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We calculate an analytical expression for the terrace-width distribution P (s) for an interacting step
system with nearest and next nearest neighbor interactions. Our model is derived by mapping the
step system onto a statistically equivalent 1D system of classical particles. The validity of the model
is tested with several numerical simulations and experimental results. We explore the effect of the
range of interactions q on the functional form of the terrace-width distribution and pair correlation
functions. For physically plausible interactions, we find modest changes when next-nearest neighbor
interactions are included and generally negligible changes when more distant interactions are allowed.
We discuss methods for extracting from simulated experimental data the characteristic scale-setting
terms in assumed potential forms.

I. INTRODUCTION

The equilibrium properties of steps on surfaces have
been the subject of study for at least half a century [1].
During the last two decades, interest in steps has bur-
geoned [2–11], principally because of the important role
they play in epitaxial growth, surface transport, cataly-
sis, etc. Those properties have great importance in the
construction of nano and micro-electronic devices.

Steps can be created during sample preparation, such
as by cutting a material at a miscut angle with respect
to a closely packed plane. In the case of molecular-beam
epitaxy (MBE), the steps act as sinks because they are
the most favorable place for attachment, allowing some
control of the morphology of the surface during growth
and creating specified uniaxial defects rather than ran-
dom growth of domains that progressively degrade uni-
formity.

Advances in experimental techniques have allowed the
quantitative measurement of some statistical properties
of these stepped surfaces [7]. One of the most important
equilibrium statistical properties is the terrace-width dis-
tribution (TWD), P (s). Here s = S/〈S〉 is the scaled
width, with 〈S〉 the average of S. The TWD has rele-
vant information about the interaction potential between
steps [12–15]; the TWD narrows as step-step repulsions
increase.

Recent connections between theory and experiments
have often relied on the generalized Wigner surmise
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(GWS) [16, 17]

P%(s) = a%s
%e−b%s

2

, (1)

where b% =
[
Γ(%+2

2 )/Γ(%+1
2 )
]2

and a%=2b
(%+1)/2
% /Γ(%+1

2 )
are normalization constants which ensure 〈sn〉=1 for n =
0, 1.

In particular, for the typical case where stress dipoles
at steps lead them to interact through a potential V (S) =
A/S2, it has been shown that there is a connection be-
tween A and the exponent % of the GWS for the special
cases % = 1, 2 and 4: Explicitly we have that the dimen-
sionless repulsion strength

Ã ≡ β̃ A β2 =
%

2

(%
2
− 1
)
, (2)

where β̃ is the step stiffness, and β = 1/kBT is the in-
verse thermal energy. The remarkable connection pro-
vided by Eq. (2) can be found by mapping the inter-
acting steps system onto the Calogero-Sutherland model
[18, 19], in which the particles interact through a poten-

tial Ã/S2. It is clear that the case % = 2 corresponds
to non-interacting steps (A = 0), % < 2 to attractive
steps (A < 0) and % > 2 to repulsive steps (A > 0).
The Calogero-Sutherland model can be solved analyti-
cally (the Hamiltonian is integrable) for the special cases

of Ã = −1/4, 0, 2, and Eq. (1) provides an excellent ap-
proximation to the spacings between adjacent particles
[5, 6, 20]. While the justification of Eq. (2) is not so

firmly established for arbitrary values of Ã, the GWS
has nonetheless proved to be an excellent tool to describe
theory, experimental and numerical results [21–26].

One of the simplest models to describe fluctuations on
steps is the terrace-step-kink model (TSK) [2, 9, 10, 27,
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28]. In this model, the only excitations taken into ac-
count are the kinks along the steps. In particular, vacan-
cies and adatoms on terraces are neglected. These sim-
plifications restrict the applicability of the TSK model
to low temperatures (relative to the roughening temper-
ature of the terraces). There are more sophisticated ap-
proaches [29–31] based on kinetic Monte Carlo simula-
tions [32] of solid-on-solid (SOS) models [33] which take
into account more thermal excitations, but they require
more computational resources. Moreover, the simplicity
of the TSK results in better statistics for P (s) than the
SOS models in the low-temperature limit.

Our main objective is to calculate the TWD for ar-
bitrary interaction potentials in the case of finite-range
interactions, i.e., when each step interacts with a number
2 q of its neighbors through a potential V (S). In addi-
tion to the intrinsic interest of this calculation, the ques-
tion is very important for doing Monte Carlo simulations
to test predictions of models like Calogero-Sutherland,
which assume that all steps interact. When step-step
interactions are included in simulations, invariably only
nearest-neighbor interactions are included [25, 26, 34–
36]. Including second or third neighbor interactions in
the simulations algorithm would be cumbersome but fea-
sible. However, doing so invites questions of whether
such longer-range interactions are screened by interven-
ing steps or have their “bare” form.

Another important issue is what happens if the step
interactions are not of the generic inverse-square form,
in particular if they decay more slowly, often leading to
instabilities. In accounting for the idiosyncratic step net-
work on Au(110) and Pt(110), Carlon and van Beijeren
find what amounts to a S−1 repulsion [37]. Stress do-
mains lead to logarithmic interactions, notably in the
case of terraces with alternating mutually-perpendicular
domains on vicinal Si(100) surfaces [38, 39].

To proceed, we map the step system onto a 1D classi-
cal system of interacting particles. One advantage of this
approach is that, it is always possible to find analytically
(in Laplace space) the spacing-distribution functions for
these 1D classical systems. In particular, the nearest-
neighbor distribution (TWD) is easy to obtain. Addi-
tionally, it allows one to determine how relevant are the
interactions beyond the nearest-neighbors in the func-
tional form of the TWD. The applicability of our model
is tested with several Monte Carlo simulations and some
experimental results. This paper is organized as follows.
In Sec. II we describe the terrace-step-kink (TSK) model
for interacting steps, in Sec. III we develop an analytical
model for the TWD for the cases q = 1 and q = 2. In this
section, the case of arbitrary values of q is also discussed.
Finally in Sec. IV we provide some conclusions.

II. TERRACE-STEP-KINK MODEL

Since overhangs are prohibited in the TSK model, the
position of the i-th step can be described by a function

xi(yn) where we have used “Maryland notation” [5], in
which ŷ is the “time-like” direction along the step. Then,
the indices satisfy i ∈ [1, N ], with N the number of steps,
and n ∈ [1, Ly] with Ly the length of the lattice in y di-
rection. The fermionic non-touching condition imposes
the additional restriction xi(yn) < xi+1(yn) for all i and
n. For the sake of simplicity, in our model the lattice con-
stant is set to unity. We also impose periodic boundary
conditions in both x and y directions.

In the TSK model, the Hamiltonian of a system of
interacting steps can be written as [40]

H =

Ly∑
yn=1

 N∑
i=1

εk ξi +

N∑
i=1

i+q∑
j=i+1

V (ζi,j)

 (3)

where ξi(yn+1, yn) = |xi(yn+1)− xi(yn)|, ζi,j(yn) =
|xi(yn)− xj(yn)|, εk is the energy required to form a
unit-length kink, and V (ζ) is the interaction potential
between steps. As mentioned previously, q is the range
of interaction. For q = 1, we have nearest-neighbor inter-
actions while for q = (N − 1)/2 each step interacts with
all its neighbors (full-range interactions).

The most studied case corresponds to V (ζ) = 0, which
is usually called non-interacting steps. However, we em-
phasize that even in this case the steps represented by
Eq. (3) interact entropically due the non-touching condi-
tion, taking the well-defined thermodinamic form when

ycoll =

(
〈S〉

2 b(T )

)2

< Ly with b2(T ) =
2

2 + eβ εk
. (4)

For Ly smaller than ycoll the steps fluctuate indepen-
dently of each other [41]. The case of non-interacting
steps is well described by the free-fermion analogy. In
this picture, the steps are modeled as world lines of free
spinless fermions [10]. This analogy leads to the use of
the Wigner surmise with % = 2 to describe P (s) [10].

Dyson showed [42, 43] long ago that the statistical
behavior of a 1D free-fermion system (non-interacting
steps) is equivalent to that of a 1D system of classical
Brownian particles [44]. Then, in terms of a 1D classical
system, the non-interacting steps can be interpreted as
the world lines of a system with N particles on a ring
which interact via a logarithmic potential at an inverse
temperature β = 2. Explicitly, the Hamiltonian of this
system is given by

H = −1

2

N∑
i=1

N∑
j=1

ln |zi(t)− zj(t)| , (5)

where zi(t) is the position of the i-th particle at time t. If
we interpret the time axis as the y-axis of the vicinal sur-
face, we can represent the steps in the TSK model as the
time evolution of the positions of particles in a 1D clas-
sical system (after making the step-continuum approxi-
mation or working in discrete time). In this equivalent
system the interparticle gap size distribution plays the
role of the TWD.
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III. ANALYTICAL MODEL

To map the interacting step system onto a classical 1D
system of interacting particles, we consider N particles
can move around a circle with circumference Lx = 〈S〉N ,
with 〈S〉 the average distance between particles. Peri-
odic boundary conditions are perforce imposed, that is,
zN+j = zj , where zj is the position of the j-th particle.
The system is in equilibrium at an inverse temperature
β. Below we use the formalism proposed in Ref. [45] to
calculate the interparticle gap size distribution P (s) for
different ranges of interaction q.

A. Nearest-neighbor interactions q = 1

Now we consider the simplest case where the parti-
cles/steps interact with their nearest-neighbors through

of an arbitrary potential Ṽ (S;A) ≡ V (S), where A is a
dimensionless parameter which determines the strength
of the interaction in such way that A = 0 implies non-
interacting steps, viz. A = 0. In general, the interaction
potential between steps V (S;A) and the one for the clas-

sical particle system, Ṽ (S;A), are related according to

Ṽ (S;A) = f(A)V (S;A), (6)

where both A = g(A) and f(A) are unknown functions.
This means that there is a scale relation between the
two potentials, i.e. the functional form of the interaction
potential is the same in both cases.

To map the step system onto a 1D classical interacting
particle system, we use the Hamiltonian

H = − 1

2β

N∑
i=1

N∑
j=1

ln
∣∣ζ2
i,j

∣∣+

N∑
i=1

Ṽ (ζi,i+1;A), (7)

where ζi,j ≡ ζi,j(t) = zi(t) − zj(t). The first term
in Eq. (7) models the entropic repulsion between steps
while the second one takes into account the direct inter-
action between steps. We have full-range interactions for
the logarithmic potential but for Ṽ (ζ;A) we just have
nearest-neighbor interactions. Instead of this potentially
difficult scenario and following Ref. [46] (cf. Eq. (25)
therein), we propose the effective Hamiltonian

Heff =
1

β

N∑
i=1

[
KS2

i − ln
(
S2
i

)]
+

N∑
i=1

Ṽ (Si;A), (8)

where Si = ζi,i+1 and K ≡ K(A) is a function of A
which is determined by the normalization conditions as
in Eq. (1). The advantage of Eq. (8) over Eq. (7) lies
in the fact that both potentials have the same range of
interaction (q = 1) allowing an easier computation of
P (s). According to Ref. [46], we can expect that the
TWD given by Eq. (8) for A = 0 reduces to the GWS
with % = 2, as required.

As shown in Appendix B, the TWD for the system
described by Eq. (8) is given by

P (s) =
1

f̃(c)
s2e−Γ s2−β v(s;A)−c s (9)

where c and f̃(c) are given by the normalization condi-
tions and υ(s;A) is the step-step interaction potential in
dimensionless form. Consequently, Eq. (9) has just the
one free parameter A.

From now on, we will consider interaction potentials
which satisfy Ṽ (S;A)→ 0 for S →∞. Consequently, in
this limit the TWD behaves as

P (s) ≈ 1

f̃(c)
e−Γ s2 . (10)

This means that v(s;A) does not change the functional
form of the TWD for large values of s compared with
the case of non-interacting steps (A = 0), which, in turn,
is well described by Eq. (1) with % = 2. This is not
an unexpected result because v(s;A) decays as s → ∞.
Thus, we can expect that the interaction potential only
has significant effects on the TWD for small and interme-
diate values of s, depending on how fast the interaction
potential goes to zero as s increases.

For small values of s, the functional form of the TWD
depends strongly on v(s;A). For example consider the
general interaction potential v(s;A) = A s−γ . For s� 1,
this particular potential leads to

P (s) ≈ 1

f̃(c)
e−βA s

−γ
, (11)

which is clearly different from the behavior P (s) ≈ a%s
%

predicted by the GWS. However, for sufficiently large
values of γ the effect of the v(s;A) becomes important
just for small values of s. This justifies the use of the
GWS to fit the TWD for rapidly decreasing potentials
and explains why it gives excellent results for v(s;A) =
A s−γ with γ = 2 and (unphysically) 3; see, for example,
Ref. [17].

As mentioned before, Eq. (9) has just one free parame-
ter. Nonetheless, it describes quite well the data obtained
from the numerical simulation of the TSK model for dif-
ferent potentials. The case of v(s;A) = A s−2 is shown
in Fig. 1 for different values of A. The agreement be-
tween numerical and analytical results given by Eq. (9)
is excellent [47].

In general, the function A = g(A) cannot be deter-
mined easily from analytical calculations. However, we

find that the empirical relation A
1
η = ν ln(χA + 1) fits

well the numerical relation between A and A found from
the numerical data, as shown in Fig. 2.

Now, we consider a more general interaction between
steps. We adopt the potential

v(s,A, B) =
A
s2

+
B cos(ω s+ φ)

s3/2
, (12)



4

FIG. 1. (Color online) TWD for different values of A with
v(s;A) = A s−2 and nearest-neighbor interactions q = 1 . In
all figures we include the values of A used in the numerical
simulation instead of the ones of A. The relation between
both constants is given implicitly by Eq. (6).

FIG. 2. Relation between A and A for the potential v(s;A) =
A s−2 and nearest-neighbor interactions q = 1. The con-

tinuum line is given by A
1
η = ν ln(χA + 1) with ν ≈ 1.05,

η ≈ 0.87 and χ ≈ 0.19 while the dots represent the numerical
data.

which is characteristic of vicinal surfaces with both elastic
repulsion and surface-state mediated electronic interac-
tions [17, 48–52]. In this expression, A and B are deter-
mined by the elastic repulsion and by the coupling to the
surface state, respectively; ω is proportional to the Fermi
wavevector; and φ is a phase shift, for more information
see Ref. [17, 48, 49].

One interesting feature of this potential is the appear-
ance of more than one maximum in the TWD. This
scenario appears, for example, in kinetic Monte Carlo
(KMC) simulations of solid-on-solid models where step
bunching is present [53] as well as in experiments. From
Eq. (9), it is clear that the critical points of P (s) are

given by

2

s
− 2 Γ s− c− β dv(s;A)

ds
= 0. (13)

The function h(s) = 2/s − 2 Γ s − c decreases mono-
tonically, because Γ > 0. In the particular case of

v(s;A) = A s−γ , the function β dv(s;A)
ds increases mono-

tonically, allowing just one maximum in the TWD. How-

ever, for the potential given by Eq. (12), β dv(s;A)
ds ex-

hibits oscillatory behavior, which can lead to more than
one maximum in the TWD. A sketch of this discus-
sion is shown in Fig. 3, where there are three critical
points (two maxima and one minimum); for the poten-
tial v(s;A) = A s−γ , there is just one critical point (max-
imum). As shown in Fig. 4, Eq. (9) also gives excellent
results for this potential.

FIG. 3. (Color online) The interaction given by Eq. (12) may
generate more than one maximum in the TWD.

FIG. 4. (Color online) TWD for different values of B = αA
with v(s,A, B) = A

s2
+ B cos(ω s+φ)

s3/2
and nearest-neighbor in-

teractions q = 1.
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Another important advantage of this formalism is that,
from Eq. (9), it is possible to determine the interaction
potential v(s;A) from numerical or experimental data for
the TWD. In fact, Eq (9) can be written in the form

β v(s;A) = −ln

(
f̃(c)P (s)

s2 e−Γ s2

)
− c s, (14)

By using Eq. (14) it is possible to extract v(s;A) di-
rectly from P (s). Nevertheless, as was pointed out in
Ref. [17] this is not a trivial matter even if good quality
data are available. As a first example we consider the
numerical data given in Fig. 2 of Ref. [17] for the poten-
tial V (S) ∝ S−3. These data are represented by small
squares in Fig. 5. In order to calculate v(s,A), we pro-
ceed as follows. First, we assume a functional form for
the interaction potential. For this particular example,
we use v(s,A) = A s−γ where A and γ are parameters to
be determined. Second, we select a value of γ and then
we perform the fit of Eq. (9) to the data. At the end of
this step, we have the parameters A and γ, which define
the pre-established form of the interaction potential. The
third and final step is to calculate v(s;A) from Eq. (14) in
order to check consistency with the pre-established form
v(s,A) of the potential. In Fig. 5 the results of fits for
γ = 1 to 4 are shown. All of them describe the TWD
well; in fact the lines are almost indistinguishable except
in the region s ≤ 0.3. However, as we can see in the in-
set of Fig. 5 b), the results for v(s;A) are consistent for
small values of s only in the case γ = 3 [63]. In Ref. [17]
a different approach was used to calculate the same po-
tential leading to the erroneous result γ = 2, while the
formalism presented here gives the correct value γ = 3.

As an additional example we calculate the potential
from the data reported in Fig. 2 of Ref. [15]. As shown
in Fig. 6, both P (s) and v(s,A), are well described as-
suming v(s,A) ∝ s−2.

Sometimes the results of the experiments are given
through the pair correlation function g(r) instead of the
TWD [14]. By definition g(r) is the probability of finding
another step a specified distance away, regardless of how
many steps might lie between them. In the case of a one-
dimensional free fermion system, i.e., for non-interacting
steps (A = 0), g(r) can be calculated easily [10, 54–56]

g(r) = 1−
(

sin(π r)

π r

)2

. (15)

Unfortunately, the case of interacting steps v(s;A) 6= 0
provides a more difficult scenario where g(r) cannot be
calculated explicitly in tractable form [57, 58]. However,
the formalism used to describe the TWD can be extended
to find an approximation for g(r): let p(n)(s) be the prob-
ability density that the normalized distance between two
steps is s under the condition that between them there
are n additional steps, see Appendix A. This immedi-
ately implies that the TWD is given by P (s) ≡ p(0)(s).
Additionally, from p(n)(s) it is possible to recover g(r)

through

g(r) =

∞∑
n=0

p(n)(s). (16)

We can expect that a good approximation for p(n)(s)
gives a good description of g(r). As usual the case A = 0
is the easiest.

Abul-Magd [59] showed that, for a one-dimensional free
fermion system, p(n)(s) can be approximated by Eq. (1)
taking

%n = n2 + 4n+ 2. (17)

This approximation assumes that the p(n)(s) for any n
can be written in the form given by Eq. (1) with a suitable
choice for %n. We can use the same kind of approximation
to extend Eq. (9) for arbitrary n to

p(n)(s) =
1

f̃(cn)
s%ne−Γn s

2−β v(s;An)−cn s, (18)

with %n given by Eq. (17). In this way, for A = 0 we
recover the case of non-interacting steps and for n = 0
we arrive to the TWD given by Eq. (9). In Fig. 7 a) are
shown the results given by Eqs. (16), (17) and, (18) for
the case of interacting steps with v(s;A) = A/s2. Fig.
7 b) shows the same results for the potential given by
Eq. (12). The agreement is excellent in both cases. As
expected, large values of A give better-defined peaks in
g(r) than in the case of non-interacting steps given by
Eq. (15). We also check the quality of the fit for each
p(n)(s) with n ≥ 1, finding excellent agreement with the
numerical results. These fits are not included in the text.

B. Next-nearest-neighbor interactions q = 2

In the previous section we discussed the applicability
of Eq. (9) for arbitrary potentials and nearest-neighbor
interactions q = 1. If we include next-nearest neigh-
bor interactions, the effective Hamiltonian of the system
takes the form

Heff =
1

β

N∑
i=1

[
KS2

i − ln
(
S2
i

)]
+

N∑
i=1

(
Ṽ (Si;A) + Ṽ (Si + Si+1;A)

)
. (19)

Then, the partition function for this system can be writ-
ten as

Z(Lx) =

∫ ∞
0

dS1 · · ·
∫ ∞

0

dSNδ(∆)

N∏
j=1

f(Sj)h(Sj+Sj+1),

(20)
where f(s) is given by Eq. (B2) and

h(S) = e−β Ṽ (S;A). (21)
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(a) (b)

FIG. 5. (Color online) Determination of the interaction potential from numerical data. The value γ = 3 which gives the
appropriate fits for the numerical data for P (s) and v(s,A).

FIG. 6. (Color online) Determination of the interaction po-
tential from experimental data. Excellent agreement is found
with v(s,A) ∝ s−2.

Again, following Bogomolny et al. [45], the TWD can
be written as

P (s) =

[
L

N
φ0

(
c,
s L

N

)]2

, (22)

where φ0(c, s) is the eigenfunction associated with the
largest eigenvalue, λ0, of the following homogeneous
Fredholm integral equation∫ ∞

0

dS′K(S, S′)φj(t, S
′) = λjφj(t, S) (23)

where the symmetric kernel, K(S, S′), has the form

K(S, S′) =
√
f(S)e−

t S
2 h(S + S′)e−

t S′
2

√
f(S′). (24)

As in Eq. (B5), c is the solution of an algebraic equation

0 =
Lx
N

+
1

λ0(t)

dλ0(t)

dt

∣∣∣∣
t=c

. (25)

In general, Eq. (23) is difficult to solve analytically. How-
ever, it can be solved numerically as a standard eigen-
value problem [60]. To clarify this point, we note that
Eq. (23) can be written approximately as

δ

M∑
k=1

WkK(Sl, S
′
k)φj(S

′
k) = λjφj(Sl). (26)

with δ = S′k+1 − S′k the constant interval between piv-
otal points and Wk a weighting coefficient. The original
integration domain [0,∞) is approximated by [δ,M δ].
Eq. (26) represents a set of algebraic equations given ex-
plicitly by

hKWφj = λjφj , (27)

where φTj = (φj(h δ), φj(2h δ), · · · , φj(M δ)),
K(Sl, S

′
k) = K(l δ, k δ) and W is a diagonal ma-

trix with elements W1,W2, · · · ,WM . Naturally, the
vector φj gives the values of the function φj(S) at
positions S = l δ with l = 1, 2, · · · ,M .

In order to test the quality of the solutions given by
Eq. (27), we perform a comparison with numerical data
from the simulation of the TSK model, displayed in
Fig. 8. As in the case of q = 1, the agreement is ex-
cellent.

C. Arbitrary range of interactions

Now we consider the case where each step interacts
with an arbitrary number q of its neighbors. In this case
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(a) (b)

FIG. 7. (Color online) Pair correlation function g(r) for interacting steps with a) v(s;A) = A/s2 and b) v(s;A) given by Eq.
(12). The dashed line corresponds to Eq. (15) which gives g(r) for A = 0.

(a) (b)

FIG. 8. (Color online) a) TWD for different values of A with v(s;A) = A/s2 with q = 2 and b) TWD for different values of A
and α with v(s;A,α) = A

s2
+ αA cos(6 s)

s3/2
also with q = 2.

P (s) can be also written in terms of the eigenfunctions
φj(S1, · · · , Sq) of a complicated integral equation which
involves a kernel with 2(q − 1) variables. The resulting
equation for the TWD requires the solution of q−1 inte-
grals which increase in difficulty with q, making it hard
to find a numerical solution. However, as shown in Fig. 9
for v(s;A) = A/s2, our numerical results show that the
differences in the TWD for the values of q considered are
minor. The most significant differences are found near
the maximum of the distribution. As shown in Fig. 9 b),
the largest differences for the TWD are found between
the cases q = 1 and q = 2, while the differences be-
tween the cases q = 2 and q = 3 or q = 3 and full-range
interactions are negligible. This is not an unexpected
result because for the physically-important rapidly de-
creasing potentials such as v(s;A) ∝ s−2, the contribu-
tion of the interactions in the Hamiltonian are dominated
by the nearest-neighbor terms. This justifies the use of
our model for q = 1 or q = 2, even in the cases of full-

range interactions. Nevertheless, we emphasize that this
approximation is only valid for rapidly decreasing po-
tentials. For potentials such as v(s;A) = −A ln(s) the
functional form p(n)(s) for arbitrary n depends strongly
on q [45, 61].

IV. CONCLUSIONS

The formalism presented here is quite general and can
be used for a wide range of interaction potentials. We
are able to describe the effect on the TWD given by elec-
tronic, elastic and entropic forces between steps. Addi-
tionally, the model allows one to describe several aspects
of interacting step systems. In particular the quantita-
tive description of P (s), g(r) and v(s;A) given by our
formalism is remarkably good for the numerical and ex-
perimental data considered.

For potentials which decrease rapidly with s, in partic-
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(a) (b)

FIG. 9. (Color online) a) TWD for the potential v(s;A) = A s−2 for different range of interactions and b) zoom of the TWD
near the maximum. For rapidly decreasing potentials we do not find significant differences in P (s) with increasing q.

ular for the physically most important case s−2, we found
that the effect of the finite range of interactions is not
significant and that the TWD can be described by tak-
ing into account just nearest-step-neighbor interactions.
This means, for example, any discrepancy between find-
ings for the TWD computed with just nearest-neighbor
interactions and analytic predictions for infinite-range
models (especially the GWS) must be attributed to some
other source. Nonetheless, the formalism proposed by
[45] and discussed in this paper gives analytical expres-
sions for the TWD even for arbitrary values of q.

Determining the interaction range q from the empirical
data of TWD does not seem feasible for interaction po-
tentials which decay rapidly as s → ∞ (including s−2).
The main reason is that this kind of potential affects P (s)
significantly just for small values of s, and in this limit
the experimental data are too noisy to access the effects
of the number of interacting neighbors. In contrast, long-
range potentials such as v(s;A) = −A ln(s) change the
functional form of P (s) even for large values of s [45, 61].
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Appendix A: Spacing distribution functions

The joint probability distribution, PN (x1, · · · , xN ;β),
to find particles 1, 2, · · · , N around positions
x1, x2, · · · , xN , respectively, is given by

PN (x1, · · · , xN ;β) =
1

ZN (L;β)
e−βV(x1,··· ,xN ), (A1)

where ZN (L;β) is the partition function of the system

and V(x1, · · · , xN ) =
∑N
i=1

∑i+q
j=i+1 V (|xi − xj |) is the

total interaction energy among the N particles. As the
interaction potential only depends on the differences be-
tween the position of the particles, the change of variables
Si = xi − xj gives

PN (S1, · · ·, SN ;β) =
1

ZN (L;β)
e−β Ω, (A2)

with

Ω =

N∑
m=1

[V (Sm) + V (Sm + Sm+1)

+ · · ·+ V (Sm + · · ·+ Sm+q−1)] . (A3)

The periodic boundary conditions impose SN+1 = S1.
The joint probability distribution of n consecutive spac-
ings Pn (S1, · · · , Sn;β) can be written as

Pn (S1, · · · , Sn;β) =

∫
dSn+1 · · · dSN PN (S1, · · · , SN ;β) .

(A4)
By definition, the nth spacing distribution function
p̂(n)(S) can be calculated from

p̂(n)(S) =

∫ ∞
0

dS1 · · · dSn+1 δ (η)Pn+1 (S1, · · · , Sn+1;β) ,

(A5)

with η = S −
∑n+1
i=1 Si. The scaled probability density is

p(n)(s) =

∫ ∞
0

dS1 · · · dSn+1 δ(λ)Pn+1 (S1, · · · , Sn+1;β) .

(A6)
with λ = η/ 〈S〉. Note that Eq. (A6) satisfies the stan-
dard normalization conditions [59]∫ ∞

0

ds p(n)(s) = 1 and

∫ ∞
0

ds s p(n)(s) = n+ 1.

(A7)
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Appendix B: Configurational partition function

The partition function of the system described by
Eq. (8) is given by

ZN (Lx) =

∫ ∞
0

dS1 · · ·
∫ ∞

0

dSNδ(∆)

N∏
i=1

f(Si) (B1)

with ∆ = Lx −
∑N
i=1 Si and

f(Si) = S2
i e
−K S2

i−β Ṽ (Si;A). (B2)

The Laplace transform Z̃N (t) =
∫∞

0
dLx e

−t Lx ZN (Lx)
of Eq. (B1) can be written as

Z̃N (t) =

(∫ ∞
0

dS e−t Sf(S)

)N
=
(
f̃(t)

)N
. (B3)

The inverse of Eq. (B3) can be calculated by using the
saddle-point approximation as shown in the Appendix C:

ZN (Lx) =
1

2π i

∫ τ+i∞

τ−i∞
dt eLx t+N lnf̃(t)

∼
(
f̃(c) e

Lx c
N

)N
, (B4)

where c is given by the solution of the following algebraic
equation

0 =
Lx
N

+
1

f̃(c)

df̃(t)

dt

∣∣∣∣∣
t=c

. (B5)

In Laplace space, the normalized TWD can be written
as [45]

P̃ (t) =
1

f̃(c)
f̃(c+ t). (B6)

Then, taking the inverse Laplace transform, we find
straightforwardly

P (s) =
1

f̃(c)
f(s)e−c s

=
1

f̃(c)
s2e−Γ s2−β v(s;A)−c s (B7)

with s = S N/Lx (the scaled spacing between particles),

K = Γ/ 〈S〉2, and υ(s;A) is the step-step interaction
potential in dimensionless form. For more information
see Refs. [45, 61, 62]. Until now we have not made any

assumption about Ṽ (S;A); Eq. (B7) applies for any po-
tential.

Appendix C: Saddle point approximation

The integral given in Eq. (B4) can be written as

ZN (Lx) =
1

2π i

∫ τ+i∞

τ−i∞
dt eN F (t), (C1)

where F (t) = ∆ t+ lnf̃(t). Expanding F (t) around t = c
gives

ZN (Lx) =
eN F (c)

2π i

∫ τ+i∞

τ−i∞
dt e

N F (2)(c) (t−c)2
2 G(t), (C2)

with G(t) = 1 + N
4!F

(4)(c)(t − c)4 + · · · . Additionally,

F (2)(c) and F (4)(c) are the second and the fourth deriva-
tives of F (t) evaluated in t = c, respectively. Recall that
c is the solution of Eq. (B5). The integral with respect
to t can be done choosing τ = c, i.e., along the line par-
allel to the imaginary axis through the point c. This
procedure gives

ZN (Lx) ≈ eN F (c)

√
1

2πN F (2)(c)
+O

(
N−3/2

)
. (C3)

In the thermodynamic limit N →∞ we can expect that

ZN (Lx) → eN F (c)
√

1
2πN F (2)(c)

∼
(
f̃(c) e

Lx c
N

)N
where

we have used the definition of F (t) given previously.
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