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The cargo motion in living cells transported by two species of motor protein with different intrinsic

directionality is discussed in this study. Similar to single motor movement, cargo steps forward and

backward along microtubule stochastically. Recent experiments found that, cargo transportation by

two motor species has a memory, it does not change its direction as frequently as expected, which

means that its forward and backward step rates depends on its previous motion trajectory. By

assuming cargo has only the least memory, i.e. its step direction depends only on the direction of

its last step, two cases of cargo motion are detailed analyzed in this study: (I) cargo motion under

constant external load; and (II) cargo motion in one fixed optical trap. Due to the existence of

memory, for the first case, cargo can keep moving in the same direction for a long distance. For the

second case, the cargo will oscillate in the trap. The oscillation period decreases and the oscillation

amplitude increases with the motor forward step rates, but both of them decrease with the trap

stiffness. The most likely location of cargo, where the probability of finding the oscillated cargo is

maximum, may be the same as or may be different with the trap center, which depends on the step

rates of the two motor species. Meanwhile, if motors are robust, i.e. their forward to backward step

rate ratios are high, there may be two such most likely locations, located on the two sides of the

trap center respectively. The probability of finding cargo in given location, the probability of cargo

in forward/backward motion state, and various mean first passage times of cargo to give location

or given state are also analyzed.

PACS numbers:

Keywords: cargo memory; tug-of-war; motor protein

I. INTRODUCTION

Motility is one of the basic properties of living cells, in which cargos, including organelles and vesicles, are usually

transported by cooperation of various motor proteins [1, 2], such as the plus-end directed kinesin and minus-directed

dynein [3–5]. Experiments found that, using the energy released in ATP hydrolysis [6–9], these motors can move

processively along microtubule with step size 8 nm and in hand-over-hand manner [10–12].

Although numerous experimental and theoretical studies have been done to understand this cargo transportation

process, so far the mechanism of which is not fully clear. In [13], one basic model is presented by assuming cargo is

transported by only one type of motors and all the motors share the external load equally. Then in [14], one more
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realistic tug-of-war model is designed, in which the cargo is assumed to be transported by two types of motors with

opposite intrinsic directionality, and motors can reverse their motion direction under large external load. According

to some experimental phenomena this tug-of-war model seems reasonable [15, 16]. In either of the models given in

[13, 14], the only interaction among different motors is that, motors from the same type share load equally and motors

from different types act as load to each other. In [17–19], some complicated models are presented, in which interactions

among motors are described by linear springs. Recent experiments found that the tug-of-war model might not be

reasonable enough to explain some experimental phenomena, so several new models are designed to try to understand

the mechanism of cargo motion by multiple motors [20–26]. Finally, more discussion about cargo transportation in

cells can be found in [27–35].

In recent experiment [36], by measuring cargo dynamics in optical trap, Leidel et al. found cargo motion along

microtubule has memory. Cargo is more likely to resume motion in the same direction rather than the opposite one.

This finding implies that, cargo location in the next time depends not only on its present location but also on how

it reaches the present location. The behavior of cargo depends on its motion trajectory, which is different from the

assumptions in previous models. In this study, one model for cargo motion with memory will be presented. But for

simplicity, we assume that the cargo has only a little memory, it can only remember the motion direction in its last

step.

II. MODEL FOR CARGO MOTION WITH MEMORY

In this study, the cargo is assumed to be tightly bound by two types of motor proteins: plus-end (or forward) motors

and minus-end (or backward) motors. The forward and backward step rates of each plus-end motor are u and w, and

the forward and backward step rates of each minus-end motor are f and b. Obviously u ≫ w but b ≫ f when the

external load is low, since the intrinsic directionalities of motors from the two different types are opposite to each

other, and the intrinsic motion direction of plus-end motor is plus-end directed (i.e. to the plus-end of microtubule),

but the intrinsic motion direction of minus-end motor is minus-end directed (i.e. to the minus-end of microtubule).

By assuming that all motors from the same type share the load equally, we only need to discuss the simplest cases

in which the cargo is transported by only one plus-end motor and one minus-end motor. For example, if there are

k plus-end motors, the total external load is Fc, the forward and backward step rates of one single plus-end motor

are uc and wc, and the motor step size is lc. Then these k plus-end motors can be effectively replaced by one single

plus-end motor with load F = Fc/k, step rates u = kuc and w = kwc, and step size l0 = lc/k. Since the experiments

in [36] showed that, the number of motors moving the cargo is usually the same in both directions, this study also

assumes the step sizes of the plus-end motor and minus-end motor are the same (note, the step size of single plus-end

motor kinesin and step size of single minus-end motor dynein are the same l0 ≈ 8 nm [2, 9, 12]).

This study will mainly discuss two special cases: (I) Cargo moves under constant external load. In vitro, this

constant load may be applied by one feedback optical trap, or In vivo, this constant load may be from the viscous

environment with invariable drag coefficient. (II) Cargo moves in one fixed optical trap, this case is easy to be

performed experimentally, and so the corresponding theoretical results are easy to be verified.
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A. Cargo Motion under constant load

For the sake of convenience, the cargo is said to be in plus-state n+ if it reached its present location n by one

forward step from location n− 1. Similarly, the cargo is said to be in minus-state n− if its previous step is minus-end

directed, see Fig. 1(a) for the schematic depiction. In plus-state, the forward step rate is higher than backward step

rate u > w, but in minus-state the forward step rate is lower than backward step rate f < b. So in plus-state, the cargo

is more likely to move forward, but in minus-state, the cargo will be more likely to move backward. For example, for

a cargo in location n, if its previous step is plus-end directed, from either plus-state n+ − 1 or minus-state n− − 1 to

location n, then in the next step the cargo will be more likely to move to location n+ 1 (plus-state n+ +1), since the

cargo is now in plus-state n+ and its forward step rate u is higher than its backward step rate w. On the contrary, if

it got to its present location n from location n+ 1 (either from plus-state n+ + 1 or from minus-state n− + 1), then

in the next step the cargo will be more likely to move to location n− 1 (minus-state n− − 1), since the cargo is now

in minus-state n− and its backward step rate b is higher than its forward step rate f . This behavior means that the

cargo can remember its motion direction of its last step.

Let p, ρ be probabilities of cargo in plus-state and minus-state respectively, then

dp/dt = fρ− wp = −dρ/dt. (1)

Using the normalization condition p+ ρ = 1, its steady state solution can be obtained as follows

p = f/(f + w), ρ = w/(f + w). (2)

Let Ueff = up+ fρ, Weff = wp+ bρ, then the mean velocity of cargo can be obtained as follows

V =(Ueff −Weff )l0 = [(u− w)p+ (f − b)ρ]l0

=(uf − wb)l0/(f + w),
(3)

where l0 is the step size of cargo. The probabilities that cargo steps forward and backward are then

p+ =
Ueff

Ueff +Weff
=

f(u+ w)

f(u+ w) + w(f + b)
,

p− = 1− p+ =
w(f + b)

f(u+ w) + w(f + b)
.

(4)

Finally, the external load F dependence of rate u,w, f, b can be given by the following Bell approximation [37–40],

u = u0e
−ǫ0Fl0/kBT , w = w0e

(1−ǫ0)Fl0/kBT ,

f = f0e
−ǫ1Fl0/kBT , b = b0e

(1−ǫ1)Fl0/kBT .
(5)

Where ǫ0 and ǫ1 are load distribution factors for the plus-end motor and minus-end motor, respectively. kB is

Boltzmann constant, and T is the absolute temperature. For more general study of the model given in Fig. 1(a), see

[41]. In which both the expressions of mean velocity V and dispersion D are obtained.

B. Cargo Motion in one fixed optical trap

This special case is schematically depicted in Fig. 1(b). For convenience, the center of optical trap is assumed to be

fixed at location 0. For this case, the potential of cargo depends on its location n. The potential difference between
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location n and location n+ 1 is ∆Gn = κ[(n+ 1)l0]
2/2− κ(nl0)

2/2 = κ(n+ 1/2)l20. Similar as in [19], at location n,

the forward and backward step rates un and wn of cargo in plus-state, as well as the step rates fn and bn of cargo in

minus-state, can be obtained as follows,

un = ue−ǫ0∆Gn/kBT , wn = we(1−ǫ0)∆Gn−1/kBT ,

fn = fe−ǫ1∆Gn/kBT , bn = be(1−ǫ1)∆Gn−1/kBT .
(6)

Where u,w, f, b are cargo step rates when there is no optical trap and any other external load, which satisfy u ≫

w, b ≫ f . For simplicity, this study assumes that ǫ0, ǫ1 are independent of cargo location n.

Let pn, ρn be the probabilities of finding cargo in plus-state n+ and minus-state n−, respectively. One can easily

show pn, ρn are governed by the following equations

dpn/dt = un−1pn−1 + fn−1ρn−1 − (un + wn)pn, (7a)

dρn/dt = wn+1pn+1 + bn+1ρn+1 − (fn + bn)ρn. (7b)

The steady state solution of Eqs. (7a, 7b) are as follows (for details see Sec. A of the supplemental materials [44])

pn =

[

n−1
∏

k=0

(

(fk + bk)uk

(uk+1 + wk+1)bk

)

]

p0, for n ≥ 1, (8a)

pn =

[

0
∏

k=n+1

(

(uk + wk)bk−1

(fk−1 + bk−1)uk−1

)

]

p0, for n ≤ −1, (8b)

ρn =
un

bn
pn =

un

bn

[

n−1
∏

k=0

(

(fk + bk)uk

(uk+1 + wk+1)bk

)

]

p0, (8c)

for n ≥ 1,

ρn =
un

bn
pn =

un

bn

[

0
∏

k=n+1

(

(uk + wk)bk−1

(fk−1 + bk−1)uk−1

)

]

p0, (8d)

for n ≤ −1,

ρ0 =
u0

b0
p0. (8e)

Where p0 can be obtained by the normalization condition
∑+∞

n=−∞
(pn + ρn) = 1.

The probability of finding cargo in plus-state is p =
∑+∞

n=−∞
pn, and the probability of finding cargo in minus-state

is ρ =
∑+∞

n=−∞
ρn. The mean locations of cargo in plus-state and in minus-state are

〈n+〉 =

+∞
∑

n=−∞

npn/p, 〈n−〉 =

+∞
∑

n=−∞

nρn/ρ, (9a)

respectively. The mean location of cargo is

〈n〉 =

+∞
∑

n=−∞

n(pn + ρn) = p〈n+〉+ ρ〈n−〉. (10)
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Specially, for the symmetric cases u = b, w = f , i.e. the cargo is transported by two motors with the same step rates

but different intrinsic directionality, one can verify that ρn = p−n and consequently ρ = p, 〈n−〉 = −〈n+〉, 〈n〉 = 0.

The external load dependence of rates un, wn, fn, bn [see Eq. (6)] means that, for a cargo towed by two motors in

one fixed optical trap there are two critical values of the cargo location n,

nc+ =

⌈

kBT

κl20
ln

u

w
+

1

2
− ǫ0

⌉

, nc− =

⌊

kBT

κl20
ln

f

b
+

1

2
− ǫ1

⌋

, (11)

where ⌈x⌉ is the smallest integer number which is not less than x, ⌊x⌋ is the biggest integer number which is not

bigger than x. The step rates of plus-end motor satisfy un > wn for n < nc+, and un ≤ wn for n ≥ nc+. Similarly,

the step rates of minus-end motor satisfy bn > fn for n > nc−, and bn ≤ fn for n ≤ nc−. The intrinsic directionality

of plus-end motor (u ≫ w) implies nc+ > 0, and the intrinsic directionality of minus-end motor (b ≫ f) implies

nc− < 0. Generally, the critical values nc+ and nc− are different with the mean locations 〈n+〉 and 〈n−〉.

In the following of this section, various mean first passage time (MFPT) problems about the cargo motion in fixed

optical trap will be discussed.

1. Mean first passage time to one of the plus-state

Let tln and τ ln be MFPTs of cargo from plus-state n+ and minus-state n− to plus-state l+ respectively, then tln and

τ ln satisfy [42, 43]

wnτ
l
n−1 − (un + wn)t

l
n + unt

l
n+1 = −1, for n 6= l, (12a)

bnτ
l
n−1 − (fn + bn)τ

l
n + fnt

l
n+1 = −1, (12b)

with one boundary condition tll = 0.

From Eq. (12a) one can easily get

τ ln−1 =
un + wn

wn
tln −

un

wn
tln+1 −

1

wn
, for n 6= l. (13)

Substituting (13) into (12b), one obtains

bn

[

un + wn

wn
tln −

un

wn
tln+1 −

1

wn

]

− (fn + bn)

[

un+1 + wn+1

wn+1
tln+1 −

un+1

wn+1
tln+2 −

1

wn+1

]

+ fnt
l
n+1 = −1,

(14)

i.e.

Bnt
l
n − (Bn + Fn)t

l
n+1 + Fnt

l
n+2 = Cn, (15)

where

Bn =
(un + wn)bn

wn
, Fn =

(fn + bn)un+1

wn+1
,

Cn =
bn
wn

−
fn + bn
wn+1

− 1.

(16)
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Note, Eqs. (14, 15) are established for n 6= l − 1, l.

Meanwhile, from Eq. (12b) one can get

tln+1 =
fn + bn

fn
τ ln −

bn
fn

τ ln−1 −
1

fn
, (17)

and then by substituting Eq. (17) into Eq. (12a) one obtains

wnτ
l
n−1 − (un + wn)

[

fn−1 + bn−1

fn−1
τ ln−1 −

bn−1

fn−1
τ ln−2 −

1

fn−1

]

+ un

[

fn + bn
fn

τ ln −
bn
fn

τ ln−1 −
1

fn

]

= −1,

(18)

i.e.

B̂nτ
l
n−2 − (B̂n + F̂n)τ

l
n−1 + F̂nτ

l
n = Ĉn, (19)

where

B̂n =
(un + wn)bn−1

fn−1
, F̂n =

(fn + bn)un

fn
,

Ĉn =
un

fn
−

un + wn

fn−1
− 1.

(20)

Eqs. (18, 19) are established for n 6= l.

The procedure of getting MFPTs tln, τ
l
n is as follows. (1) Getting tln for n ≤ l − 1 by Eq. (15) and boundary

condition tll = 0 (see Sec. B of the supplemental materials [44]). (2) Getting τ ln for n ≤ l − 2 by Eq. (13). (3)

Getting τ ll−1 from the special case of Eq. (12b), i.e. bl−1τ
l
l−2 − (fl−1 + bl−1)τ

l
l−1 = −1. (4) Getting τ ln for n ≥ l by

Eq. (19) and boundary value τ ll−1 obtained in (3) (see Sec. C of the supplemental materials [44]). (5) Getting tln

for n ≥ l+ 1 by Eq. (17). This procedure can be summarized as follows

Eq. (15)
=====⇒

tl
l
=0

tln(n ≤ l − 1)
Eq. (13)
=====⇒ τ ln(n ≤ l − 2)

Eq. (12b)
======⇒

n=l−1
τ ll−1

Eq. (19)
=====⇒ τ ln(n ≥ l)

Eq. (17)
=====⇒ tln(n ≥ l + 1).

(21)

2. Mean first passage time to one of the minus-state

Let t̄ln and τ̄ ln be the MFPTs of cargo from plus-state n+ and minus-state n− to minus-state l−, respectively. Similar

as the discussion in Sec. II B 1, the MFPTs t̄ln and τ̄ ln satisfy the following equations

wnτ̄
l
n−1 − (un + wn)t̄

l
n + unt̄

l
n+1 = −1, (22a)

bnτ̄
l
n−1 − (fn + bn)τ̄

l
n + fnt̄

l
n+1 = −1, for n 6= l, (22b)

with one boundary condition τ̄ ll = 0. From Eq. (22a) one can easily get

τ̄ ln−1 =
un + wn

wn
t̄ln −

un

wn
t̄ln+1 −

1

wn
. (23)
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Substituting (23) into (22b), one obtains

bn

[

un + wn

wn
t̄ln −

un

wn
t̄ln+1 −

1

wn

]

− (fn + bn)

[

un+1 + wn+1

wn+1
t̄ln+1 −

un+1

wn+1
t̄ln+2 −

1

wn+1

]

+ fnt̄
l
n+1 = −1,

(24)

i.e.

Bnt̄
l
n − (Bn + Fn)t̄

l
n+1 + Fn t̄

l
n+2 = Cn, (25)

with Bn, Fn, Cn given by Eq. (16). Note, Eqs. (24, 25) are established for n 6= l.

Meanwhile, from Eq. (22b) one can get

t̄ln+1 =
fn + bn

fn
τ̄ ln −

bn
fn

τ̄ ln−1 −
1

fn
, for n 6= l, (26)

and then by substituting Eq. (26) into Eq. (22a) one obtains

wnτ̄
l
n−1 − (un + wn)

[

fn−1 + bn−1

fn−1
τ̄ ln−1 −

bn−1

fn−1
τ̄ ln−2 −

1

fn−1

]

+ un

[

fn + bn
fn

τ̄ ln −
bn
fn

τ̄ ln−1 −
1

fn

]

= −1,

(27)

i.e.

B̂nτ̄
l
n−2 − (B̂n + F̂n)τ̄

l
n−1 + F̂nτ̄

l
n = Ĉn, (28)

with B̂n, F̂n, Ĉn given by Eq. (20). Eqs. (27, 28) are established for n 6= l, l+ 1.

The procedure of getting MFPTs t̄ln, τ̄
l
n is as follows. (1) Getting τ̄ ln for n ≥ l + 1 by Eq. (28) and boundary

condition τ̄ ll = 0 (see Sec. D of the supplemental materials [44]). (2) Getting t̄ln for n ≥ l + 2 by Eq. (26). (3)

Getting t̄ll+1 from the special case of Eq. (22a), i.e. −(ul+1 +wl+1)t̄
l
l+1 + ul+1t̄

l
l+2 = −1, (4) Getting t̄ln for n ≤ l by

Eq. (25) with boundary value t̄l+1 obtained in (3) (see Sec. E of the supplemental materials [44]). (5) Getting τ̄ ln

for n ≤ l− 1 by Eq. (23). This procedure can be summarized as follows

Eq. (28)
=====⇒

τ̄ l

l
=0

τ̄ ln(n ≥ l+ 1)
Eq. (26)
=====⇒ t̄ln(n ≥ l + 2)

Eq. (22a)
======⇒

n=l+1
t̄ll+1

Eq. (25)
=====⇒ t̄ln(n ≤ l)

Eq. (23)
=====⇒ τ̄ ln(n ≤ l − 1).

(29)

3. Mean first passage time to one given location

Let T l
s be the MFPT of cargo from state s to location l (either plus-state l+ or minus-state l−), then one can easily

show that

T l
s =



























tlk, for s = k+ and k < l,

τ lk, for s = k− and k < l,

t̄lk, for s = k+ and k > l,

τ̄ lk, for s = k− and k > l.

(30)
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It is to say that if k < l, a cargo located at k will first reach plus-state l+ before reaching minus-state l−. On the

contrary, if k > l, it will first reach minus-state l−. Finally, the mean oscillation period T of cargo in fixed optical

trap can be approximated as follows

T ≈ τ00 + t̄00, (31)

see Sec. F of the supplemental materials for its expression [44].

III. RESULTS

For cargo motion under no external load, Monte Carlo simulations show that, if the cargo is transported by two

symmetric motors, i.e., the plus-end motor and the minus-end motor have the same step rates, u = b, w = f , the cargo

will oscillate [Fig. 2(a)]. While for the asymmetric cases, the cargo has non-zero mean velocity [see Fig. 2(b)]. On the

other hand, if the cargo is put into one fixed optical trap, and transported by two symmetric motors, it will oscillate

around the trap center with relatively high frequency [Fig. 2(c)]. Meanwhile, if the trapped cargo is transported

by two asymmetric motors, it will also oscillate but its oscillation center may be different with the trap center [Fig.

2(d)]. Both Monte Carlo simulations and theoretical calculations show that, for a cargo transported by two symmetric

motors and put in one optical trap, its oscillation period T decreases with trap stiffness κ, motor forward step rates

u = b, and motor backward step rates w = f [Fig. 3(a-c)]. Its oscillation amplitude increases with the motor forward

step rates u = b, but decreases with both the motor backward step rates u = b and the trap stiffness κ, since high

backward step rates and high trap stiffness will prohibit the cargo from moving too far from the trap center [Fig.

3(d-f)].

Let

p =

∞
∑

n=−∞

pn, ρ =

∞
∑

n=−∞

ρn,

P+ =
∑

n>0

(pn + ρn), P− =
∑

n<0

(pn + ρn).

(32)

Then p is the probability of finding cargo in plus-state, P+ is the probability that cargo location n > 0 (the center of

optical trap is assumed to be at location 0). The meanings of ρ and P− are similar. Both Monte Carlo simulations

and theoretical calculations show that, for a cargo transported by two symmetric motors, the ratios p/ρ and P+/P−

are always one, and they do not change with trap stiffness κ, forward step rates u = b, and backward step rates w = f

[Fig. S1].

Our results also show that, for cargo motion in optical trap by two asymmetric motors, its oscillation period T

decreases with trap stiffness κ and forward step rate u, but may not change monotonically with backward step rate

w [Figs. S2(a), S3(a), S4(a)]. But similar as the symmetric cases, cargo oscillation amplitude of the asymmetric

cases decreases with trap stiffness κ and backward step rate w, and increases with the forward step rate u [Figs.

S2(d), S3(d), S4(d)]. The results in Figs. S3(d), and S4(d) imply that, the maximal location nmax that cargo might

reach toward the plus-end of microtubule depends only on the step rates u,w of the plus-end motor, and similarly the

minimal location nmin that cargo might reach towards the minus-end of the microtubule depends only on the step

rates b, f of the minus-end motor. From the results given in Figs. S2(b,c), S3(b,c), and S4(b,c) one can also see that,
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different from the symmetric cases given in Fig. S1, both the ratio p/ρ and ratio P+/P− depend on trap stiffness κ,

forward step rate u, and backward step rate w.

To show more details about the dependence of cargo oscillation on trap stiffness κ and motor step rates, examples

of probabilities pn, ρ, and their summation pn + ρn are plotted in Fig. 4 and Fig. S5. For either symmetric cases or

asymmetric cases, the probability profiles are flat for low trap stiffness κ, indicating that the cargo can reach a farther

location from the oscillation center (i.e., with large oscillation amplitude)[Fig. S5]. Similar changes can also be found

with the increase of motor forward step rates u or f [Fig. 4(a, b, d)]. Meanwhile, with the increase of motor backward

step rates w or f , the probability profile will become more sharp [Fig. 4(c)]. For the asymmetric cases, the most

likely location of cargo may be different from the trap center [Fig. S5(c)]. One interesting phenomenon displayed in

Fig. 4(b, d) is that, for either the symmetric cases or the asymmetric cases, when motor forward step rates u, b are

high, the summation of probability pn + ρn may has two local maxima, indicating that cargo motion in the positive

location (n > 0) is mainly dominated by the plus motor, while its motion in the negative location (n < 0) is mainly

dominated by the minus motor.

Let Nmax pn
, Nmaxρn

, N(pn+ρn)max
be the locations at which probabilities pn, ρn and their summation pn+ ρn reach

their maxima, respectively. The results plotted in Fig. 5(a) show that, for symmetric motion, Nmaxρn
= −Nmaxpn

and their absolute values increase with the forward to backward step rate ratio u/w = b/f . The results in Fig. 5(d)

show that, for low step rate ratio u/w = b/f , the total probability pn + ρn has only one maximum which lies at the

trap center. However, with increase of these ratios, N(pn+ρn)max
has one symmetric bifurcation, and its absolute value

(see Fig. 4) increases with these step ratios. For asymmetric case [see Fig. 5(b)], Nmax pn
increases with step rate

ratio u/w, but Nmaxρn
is independent of it. Which means that, similar as the properties of nmax and nmin displayed

in Figs. S3 and S4, Nmaxpn
depends only on step rates of the plus-end motor, and Nmaxρn

depends only on step

rates of the minus-end motor. For asymmetric cases, with the increase of rate ratio u/w, N(pn+ρn)max
has also one

bifurcation, see Fig. 5(e). But one of the two values (the negative one) does not change with u/w. Which means

that, the negative one of N(pn+ρn)max
depends only on properties of the minus-end motor. Similarly, the positive one

of N(pn+ρn)max
depends only on properties of the plus-end motor. So both the properties of amplitude nmax, nmin

and the most likely locations Nmax pn
, Nmax ρn

, N(pn+ρn)max
indicate that, the plus-end directed motion of cargo is

mainly determined by the plus-end motor, and the minus-end directed motion is mainly determined by the minus-end

motor, which is one of the main differences with other tug-of-war models [14, 18, 19, 21], and this result is consistent

with the experimental phenomena [15, 16, 36]. Finally, the results in Fig. 5(c) show that, the absolute values of

Nmax pn
, Nmaxρn

decrease with trap stiffness κ, and Fig. 5(f) shows N(pn+ρn)max
does not change with stiffness κ. So

trap stiffness can change the oscillation amplitude and the oscillation period (see Figs. 3, S2, and S5), but will not

change the most likely location N(pn+ρn)max
of the cargo. Further calculations of probabilities p, ρ show that, for the

symmetric cases both pmax = ρmin and (p + ρ)min decrease with step rate ratio u/w = b/f , and increase with trap

stiffness κ [see Figs. S6(a,d)]. Since with large rate ratio u/w = b/f and small stiffness κ, the cargo will oscillate with

large amplitude. For the asymmetric cases, pmax 6= ρmin, pmax decreases but ρmin increases with the step rate ratio

u/w (i.e. with the increase of the directionality of the plus-end motor). Since with large rate ratio u/w, the plus-end

motor has high directionality, and so the cargo moves fast in the plus-state, which means that the probability pn will

be flat with large u/w. The plots in Fig. S6(c) show that, although the total probability pn + ρn has two maxima,

with the change of rate ratio u/w, the most likely location of cargo may change from one side of the trap center to
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another side.

Finally, several examples of MFPTs tln, τ
l
n, t̄

l
n, τ̄

l
n are plotted in Fig. 6(a,b) and Figs. S7, S8(a,b), S9-S12, and

examples of MFPTs T l
n± are plotted in Fig. 6(c,d) and Fig. S8(c,d). If m < n < l, then tln ≤ tlm, τ lm ≤ τ ln,

t̄ln ≤ t̄lm, τ̄ lm ≤ τ̄ ln, and T l
n+ ≤ T l

m+ , T l
m− ≤ T l

n− . If l < n < m, then tln ≥ tlm, τ lm ≥ τ ln, t̄
l
n ≥ t̄lm, τ̄ lm ≥ τ̄ ln, and

T l
n+ ≥ T l

m+ , T l
m− ≥ T l

n− . Moreover, if the trap stiffness κ is high and the motor step rate ratios u/w and b/f are

large, then tlm ≤ τ lm, t̄lm ≤ τ̄ lm, T l
m+ ≤ T l

m− for m < n < l, and tlm ≥ τ lm, t̄lm ≥ τ̄ lm, T l
m+ ≥ T l

m− for l < n < m, see Fig.

6(a,c,d) and Figs. S7(a,b), S8(c,d),S9, S10(a), S11(b,c,d), S12(a).

IV. DISCUSSION

Recent experimental observations by Leidel et al. [36] show that, in living cells cargo moves along microtubule with

memory, i.e., its motion direction depends on its previous motion trajectory. In this study, such cargo transportation

is theoretically studied by assuming that the cargo has the least memory, i.e. its motion direction depends only on

its behavior in its last step. The cargo will be more likely to step forward/backward if it came to its present location

by one forward/backward step. Two cases are mainly discussed: (I) cargo moves under constant load, and (II)

cargo moves in one fixed optical trap. For each cases, two kinds of motion are addressed: (i) symmetric motion, in

which cargo is transported by two types of motor protein which have the same forward/backward step rates but with

different intrinsic directionality, (ii) asymmetric motion, in which cargo is transported by two types of motor protein

with different forward/backward step rates. For the symmetric motion (i) of case (I), the mean velocity of cargo is

zero. But, due to the existence of memory, cargo can move unidirectionally for a large distance before switching its

direction. One can easily understand that, for the asymmetric motion (ii) of (I), the directionality of cargo with

memory is better than that in the usual tug-of-war model by two different motor types [14, 19, 21]. For the motion

in one fixed optical trap, i.e. case (II), cargo will oscillate. For the symmetric motion (i), the oscillation center is

the same as the trap center, but for the asymmetric motion (ii) , this oscillation center is generally different from the

trap center. Usually the oscillation period decreases with the trap stiffness κ and motor step rates. Meanwhile, the

oscillation amplitude decreases with trap stiffness κ and motor backward step rates w, f , but increases with motor

forward step rates u, b. The probability pn + ρn of finding cargo at location n may have only one maximum, which is

the same as the trap center for symmetric motion (i) but different with the trap center for asymmetric motion (ii).

Meanwhile, the probability pn + ρn may also have two maxima. For symmetric motion (i), these two maxima are

located symmetrically on the two side of the trap center, and their corresponding values of probability pn+ρn are the

same. However, for the asymmetric motion (ii), these two maxima are generally not symmetrically located around

the trap center, and their corresponding probabilities may be greatly different. With the change of ratio of motor

forward to backward step rates, the maximum with the larger value of probability pn+ ρn may transfer from one side

of the trap center to another side. Mathematically, the model used in this study is similar as the one used in [40] to

describe the dynamic properties of microtubule (see Fig. S13 in the supplementary Materials [44]). This study will

be helpful to understand the high directionality of cargo motion in living cells by cooperation of two types of motor

protein. Meanwhile, more generalized model can also be employed to discuss this cargo transportation process, in

which the cargo is assumed to have long memory, its forward and backward step rates depend on how long it has kept

moving in its present direction.
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TABLE I: The values of rates u,w, f, b (in unit s−1) and optical trap stiffness κ (pN/nm) used in the plots of Figs. 2-6. The

symbol ∗ means that the corresponding parameter is not used in the plot, and symbol
√

means this parameter is one variable

in the corresponding plot. Other parameters used in the plots are ǫ0 = ǫ1 = 0.5, l0 = 8 nm, and kBT = 4.12 pN·nm. The

stiffness κ of the trap used in recent experiment of Leidel el al. is around 0.02 − 0.09 pN/nm [36].

u w f b κ

Fig. 2(a) 5 2 2 5 ∗
Fig. 2(b) 5 2 1 2 ∗
Fig. 2(c) 20 1 1 20 0.004

Fig. 2(d) 20 1 1 5 0.001

Fig. 3(a,d) 10 1 1 10
√

Fig. 3(b,e)
√

1 1
√

0.05

Fig. 4(c,f) 100
√ √

100 0.05

Fig. 4(a) 10 1 1 10 0.05

Fig. 4(b) 50 1 1 50 0.05

Fig. 4(c) 20 15 15 20 0.05

Fig. 4(d) 50 1 1 30 0.05

Fig. 5(a,d)
√

1 1
√

0.05

Fig. 5(b,e)
√

1 1 50 0.05

Fig. 5(c,f) 10 1 1 10
√

Fig. 6(a) 5 1 1 5 0.05

Fig. 6(b) 5 1 1 5 0.01

Fig. 6(c) 30 1 1 10 0.05

Fig. 6(d) 10 1 1 10 0.05
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FIG. 1: Schematic depiction of the model discussed in this study to explain the cargo motion with memory. (a) is for cargo

motion under constant load, and (b) is for cargo motion in one fixed optical trap. At any location n, the cargo may be in two

different states, plus-state n+ and minus-state n−. Cargo in plus-state n+ means it reaches location n from location n − 1,

while cargo in minus-state means it is from location n+ 1. For a cargo in plus-state n+, its forward and backward step rates

are u and w respectively. But for a cargo in minus-state n−, it has different step rates f and b. For the constant load cases (a),

u > w and b > f mean that, if the cargo is in plus-state n+ it will be more likely to move forward to location n+1. Otherwise,

it will be more likely to move backward to location n− 1.
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FIG. 2: Trajectory samples of cargo motion by two motors under constant load (a, b), and in one fixed optical trap (c, d). For

the symmetric cases (where the step rates of the plus motor are the same as the ones of the minus motor, i.e. u = b, w = f), the

cargo will oscillate around its initial location (a). While for the asymmetric cases, the cargo will have nonzero mean velocity

(b). If the cargo is put in one fixed optical trap and transported by two symmetric motors, it will oscillate around the trap

center (c). But for the asymmetric cases, the oscillation center may be different from the trap center. For parameter values

used in the simulations see Tab. I.
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FIG. 3: In fixed optical trap, the mean oscillation period T of cargo decreases with trap stiffness κ, forward rates u = b, and

backward rates w = f (in fact, log T decreases almost linearly with log κ, log u = log b, and logw = log f). The oscillation

amplitude nmax − nmin decreases with stiffness κ and backward rates w = f , but increases with forward rates u = b. Here

nmax and nmin are the max and min locations that cargo can reaches. The circles and squares are obtained by Monte Carlo

simulations. In (a, b, c), the solid curves are obtained by formulation (31). The solid lines in (d) are obtained by nc+, nc−

given in Eq. (11), and the solid lines in (e, f) are obtained by nc+ + 3, nc− − 3, respectively. For parameter values see Tab. I.
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FIG. 4: Samples of probability pn and ρn for finding cargo in plus-state and minus-state. For the symmetric cases probabilities

pn and ρn are mirror symmetry to each other (a, b, c). Their sum pn + ρn, the probability of finding cargo at location n, might

has one maximum [at the center of optical trap, see (a, c)] or two symmetric maximum [see (b)]. (d) is one sample for the

asymmetric cases. For parameter values see Tab. I.
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With the increase of rate ratio u/w = b/f both Nmax pn and Nmax ρn leave far away from the trap center (a). (b) implies that

Nmax pn increases with ratio u/w, but Nmax ρn is independent of it. With the increase of trap stiffness κ, both Nmax pn and

Nmax ρn come close the the trap center (c). (d, e) show that, with the increase of rate ratio u/w = b/f or rate ratio u/w only,

the number of maximum of probability pn + ρn of finding cargo at location n may change. But (f) implies that N(pn+ρn)max
is

independent of trap stiffness κ. For parameter values see Tab. I.
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0
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location 0 (c, d). For high trap stiffness κ, t0n<0 < τ 0
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l≥0 < t0k>0 for MPFTs to plus-state 0+, and symmetric relations

hold for MFPTs to minus-state 0−, see (a). But for low trap stiffness, all MFPTs t0n, τ
0
n, t̄

0
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0
n increases with the distance

between n and trap center 0, see (b). Which means that, for different trap stiffness κ, the trajectories of cargo from state n+

or n− to state 0+ or 0− are different. (c, d) are MFPTs for one cargo (transported by two asymmetric motors) from state n+

or n− to location 0 (plus-state 0+ or 0−) and location 1 (plus-state 1+ or 1−). The MFPT T 0
n is obtained by formulation (30).

For parameter values see Tab. I.


