(24) these conclusions can also
be demonstrated for α = −1. Figures 10(a) and 10(b) also show that the central network becomes more robust for the
same coupling strength q and n when nodes of lower degree have a higher probability of failure. We also analyze pc
as a function of the average network degree for different α as shown in Figs. 10(c) and 10(d). Figure 10(c) shows that
the central network becomes more fragile and finally collapses as the average degree is decreased for the same coupling
strength. Comparing Figs. 10(c) and 10(d) we see that when nodes of lower degree have a higher failure probability
(α = −1), the central network is more robust for the same average degree and fixed coupling strength. Therefore, in
the partially starlike NON, if we decrease the number of networks and the coupling strength and increase the average
network degree, it will become more robust.
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FIG. 10: Critical threshold pc as a function of n for several q values and average degree k̄. (a-b) pc as a function of n for
α = 1,−1 and for different coupling strengths q. (c-d) pc as a function of k̄ for different coupling strengths, for α = 1,−1.

From Eqs. (48) and (49), the second order transition threshold pIIc can be obtained by taken the limit f1 → 1,

ln f2
f2 − 1

= k̄pIIc u2(1− q), (50)

f2 = 1−
1

pIIc q
((

1

k̄pIIc u2
)

1

n−1 + q − 1). (51)

From Eq. (50), we get

f2 =
1

−k̄pIIc u2(1− q)
W (

−k̄pIIc u2(1− q)

e(k̄p
II
c u2(1−q))

), (52)

and by substituting Eq. (52) into Eq. (51), we obtain pIIc .
Figures 9(a) and 9(b) show that changing the coupling strength can change the phase transition from first-order

to second-order. Thus we examine the relation between pc and the fraction q of interdependent nodes when, using
Eq. (1), 1 − p nodes are removed from the central network. Figure 11 shows that for fixed average degree k̄ and α,
there exists a critical threshold qc of coupling strength that changes for different n. When the coupling is strong
(q > qc), the NON exhibits a first order phase transition at a transition threshold pIc at which the giant component
abruptly approaches zero. When the coupling is weak (q < qc), the NON shows a second order phase transition at
transition threshold pIIc at which the giant component smoothly changes from a finite value to zero. Note that the
phase transition lines of both pIc and pIIc converge at q = 0 for different n, which is the limit of a single network i.e.,
the classical percolation of a single network under targeted attack [35]. Figure 11 also shows that when q = 0 the
central network becomes more vulnerable when the higher-k nodes have a higher failure probability.
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FIG. 11: The relation between 1− q and 1− pc for different n for (a) α = −1, (b) α = 0 and (c) α = 1. The curves connecting
the circles show the critical lines of qc, below which the system shows a first order phase transition and above a second order
phase transition.

In summary, by introducing a new targeted attack probability function which avoids singularities for degree ki = 0
and α < 0, we address the question of robustness of two types of NON under targeted attack: (i) a treelike network
comprised of n fully interdependent Erdős-Rényi or Scale-free networks, and (ii) a starlike network comprised of n
partially interdependent Erdős-Rényi networks. For the treelike NON of n fully interdependent ER networks under
targeted attack, we find an exact solution for the giant component P∞ when α = 1, as a function of 1 − p initial
fraction of removed nodes from each of the n networks. Analytical solutions are found for the critical fraction pc
that leads to the fragmentation of n interdependent networks, and the minimum average k̄min at which the NON
becomes so vulnerable that the failure of a single node will bring down the entire system. For different values of
α, we present the numerical solution for the giant component and the critical fraction pc as a function of k̄ and n
for ER and SF networks. When a treelike network of n fully interdependent ER networks is under targeted attack,
increasing the average degree of each of the networks, increasing the probability of targeted attacks on lower degree
nodes, and decreasing the number of networks will make the tree more robust. For a starlike network of n partially
interdependent ER networks we can use these same strategies, but we can also decrease the coupling strength to make
the starlike NON more robust. We also find the critical threshold qc for different α values below which the system
exhibits a second order transition and above which the system shows a first order transition. When the coupling
strength q = 0, the NON system become n single and independent n networks. When α is increasing or decreasing,
the network becomes more vulnerable or robust, which coincides with the classic percolation of a single network to
targeted network.
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