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Bragg scattering and Brownian motion dynamics in optically induced crystals of

sub-micron particles

R. E. Sapiro, B. N. Slama, and G. Raithel
Department of Physics, University of Michigan, Ann Arbor, MI 48109

A set of four confocal laser beams of 1064 nm wavelength is used to prepare optically induced
crystals of sub-micron particles in aqueous solution. Thousands of polystyrene spheres of about
200 nm diameter are trapped in three dimensions. Bragg scattering patterns obtained with a probe
beam of 532 nm wavelength are in agreement with the calculated lattice structure and its polarization
dependence. The decay and rise of the Bragg scattering intensity upon switching the lattice off and
on reveals the Brownian motion dynamics of the particles in the periodic optical trapping potential.
Experimental results agree well with results from trajectory simulations based on the Langevin
equation. The results exhibit the interplay between Brownian motion and deterministic forces in an
inhomogeneous (near-)periodic optical trapping potential.

PACS numbers: 83.80.Hj,42.50.Wk,83.10.Mj,83.10.Rs

I. INTRODUCTION

Optical traps for particles in solution (optical tweez-
ers), pioneered by Ashkin in the 1970’s and 80’s [1–3],
are now used in a variety of applications [4, 5]. There
has been rising interest in trapping geometries with mul-
tiple trapping sites, allowing for the preparation and ma-
nipulation of many particles at the same time. Tech-
niques include interference of multiple laser beams within
the trapping volume [6–10], as well as holographic tech-
niques that generate multiple static or dynamic trapping
sites [11–15]. Generally, several issues need to be ad-
dressed in these setups. First, the trapping of multiple
particles typically requires an equilibrium of the radiation
pressure forces acting on the particles [4, 16, 17]. Some-
times auxiliary normal forces from sample cell boundaries
are used. In the present work, we employ a radiation-
pressure-balanced optical lattice formed by four 1064 nm
laser beams that intersect at a confocal point [18]. The
optical lattice generates a three-dimensional (3D) array
of periodic traps for sub-micron polystyrene spheres (re-
fractive index np = 1.59, diameter ∼ 200 nm). Second,
multi-site traps require higher laser power than single-
trap tweezers since the light energy present within the
trapping volume scales with the number of trapping sites.
Thus, traps with many sites are susceptible to unwanted
heating and convection. Our laser trapping geometry,
which is akin to setups that have been used in atom trap-
ping [19, 20], exhibits a high volume density of trapping
sites such that the light power required per site is fairly
small (of order only 1 mW). Several thousand particles
can be trapped before heating causes noticeable effects.

We employ Bragg scattering of green laser light to
verify the crystal structure and its dependence on laser
polarization. Because of the dependence of the Bragg
scattering signals on the Deybe-Waller factor, the Bragg
scattering data allow us to study the thermal spread of
the particles about their ideal trapping sites. Our results
set the stage for trapping and Bragg structure analysis
of non-trivial particles (viruses, large bio-molecules, etc.)

using shorter-wavelength radiation. This potential appli-
cation represents one motivation for our work. The op-
tical crystals under investigation are mostly defect-free,
exhibiting a near-100% occupation probability of lattice
sites. Neighboring trapped particles are in close prox-
imity of each other (distances a few hundred nm), form-
ing densely packed optical crystals. A large volume fill-
ing fraction, available with larger particles, is conducive
to the preparation of tuneable photonic bandgap media,
waveguides, optical resonators and other nano-fabricated
optical structures. This prospect represents a second mo-
tivation for the work. In densely packed optical crystals
one may expect particle interaction effects as well as back
action between the optical fields and the particle system.
Light-induced particle interactions can produce regular
structures (“optical matter”; see, e. g., Ref. [6]). In the
present paper, in one of the polarization cases discussed
it appears that the combination of a 2D optical lattice
potential and particle-particle interactions can lead to a
3D crystal (Sec. VID).

Direct visual observation of the crystal formation [18]
indicates that the crystallization dynamics as well as the
degree of particle localization are driven by the compe-
tition between Brownian motion and the forces induced
by the optical trapping potentials. A quantitative un-
derstanding of Brownian motion effects represents an im-
portant prerequisite to applications of optically induced
crystals of sub-micron particles in solution. Here, we use
Bragg scattering to study the Brownian motion dynamics
in such a system. To explain the results, we numerically
solve the Langevin equation for particle ensembles [21].
The derived simulated Bragg scattering signals agree well
with experimental data.

II. PHYSICAL CONCEPTS

We first provide an overview of important concepts
that apply to our experimental system. Optical forces
on polystyrene particles in aqueous solution are gener-
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ated by four intersecting, mutually-coherent laser beams
that generate a 3D interference pattern, a method we
presented in Ref. [18]. The optical setup is sketched in
Fig. 1. Under the influence of the optical forces, the
polystyrene particles lock into place at the light interfer-
ence maxima, which are located on a periodic grid. The
optical-crystal period scales with the wavelength of the
lattice light and the beam geometry. In our case it is on
the order of 500 nm in all three directions. The crys-
tals fill volumes of about (5 µm)3. The trapping sites
typically have a depth between 10 and 100 kBT at a
temperature T ≈ 300 K. Geometrically, only one particle
can fit within a site. After several minutes of the lat-
tice beams being on, in the central region of the lattice
where the wells are deeper than several kBT , all wells
become filled with near-unity probability, with exactly
one trapped particle per well. The water solvent pro-
vides a Stokes friction force, due to which the particles
lose energy, while the optical forces pull the particles into
the wells. The water solvent also adds Brownian motion.
Situations of this nature are treated in textbooks (see,
for instance, Ref. [21]).
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FIG. 1. Schematic of the experimental setup. (Color online.)

The particle dynamics follow from the interplay be-
tween the random force that causes the Brownian mo-
tion, friction, and the position-dependent, periodic, con-
servative optical-trapping force. The resultant motion
has several characteristic time scales. The time interval
between random collisions between the particles and the

water molecules, on the order of 10−18 s, is much too
short to be observable. The velocity correlation time, or
damping time associated with the Stokes friction force,
is ≈ 5 ns and is also too short to be observable in our ex-
periment. Brownian motion and its associated diffusion
manifest as the particles hopping from place to place from
one image frame to the next. This is typical in experi-
ments with limited time resolution (such as ours). The
time particles need to diffuse over one lattice-laser wave-
length, i. e. the characteristic length scale of the setup,
is on the order of 50 ms. When the lattice is turned on,
the particles that are already within the lattice volume
drift into the nearest well within a time on the order of
1 ms, due to the combined effects of the optical force
and the retardation caused by the Stokes friction force.
This optically-driven particle drift into the wells is slow
enough that we are able to observe it in real time. The
time it takes for an entire crystal to form “from scratch”
is governed by the rate at which faraway particles diffuse
into the lattice region, which is dependent on the parti-
cle concentration. The crystal formation time typically
is several minutes.

The oscillation period of the particles in the optical-
lattice wells in absence of damping (i.e. in absence of any
water molecules, in vacuum) would only be on the order
of 10 µs. In water, the motion of the particles in the
optical-lattice wells is heavily over-damped. Since the
wells are quite deep compared to kBT , the particles set-
tle in the lattice wells and follow a Maxwell-Boltzmann
phase-space distribution. In steady-state, the spread of
the particles from the lattice-well minima corresponds to
an average potential energy of the particles in the optical
trapping potential of (3/2)kBT above the bottoms of the
wells. Hence, the root-mean-square displacement of the
particles from the centers of the lattice wells, caused by
random Brownian-motion-style excursions, scales with
the inverse square root of the well depth, which is propor-
tional to the lattice-laser power. By increasing the laser
power the particles become better localized in the wells.
This effect is clearly visible in the experiment. At high
laser power the Brownian motion appears to practically
“freeze out” and the particles appear locked into fixed po-
sitions. We can also intentionally induce changes in the
optical force by changing the lattice depth. The ensuing
drift motion reflects the particles’ response to changes in
the optical force, as well as the Stokes friction force which
acts while the particles are drifting. The ubiquitous ran-
dom force adds the Brownian, random component to the
motion.

We use Bragg scattering to analyze the static and dy-
namic properties of the optically induced crystals. Our
Bragg probe wavelength is & 3 orders of magnitude
longer than those used in x-ray Bragg scattering from
solid-state crystals, and the spatial periods of the opti-
cally induced crystals are ∼ 3 orders of magnitude larger
than those in solid-state crystals.
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III. SETUP

The 3D optical lattice is generated using four beams
derived from a single laser (air wavelength λ0 = 1064 nm,
line-width < 1 MHz) similar to the setup described
in [18]. As illustrated in Fig. 1, the four beams are
grouped into a down-going pair and an up-going pair
of parallel beams. The down-going (up-going) pair of
beams is separated by 4.2 mm on the y- (x-)axis; the
two pairs enter through identical microscope objectives
(Nikon 100x, 1.25 N.A., oil immersion, ∞-corrected).
The transmission of the objectives at 1064 nm is about
60%. The microscope objectives are aligned along a
shared optical axis to a common confocal point. The
gap between the objectives is 0.41 mm (the sum of the
manufacturer’s specification for the working distances).
A sample cell is placed between the two objectives,
with oil filling the small volumes between the objectives
and the cell surfaces. Sample cells are made from two
150 µm thick microscope cover slips fused together with
. 100 µm thick strips of paraffin film. The cell volume
is about 1 cm2 × . 100 µm, with clear optical access
through the 1 cm2 top and bottom surfaces. The cells are
filled with an aqueous solution of spherical polystyrene
particles at a concentration of about 109 particles/cm3,
with 0.05% v/w Tween 20 to prevent aggregation. In the
present work, particle diameters are 190 nm or 250 nm.
Prior to turning the lattice on, the particles are randomly
distributed, with a practically constant average density.
The vertical position of the sample cell is adjusted such
that the confocal point and the optically induced crystals
are located within the bulk of the solution, away from all
glass surfaces.

All four optical-lattice beams enter the microscope ob-
jectives parallel to the z-axis, at distances of 2.1 mm
away from the optical axis, as shown in Fig. 1. As
they pass through the objectives, they are refracted
towards the confocal point, where they pass through
the common focal spot. The four propagation vectors
within the sample volume are k(± sin(φ), 0, cos(φ)) and
k(0,± sin(φ),− cos(φ)). The beams have identical angles
φ relative to the optical axis of the microscope objectives
and wavenumber k = 2πnw/λ0 (the refractive index of
water nw = 1.33). This beam configuration forms a 3D
optical lattice using a minimal number of beams [22, 23].
We have experimentally determined φ = 52o±2o in pure
water. Taking into account the small refractive index
change due to the particles, we estimate φ = 50o ± 2o

inside the lattices. The resulting trapping potentials are
close to those explicitly provided in Ref. [18] for the case
φ = 45o. With the lattice turned off, diffusion is by
far the dominant source of motion and gravity is negli-
gible (it takes the particles about one day to accumulate
near the bottom of the cell). With the lattice turned
on, Brownian motion and conservative light forces are in
competition with each other, and gravity plays even less
of a role than with the lattice off.

Two real-time detection methods are employed to ex-

amine the optical crystals. The first is direct spatial
imaging, using a blue LED (center vacuum wavelength
450 nm) to illuminate the optical lattice. The LED is
focused into the back aperture of the top microscope ob-
jective, which acts as a collimator. The blue light scat-
tered from the sample is collected by the bottom objec-
tive, where it is split off by a dichroic mirror and imaged
onto a CCD camera. The camera is mounted on a trans-
lation stage, allowing the imaging plane to be adjusted
over several microns to observe different planes of the
lattice along the z-axis. The second detection method
is Bragg scattering. This method has previously been
used to study the localization and the wave-packet dy-
namics of laser-cooled atoms in optical lattices [24–28].
As shown in Fig. 1, a green Bragg probe laser beam (vac-
uum wavelength 532 nm, diameter ∼ 0.5 mm) enters the
bottom microscope objective parallel to the lattice beams
and is focused onto the optical crystal. This wavelength
is longer than the diameter of the polystyrene spheres
(190-250 nm), so for our present level of precision they
can be approximated as point particles. The location and
angle of the probe beam relative to the lattice beams near
the back aperture of the microscope lens is chosen such
that several Bragg reflections can be observed simultane-
ously. In the case illustrated in Fig. 1, the lattice beams
form an angle of φ ≈ 45o relative to the z-axis, while the
Bragg probe and all three visible Bragg-reflected beams
form angles of ≈ 30o relative to the z-axis (beam posi-
tions and angles are approximately to scale in the figure).
The Bragg probe beam and its forward Bragg reflections
exit through the top microscope objective, where they
are split off from the lattice beams by a dichroic mirror.
They are projected onto a paper screen imaged by a cam-
era. A photodiode can be placed in the path of any of the
Bragg-scattered beams to measure the Bragg intensities
as a function of time.
In accordance with the potentials provided in section

III.A of Ref. [18], we find that the lattice beam polar-
izations have a profound effect on the images and on the
Bragg scattering behavior of the particle crystals. We
denote a beam pair as p-polarized if its polarization is
linear and in the plane spanned by that beam pair, and
as s-polarized if its polarization is linear and transverse
to that plane. To specify the polarizations of both beam
pairs, we list the polarization of the down-going pair first
(e.g., sp-polarization denotes s-polarization of the down-
going pair and p-polarization of the up-going pair).

IV. LATTICE STRUCTURE AND BRAGG

SCATTERING GEOMETRY

The value of φ is sufficiently close to 45◦ that we
perform all calculations for φ = 45◦. For the cases of
pp-, sp-, and ps- polarization, the lattice potential has
an apparent face-centered orthorhombic (FCO) structure

with a tetragonal unit cell of lengths a = b =
√
2λ and

c = λ/
√
2 along the x, y and z-directions, respectively
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(see Fig. 2(a)). There, λ is the effective wavelength of
the lattice laser in the water-particle mix in the lat-
tice, λ ≈ 1064 nm/1.35. The potentials are given in
Ref. [18]. The primitive unit cell of this lattice is mon-
oclinic, and its unit vectors can be written in Cartesian
coordinates as a1 = (a/2,−a/2, 0), a2 = (a/2, a/2, 0)
and a3 = (a/2, 0, c/2). The corresponding reciprocal lat-
tice has unit vectors k1 = 2π(1/a,−1/a,−1/c), k2 =
2π(−1/a,−1/a, 1/c) and k3 = 2π(0, 0, 2/c). Our current
setup does not allow observation of Bragg scattering or-
ders with non-zero z-components of the reciprocal lattice
vectors ∆k = hk1 + kk2 + lk3. Thus, we only observe
Bragg peaks from planes with Miller indices (hkl) that
satisfy 2l + k − h = 0, leading to

∆k =
4π

a
(nx, ny, 0) =

2
√
2π

λ
(nx, ny, 0) (1)

with integers nx = l and ny = l − h. For simplicity
we denote the observed reflections (nxny). As shown in
Figs. 1 and 2(c), we choose a Bragg probe beam align-
ment that allows us to simultaneously analyze the Bragg
reflections (10), (01) and (11); the probe beam itself is
denoted (00). Bragg orders higher than ni = 1 are not
presently observed. The probe beam and the (10), (01)
and (11) Bragg reflections all form angles of ≈ 30◦ rel-
ative to the z-axis. As indicated in Fig. 1, in the back
plane of the microscope objectives the probe beam and
the (10), (01) and (11) Bragg reflections form a square
that is oriented at 45◦ relative to the square formed by
the four lattice beams. Forward Bragg scattering with
∆kz = 0 does not provide information about the crystal
structure or the particle spread from the ideal sites in the
z degree of freedom.
In the case of ss-polarization, the light-induced trap-

ping potential is periodic in x and y, but not in z
(see Ref. [18] Eq. 1 and Fig. 2(b)). The resultant two-
dimensional (2D) lattice has elementary unit vectors
a1 = (a/2, 0) and a2 = (0, a/2), and the reciprocal lat-
tice has unit vectors k1 = 4π(1/a, 0) and k2 = 4π(0, 1/a),
leading to the same ∆k as in Eq. 1. Since we only observe
Bragg scattering with ∆kz = 0, we expect and observe
that all four polarization cases yield the same Bragg scat-
tering peaks, with intensities depending on polarization.
We define the reflectivity for the Bragg peak (nxny) as

Rnxny
= Pnxny

/P0, where P0 is the incident Bragg probe
power and Pnxny

is the power reflected into peak (nxny).
In lattices that are symmetric under x-y swap, we expect
R10 = R01. In a homogeneous crystal and in the case of
low saturation, i.e. if all Rnxny

≪ 1, the Bragg reflec-
tivities are proportional to the respective Debye-Waller
factors, Rnxny

= cDnxny
, where the proportionality con-

stant c should be the same for all Bragg reflections. The
constant c is related to the number of particles, the over-
all shape of the crystal, the crystal’s position within the
probe beam, etc. The Debye-Waller factor is

D = exp
(

−
〈

(∆k ·∆x)2
〉)

,

where ~∆k is the photon momentum exchange from Eq. 1

λ

π22
x =∆k

λ

π22
y =∆k

zk

2λ=a

2λ=b

2/λ=c

2λ=a 2λ=a

2λ=a

(a) (b)

(c)

2λ=b

(01)

(10)

(11)

(00)

FIG. 2. (a) Apparent face-centered orthorhombic lattice
structure for pp-, sp- and ps-polarizations. (b) The lattice
potential structure for ss-polarization is constant in z. (c)
Ewald sphere (radius= 2π/λprobe) for the utilized Bragg scat-
tering geometry with ∆kz = 0. (Color online.)

associated with individual Bragg reflections, and 〈...〉 in-
dicates an average over all particles in the crystal. The
vector ∆x is the displacement of a particle from its ideal
crystal site. In the present case, the deviations ∆x are
caused by Brownian motion in the trapping potential
wells. We refer to the root-mean-square deviation of the
particles from their sites as localization: x-localization is
√

〈∆x2〉, etc.
For φ = 45◦, the Debye-Waller factors for the (10),

(01) and (11) reflections are:

D10 = exp
(

−κ2(∆x)2
)

D01 = exp
(

−κ2(∆y)2
)

D11 = exp
(

−κ2
[

(∆x)2 + (∆y)2
])

, (2)

where κ = 2
√
2π/λ. Note that D11 = D01D10. If the

trapping potential is invariant under x-y swap, D01 =
D10 and D11 = D2

01. Several useful relations apply that
allow, in principle, calculation of the particle localizations
in x and y from measured ratios of Bragg reflectivities:

D01 =
R11

R10

D10 =
R11

R01

D11 =
R11

R10

R11

R01

(3)
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V. STRUCTURE AND BRAGG SCATTERING

OF LARGE CRYSTALS

In Fig. 3(a), we show an optically induced crystal of
250 nm diameter polystyrene spheres generated by the
four-beam optical lattice with ss-polarization. The total
laser power is 3 W (summed over all lattice beams and
measured before the microscope objectives). The crystal
is prepared in the bulk of the sample, away from all walls,
and contains several thousand particles. The crystal is
10-15 sites wide on each of the x- and y-axes; additionally,
it is many lattice sites deep along the z-axis. The vol-
ume of the crystal is controlled by the beam waists, the
angle φ, and the intensity of the lattice beams. The fine
adjustment of the positions of the focal spots of the laser
beams relative to each other also plays a role. The beam
waist, or size of the focal spots, directly determines how
wide the lattice will be. It can be adjusted by changing
the diameter of the lattice beams before they enter the
microscope objectives (a smaller initial diameter leads
to a larger-diameter focal spot). Here, the diameter is
0.5 mm, leading to beam waists at the confocal point of
about 5 µm diameter. The incident angle of the beams
determines the lattice period, with larger φ leading to
smaller periods in the x- and y-directions and longer pe-
riods in the z-direction. The angle φ is determined by
the spacing between the parallel lattice beams, which is
4.2 mm in the current setup, leading to φ = 50o ± 2o.
The most straightforward way to control the lattice vol-
ume and the particle localization is to vary the lattice
laser power. As the lattice power increases, the lattice
becomes deep enough to trap particles farther out from
the center, thus increasing the volume of the optical crys-
tal. In our experiments, we use laser powers ranging
from 0.5 W to 4 W split evenly among the four lattice
beams, amounting to central beam intensities ranging up
to about 2× 1010 W/cm2 per beam.

The crystal shown in Fig. 3(a) took several minutes to
form after turning on the laser (the laser is immediately
switched on to full power). Initially there are almost
no particles in the optical trapping region, as the par-
ticle density in the solution outside the lattice is three
to four orders of magnitude lower than the density of
lattice sites. Thus, particles need time to diffuse into
the optical trapping region. As the trapping volume fills
up, particles are typically first caught in the periphery of
the growing crystal, and then jump from potential well
to potential well to fill the innermost, deepest wells (see
Ref. [18] Fig. 3(a),(b)). As the crystal nears its steady-
state configuration, all lattice sites with a minimal depth
of several kBT become occupied. Thus, in steady-state
all sites within the center region of the optically-induced
crystals are filled; vacancies only occur on the surface.
With good optical alignment, crystals are formed with
a well-defined perimeter of circular to diamond shape.
Approximate overall radiation pressure equilibrium is es-
sential for obtaining large crystals; misalignment leads to
particle escape along the direction(s) of dominant radia-

tion pressure.
Considering the large refractive index gradient between

water and polystyrene (1.33 vs 1.59), it is remarkable that
stable optically-induced crystals with more than ten lat-
tice planes can form at all. Stable crystals that exhibit
near-perfect symmetry require all four laser beams to be
present at all locations throughout the crystal volume.
Notably, for locations near the surface of the crystal,
this includes beams that propagate all the way through
the crystal before reaching those locations. In view of
the large refractive index gradient between particles and
solvent, we believe that the observed large optically in-
duced crystals are only possible because the particle sys-
tem and the light fields reach a self-consistent equilibrium
state. Similar situations have been discussed, within a
cold-atom context, in Ref. [29]. The likely self-consistent
equilibrium state has two components. First, the light-
induced forces on all particles must cancel to result in a
stable crystal. Second, we note that the reciprocal lattice
vectors, given in Sec. IV, are identical with differences
of wave-vectors of pairs of optical-lattice beams. The
optically-induced crystal can thus Bragg-diffract power
out of any of the four optical-lattice beams into the oth-
ers. Therefore, in the likely equilibrium state, the four
lattice beams must exhibit no net gain or loss due to
Bragg diffraction as they propagate through the crystal.

1 micron

(a) (b)

FIG. 3. (a) CCD image of a large optically induced crys-
tal with thousands of 250 nm diameter particles (3 W total
power, ss-polarization). (b) Bragg scattering pattern of the
crystal with Bragg peak assignments as in Fig. 2.

Figure 3(b) shows the Bragg scattering pattern from
the crystal in Fig. 3(a), obtained with the 523 nm Bragg
probe beam depicted in Fig. 1. The positions of the
Bragg peaks in the detection plane match our expecta-
tions described in Sec. IV. The (11) peak is considerably
weaker than the (01) and (10) peaks. This is expected
because the momentum transfer of the (11) peak is a fac-

tor of
√
2 larger than that of the (01) and (10) peaks. The

pattern in Fig. 3(b) is saturated: the Bragg peaks have
about the same intensity as the non-diffracted peak. The
non-diffracted peak has a “shadow” at its center, because
most of the incident light is Bragg-scattered out of the
central region of the Bragg probe beam.
The shadow seen in Fig. 3(b) makes it clear that in

large crystals the Bragg probe light does not penetrate
deeply into the crystal. Much of the Bragg scattering
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occurs on the surface, where the lattice beam intensities
are low and the particles are less strongly localized than
at the center. Therefore, while images such as the ones
in Fig. 3(b) nicely demonstrate the Bragg scattering of
optically induced crystals, less-saturated Bragg scatter-
ing is necessary for quantitative studies. To avoid sat-
uration and multiple scattering effects, and to ensure
that Bragg probe light reaches the crystal center, the
measurements discussed in Sec. VI are performed with
smaller particles (190 nm diameter), which scatter much
less green light. In the time-dependent measurements in
Secs. VII and VIII, saturation is avoided by using less
trap-laser power, creating smaller crystals. In the unsat-
urated limit, the fields and powers of the Bragg-reflected
beams are expected to scale as the particle number and
the square of the particle number, respectively.

VI. POLARIZATION DEPENDENCE OF

BRAGG SCATTERING

A. PP-polarization

For the case of negligible particle-particle interac-
tions, trapping potentials have previously been given in
Ref. [18]. Under the assumptions that the particles ex-
hibit an isotropic, polarization-independent response to
the light field and that the back-action of the trapped
particles onto the field can be neglected, the trapping
potential is [30]

W (x) = −
3(n2

p − n2
w)

2c(n2
p + 2n2

w)

∫

particle volume

I(x′)dx′ dy′ dz′ ,

(4)
where the integral is over the single-particle volume and
I(x′) is the field intensity (which depends on beam direc-
tions and polarizations). For 190 nm diameter particles,
the volume filling fraction in the FCO structure shown
in Fig. 2 is only 2 % [18]. Therefore, the interaction-free
optical trapping potentials of Eq. 4 are expected to be
fairly accurate. In this Section, we show that the rela-
tive strengths of Bragg scattering peaks follow qualitative
predictions based on the trapping potentials W (x).
We note that polarization gradients, which are inherent

to the lattice fields used in our present work [23, 31], do
not enter into Eq. 4 due to the assumption of an isotropic
response of the particles. This is in stark contrast to laser
cooling and trapping of atoms (from which this technique
derives), where the non-isotropic spin structure of the
atoms can enable laser cooling methods that do depend
on the presence of polarization gradients (“Sisyphus cool-
ing”; see [32] and references therein).
In Fig. 4 we show a CCD image (top left) and Bragg

scattering pattern (top right) of a crystal of 190 nm
particles, induced with a laser power of 3 W and pp-
polarization. The bottom part of Fig. 4 shows several
cuts through the corresponding trapping potential. The

1 micron
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FIG. 4. Top: image (left) and Bragg scattering pattern (right)
with total laser power 3 W, pp-polarization, and 190 nm diam-
eter particles. The gray scale for the Bragg image shows the
square root of intensity, to emphasize small signals. Bottom:
cuts through the trapping potential calculated for φ = 45◦

and an intensity of 2 × 1010 W/m2. The color scale ranges
from -80kBT (blue) to 0 (red) in steps of 5kBT . The indi-
cated barrier heights correspond to particle diffusion along
the paths indicated by the white arrows. The pink dots indi-
cate the size of the particles. (Color online.)

images are taken after allowing the crystals several min-
utes to reach steady-state. The image, the Bragg pattern,
and the potential are symmetric under swapping of x and
y. The potential cuts reflect the FCO lattice structure
with periods a = b =

√
2λ and c = λ/

√
2 along the x,

y and z-directions. The Bragg peaks (10) and (01) are
equally intense and clearly visible, while there only is a
faint hint of a (11) peak. To interpret this behavior, we
note that, for cases symmetric under x− y swap and for
homogeneous crystals, the Debye-Waller factor for peak
(11) should equal the product of that of the (10) and
(01) peaks (see Eq. 2). Thus, with the (10) and (01)
peaks fairly dim in Fig. 4, it is reasonable for the (11)
peak to be very weak. The values for the potential bar-
riers given in Fig. 4 are for a single-beam intensity of
2× 1010 W/m2 (which is the estimated central intensity
of the utilized lattice beams). Particles trapped in the
periphery of the crystal experience much lower barriers
and larger position spreads than particles trapped near
the center. Since most particles are located in the periph-
eral shells of the crystals, the observed Bragg intensities
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are lower and the Debye-Waller factors smaller than the
central barrier heights might suggest.

B. PS- and SP- polarization
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FIG. 5. Like Fig. 4 but for sp (top row) and ps (second row)
polarizations. The color scale for the potential cuts ranges
from -120kBT (blue) to 0 (red) in steps of 5kBT . The poten-
tial plots are for the case that the fields have no y-component
(like the top row experimental data). (Color online.)

In Fig. 5 we show data analogous to those in Fig. 4,
but with sp- and ps-polarization (top and second from
top, respectively). While the potential still produces
an FCO lattice structure as in the pp-polarization case,
the potential barriers for particle migration in the x and
y-directions differ by about a factor of two (see poten-
tial plots in Fig. 5). As a result, the particle x- and
y-localizations are quite different. The crystal images
clearly show that the particles are primarily localized in
either x or y, but not both. Consequently, if the (10)
Bragg peak is strong then the (01) peak is very weak,

and vice versa. The direction of easy particle travel is
along the projection of the laser beam polarizations into
the x − y plane. For instance, if the lattice beams have
no y electric-field component, the direction of easy travel
and large particle spread is the x-direction (top row and
potential plots in Fig. 5). In both experimental situations
shown in Fig. 5, the (11) signal is almost too weak to be
observed. As in the pp-polarization case (Sec. VIA), this
is because the Debye-Waller factor for the (11) peak is
the product of the Debye-Waller factors for the (01) and
(10) peaks (for homogeneous crystals).

C. SS- polarization

1 micron

Barrier = 40 k
B
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0 1 2x(λ)
0
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2

FIG. 6. Like Fig. 4 but for ss-polarization. The color scale
for the potential cuts ranges from -85kBT (blue) to 0 (red) in
steps of 5kBT . (Color online.)

In Fig. 6 we show data analogous to those in Figs. 4
and 5 for the case of ss-polarization. In this case, the
light-induced potential does not depend on z, and is
square and symmetric under x-y swap. While there is
no periodic optical trapping force along z, particles are
still attracted to the confocal point in the z-direction due
to the overall weak gradient force caused by the intensity
envelope of the lattice beams. The ss-configuration has
the strongest x- and y-trapping forces of all the polar-
ization cases. As a result, the crystal images generally
suggest better particle localization in the ss-case than in
all other cases, and the Bragg scattering peaks are gen-
erally stronger, with even the otherwise very faint (11)
peak being visible in Fig. 6.
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D. Crystal structure along z

In the present experimental setup, Bragg scattering
involving ∆kz 6= 0 cannot be studied due to experimen-
tal constraints. However, three-dimensional ordering and
stability of optically induced crystals was demonstrated
previously based on the response of the optical crystals
to certain manipulations. In Figure 4 of Ref. [18] we
employed phase shifts of the lattice beams to translate
an optical crystal back and forth along the z-direction,
through the image plane. Snapshots extracted from the
concurrently recorded movie showed recurring particle
patterns, suggesting long-lived 3D ordering that persists
throughout the phase manipulation sequence. For the
large crystals we study in the present work, we infer 3D
ordering and stability from recurring particle patterns on
the surface of the crystal, observed while scanning the
imaging plane or the crystal repeatedly back and forth
along the z-direction. Further, watching the crystals in
steady state, we observe well-defined surface details that
show particles being trapped for long times in certain sur-
face sites that are apparently preferred due to deviations
of the optical-lattice beams from perfect symmetry. If
there were no trapping in z-direction, the surface parti-
cles would rapidly diffuse in and out of the imaging focal
plane. This is not observed; surface particles usually re-
main in focus for long times (seconds).
For the cases of pp-, sp- and ps-polarization, the ex-

istence of crystal structure in z is expected due to the
periodic z-dependence of the optical trapping potential
(see Figs. 4 and 5). Unexpectedly, we also find that the
crystals with ss-polarization appear to be ordered along
the z-direction, despite the ss optical trapping potential
having no periodic dependence in z [18].
While our initial evidence of 3D crystals in the case of

ss-polarization needs to be confirmed by Bragg scatter-
ing with ∆kz 6= 0, one may note that there have been
earlier observations of particle ordering due to dipole in-
teractions among particles [6]. In the present case of
ss-polarization, it is possible that the optical potential
imposes a crystal structure in x and y, while particle in-
teractions lead to a well-defined structure in z. It may
also be possible that the ss-configuration’s periodic po-
larization gradient along the z-direction plays a role. Fu-
ture Bragg scattering studies will help illuminate this
issue. For details on the polarization gradient in the
ss-polarized optical lattice, see Ref. [23] (Fig. 1(e) and
associated discussion) and Ref. [31].

VII. CRYSTAL DISSIPATION

Optically induced crystals in aqueous solution are sub-
ject to the competing influences of the periodic opti-
cal lattice potential and Brownian motion. The lattice-
induced optical dipole forces together with Stokes damp-
ing within the solvent (water) tend to localize the parti-
cles on a regular grid. The stochastic Brownian motion

counteracts the formation and the maintenance of a crys-
tal structure. In steady state, the crystal size grows until
the outermost occupied lattice sites are only several kBT
deep. Bragg scattering is an excellent tool to study the
buildup of the crystals, as well as their decay after the
lattice is turned off.

We begin by discussing crystal decay. These studies are
performed with 250 nm diameter particles, which have a
5% volume filling fraction in the FCO lattice structure
shown in Fig. 2(a). For the measurements, the light-
induced crystal is first allowed to reach steady state,
which takes several minutes. Then, the lattice light is
turned off for 25 ms and back on. The off phase is suf-
ficiently long for the short-range crystal order to com-
pletely disappear, but not long enough for the particles
to leave the vicinity of the trapping region. Upon turn-
ing the lattice back on the particles quickly become re-
trapped, and the crystal returns to its steady state within
a few tens of milliseconds. This allows measurements
to be repeated at a fairly high rate. In the present ex-
periment, we use repetition rates of 1 to 2 per second.
To measure the decay of the crystal order, an amplified
photodiode is placed in the path of one of the Bragg re-
flections. The photodiode signal is proportional to the
total power in the selected Bragg reflection. The decay
of the photodiode signal after switching the lattice off is
recorded with an oscilloscope and averaged over 128 cy-
cles. The measurement is performed for several lattice
laser powers and polarization configurations.

1.0

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14

(a) (b)

FIG. 7. (a) Example of an intensity decay curve for Bragg
peak (10) at 480 mW total lattice power, 250 nm particles,
and sp-polarization. (b) Decay time constants vs the total
power of the lattice for the indicated polarization cases and
Bragg peaks. (Color online.)

Generally, the decay curves are well fitted by decaying
exponential curves, as shown by the example provided
in Fig. 7(a). Plotting a set of decay time constants vs
the laser power, we find that all (10) and (01) peaks
have similar decay times that average to about 2.2 ms.
The spread of the results comes from some uncertainty
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in the fitting, which is due to 60 Hz and other noise in
the photodiode signal. Notably, while the absolute Bragg
reflection powers depend on the polarization type of the
lattice, the decay times do not. For the (11) peaks we
find decay times of about 1.1 ms, again with no depen-
dence on the polarization type of the lattice. For both
the (10)/(01) peaks and the (11) peaks we observe a drop
in decay times with increasing laser power.
To explain the data in Fig. 7, we consider the square

of the particle localization along the x-direction,

〈x(t)2〉 = 〈(x0 + δx(t))2〉
= 〈x2

0〉+ 2〈x0δx(t)〉 + 〈δx(t)2〉
= 〈x2

0〉+ 〈δx(t)2〉 (5)

There, 〈〉 denotes an ensemble average, x0 is the initial
particle deviation when the lattice is turned off, and δx(t)
is the particle diffusion in position after the lattice is
turned off. From the second to the third line we use
the statistical independence of initial particle positions
and subsequent drifts. Analogous equations apply to the
y and z coordinates. In the case of crystal dissipation,
the particles undergo Brownian motion with no external
field, and therefore:

〈x(t)2〉 = 〈x2
0〉+

2kBT

γ
t = 〈x2

0〉+
2kBT

6rπη
t (6)

where T is the temperature, γ is the Stokes friction con-
stant (friction force on sphere divided by velocity), r is
the particle radius, and η is the water viscosity. Since the
term 〈x2

0〉 only depends on initial conditions, the decay
behavior of the Debye-Waller factor depends only on the
second term:

D10(t) = D10(0)exp(−t/τ10) (7)

where D10(0) is the Debye-Waller factor at the time in-
stant of the lattice turn-off. Thus, the time constant

τ10 =
3rηλ2

8πkBT
, (8)

where λ is the wavelength of the lattice light in the water-
particle mix. Also, because of Eq. 2,

τ10 = τ10 and τ11 = τ01/2 . (9)

To obtain λ we use an effective refractive index of the
water-particle mix, neff , which is the volume-weighted
average of the refractive indices of water (nw = 1.33) and
of polystyrene (np = 1.59). The particle volume filling
fractions, calculated in Ref. [18], are 2% for the 190 nm-
diameter and 4.5% for the 250 nm-diameter particles.
Consequently, neff is only slightly higher than nw; we use
neff = 1.35 for the 250 nm-diameter particles. The small
difference between neff and nw is not expected to have
any observable effect. Using the water viscosity at 20◦C,
η = 1.00×10−3 Pa s, and the particle radius 125 nm, the
decay times that follow from Eqs. 8f are τ10 = 2.33 ms

and τ11 = 1.17 ms. These results are in excellent agree-
ment with the experiment. The experimentally observed
drop of the decay times at higher laser powers is consis-
tent with a water temperature increase by about 10◦C,
which would reduce η by about 20%. This temperature
increase with increased laser power is highly plausible.
The above analysis implies that, in agreement with the

experiment, the decay time constants only depend on the
lattice structure but not on the initial average position
spread of the particles. Further, the Bragg-reflected field
is a coherent sum of the scattered fields from individual
particles (see Eq. 13 below). In the summation, corre-
lations between initial particle deviations x0 and abso-
lute particle positions within the crystal are irrelevant.
Hence, we do not expect any dependence of the decay
behavior on systematic variations of 〈x2

0〉 between parti-
cle sub-ensembles (such as the low-intensity outer regions
of a crystal having a larger 〈x2

0〉 than its high-intensity
inner region). In our measurements we did not find evi-
dence for any such dependence.

VIII. CRYSTAL RE-FORMATION

To study crystal formation from dense, disordered sam-
ples, we first allow the crystal to reach steady state (this
takes several minutes). Then, the lattice light is turned
off for sufficiently long that the short-range crystal or-
der completely disappears, but not long enough for the
particles to leave the trapping region, as described in
Sec. VII. As the lattice is off for only 25 ms, during the
lattice-off phase the particles on average move less than
300 nm due to diffusion, thus all remaining close to the
wells from which they originate. Upon turning the lat-
tice back on, the particles re-establish their steady-state
localization within the lattice sites on a time scale that is
on the order of 10 ms (which is four to five orders of mag-
nitude faster than the time it takes to build an optical
crystal “from scratch”). The process of re-establishing
the short-range order is governed by both the lattice-
induced optical dipole force and the stochastic force that
causes Brownian motion. To investigate the re-formation
of crystalline order, we measure the total power in a se-
lected Bragg reflection vs time after switching the lattice
on. As in Sec. VII, the experiment operates at repetition
rates between 1 and 2 per second and we average over
128 cycles.
In Fig. 8(a) we show several typical rise curves at three

different powers. Clearly, the rise curves are not simply
exponential functions of time. It typically takes on the
order of 1 ms for the Bragg reflectivity to begin building
up. Then, for a few milliseconds the buildup of Bragg-
reflected power appears quadratic in time. After tens of
milliseconds the Bragg signals have a tendency to some-
what level out. However, in almost all cases we still ob-
serve noticeable upward slopes at the end of the obser-
vation time interval (23ms).
The crystal formation is considerably more compli-
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(a) (b)
I (109 W/m2)

FIG. 8. (a) Bragg power vs time for the (10) Bragg peak at
the three indicated total lattice laser powers, 250 nm particles,
pp-polarization, and φ ≈ 45◦. The lattice is turned on at
time t = 0. (b) Rise curves simulated using the Langevin
equation for the (10) Bragg peak at the indicated fixed single-
beam lattice intensities, pp-polarization and φ = 45◦. The
simulated curves are normalized as explained after Eq. 13.
(Color online.)

cated than the decay studied in Sec. VII. In the case
of crystal decay, the particle delocalization behavior sim-
ply follow 〈δx(t)2〉 = 2Ft, with the diffusion constant
F = kBT/γ, regardless of the initial particle positions
within the overall crystal. In the case of crystal forma-
tion, the particle dynamics depend on both the light-
induced forces, which strongly depend on particle po-
sition within the overall crystal, and on the stochastic
forces, whose characteristics do not depend on particle
position. As a result, the rise behavior is strongly af-
fected by the Gaussian intensity envelopes of the lattice
beams, as we will show next.

In order to understand data like the ones shown in
Fig. 8(a), we simulate the particle dynamics after lattice
turn-on, employing the Langevin equation using meth-
ods described by Risken [21]. (An alternate, but more
computationally-intensive, method would be to use the
Fokker-Planck equation.) The Langevin equation, de-
scribing the motion of a particle in a fluid, is

mẍ = −∇V (x)− γẋ+ Γ(t) (10)

where x(t) is the particle position, m the particle mass,
and Γ(t) a δ-correlated stochastic force with 〈Γ〉 = 0
and 〈Γi(t)Γj(t

′)〉 = 2kBTγδijδ(t − t′). V (x) is the par-
ticle trapping potential, which depends on polarizations,
intensity and φ (equations given in Ref. [18]). We use

Eq. 10 to compute ensembles of particle trajectories:

v(t+∆t) = v(t)(1 − γ∆t/m)− [∇V (x)/m] ∆t

+
√

2γkBT∆t/m2w

x(t+∆t) = x(t) + v(t)∆t (11)

There, v(t) is the velocity vector of a particle. The time
step size ∆t is chosen to be 1 ns, which is much less than
the velocity correlation time (which is about 6 ns). The
spatial vector w contains three random numbers wi for
the random velocity increments in the x, y and z degrees
of freedom, respectively. The wi follow a Gaussian dis-
tribution and have an RMS value of one. The wi can be
generated via [21]

wi =

√

12

M

M
∑

n=1

(rn − 1

2
) (12)

with M ∼ 10 and random numbers rn that have a flat
distribution between 0 and 1. Once the particle trajec-
tories xn(t) are known, the Bragg scattering amplitudes
are proportional to

A(t,∆k) =
1

N

N
∑

n=1

exp(−i∆k · xn(t)) . (13)

There, ∆k is the reciprocal lattice vector that corre-
sponds to the Bragg peak. The Bragg scattering powers
are ∝ AA∗. Equation 13 is normalized such that a crys-
tal has a Bragg scattering intensity of 1 if all particles
have zero displacement.
In Fig. 8(b) we compare a selected experimental re-

sult with simulation results for optical lattices in which
each of the four beams has the indicated single-beam
intensities I. We find that the quadratic onset of the ex-
perimentally observed Bragg signal vs time is reproduced
fairly well by the simulations in the range 2×109W/m2 <
I < 4 × 109W/m2. However, this model cannot achieve
agreement with the measured curve over the entire time
range.
To improve the model, we find it is important to in-

clude the variation of the potential depth throughout the
volume of the trapping region. Particles near the cen-
ter, where the potential is deeper, localize fast and con-
tribute quickly to the Bragg scattering amplitude. Parti-
cles farther out experience shallower potentials and local-
ize more slowly, so their contribution to the Bragg scat-
tering amplitude develops more slowly. We must also ac-
count for the geometric fact that the outer shells contain
more lattice sites than the inner ones, so there are more
particles in the low-intensity outer shells of the lattice
than in the small high-intensity center. The Bragg am-
plitudes from all shells must be weighted and coherently
summed before calculating the Bragg intensity.
To implement this improved model, we calculate and

store the complex Bragg amplitudes generated by 5000
particles that are randomly released into lattices with
well-defined single-beam intensities I. The procedure
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is performed for a selection of Ii ranging from 0.25 ×
109W/m2 to 12 × 109W/m2 in steps of ∆I = 0.25 ×
109W/m2. In this way an array of 48 complex Bragg
amplitude curves is generated. To obtain a net Bragg am-
plitude, the intensity-specific Bragg amplitude curves are
added up with weighting factors that are proportional to
the number of particles we expect for the respective inten-
sities in the inhomogeneous lattice potential. The mag-
nitude of the weighted amplitude sum is then squared,
resulting in Bragg intensity curves for the entire inhomo-
geneous lattice.
In choosing the weighting factors, we note that the

confocal parameter of the lattice beams is quite large in
comparison with the diameter of the crystals (∼ 200 µm
vs ∼ 10 µm). Therefore, we use weighting factors for an
intensity distribution that is Gaussian in the xy plane
and does not depend on z (2D weighting). For a single-
beam peak intensity Imax, the weighting factor for in-
tensity step Ii < Imax then is proportional to the area
between circles with scaled radii r+,i and r−,i given by

r+,i =

√

ln

(

Imax

Ii −∆I/2

)

r−,i =

√

ln

(

Imax

Ii +∆I/2

)

The weighting factors increase with decreasing intensity,
in accordance with there being more particles in the
larger low-intensity perimeter of the beams than there are
in the smaller peak-intensity central region. The weight-
ing factors only depend on the assumed Gaussian beam
shape, not on the overall diameter of the Gaussian.

Imax (109 W/m2)

Total Power

FIG. 9. Comparison between measured Bragg scattering rise
curves at the three indicated total lattice laser powers ((10)-
peak, 250 nm particles, pp-polarization, φ ≈ 45◦) and cor-
responding simulated rise curves for Gaussian lattice inten-
sity distributions with the indicated central intensities. The
Bragg signals of the experimental curves are scaled to best
match the simulations. The simulated curves are normalized
as explained after Eq. 13. (Color online.)

We find the model to be quite successful in describing
the rise of the Bragg-scattered power, as seen in Fig. 9.

Considering the 60% transmission of the objectives and
the estimated 5 µm full-width-at-half-maximum diam-
eters of the lattice beams, the estimated single-beam
peak intensities for the three experimental cases shown
in Fig. 9 are 5.5 × 109 W/m2, 2.9 × 109 W/m2, and
1.4 × 109 W/m2. These values are in good qualitative
agreement with the central intensities of the simulated
curves that fit the experimental curves best. Similar lev-
els of agreement are obtained for other Bragg peaks and
other polarization cases. In view of the success of the
model, we conclude that the gradual increase in Bragg
signal at later times is indeed due to the delayed buildup
of the Bragg signal from the outer, low-intensity layers
of the crystal.

IX. DISCUSSION

We have created optically-induced crystals of thou-
sands of sub-micron particles in aqueous solution using a
four-beam optical lattice (air wavelength 1064 nm) with
several polarization and angle degrees of freedom. Us-
ing microscopic images and Bragg scattering patterns ob-
tained with a 532 nm probe beam, we have analyzed the
crystals and observed agreement with expectations from
calculated single-particle optical trapping potentials. An
indication of particle-particle interaction has been found
in the ss-polarization configuration, where crystals ap-
pear to be ordered in all three degrees of freedom while
the optical single-particle potential only depends on x
and y. Future Bragg scattering work is planned to follow
up on this.
The dependence of Bragg scattering on particle lo-

calization in a lattice has lead us to a novel method
of studying Brownian motion in external trapping po-
tentials. The time dependence of the Bragg scattering
power, observed upon switching the lattice on and off,
has been explained by a quantitative model. A critical
component necessary to explain the lattice growth be-
havior is to account for the intricate interplay between
Brownian motion and particle localization in the inhomo-
geneous lattice potential, which we have simulated using
the Langevin equation. The analysis shows that there
are copious numbers of particles trapped in the periph-
eral regions of the approximately Gaussian optical-lattice
beams. The measured Bragg reflectivities are therefore
dominated by the particle behavior in the periphery of
the crystals, where the trapping potentials are shallow,
the particle localization buildup is slow, and the ultimate
RMS position spread of the particles is quite large (about
100 nm at 1×109 W/m2). This finding is relevant to po-
tential future applications of optically-induced crystals.
The results presented in this work suggest strategies

for how to achieve better particle localization. We are
currently investigating a scheme in which particles are
trapped exclusively within the central, high-intensity re-
gion of an optical lattice. In this scheme, a pulsed in-
crease of the lattice power for . 1 ms would lead to a
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rapid improvement of the localization of all particles at
their lattice sites. The pulse is sufficiently short that no
additional particles would be accumulated in the lattice
fringe fields. Due to the short pulse duration, the inten-
sity enhancement factor can be chosen to be very large
without risk of overheating the sample. The particle lo-
calization at 3×1011 W/m2 is expected to be 5 nm, which
would be sufficiently small for high-resolution Bragg
structure analysis of the trapped particles. This degree of
localization would be ideal for extensions of the work to-
wards crystallography of non-spherical trapped objects,
such as large biological molecules, in the spectral region
of the water window (Bragg probe wavelength 2.34 nm
to 4.4 nm).
The success of our theoretical model suggests that we

can properly describe the Brownian motion in the lat-
tice, that our model properly accounts for lattice inho-
mogeneity effects, and that particle interactions do not
significantly alter the particle dynamics. For the utilized
particle size and lattice geometry, only one particle can

fit within each lattice well. Using smaller particles, it
would in principle become possible to have more than
one particle within a lattice well. In this case, particle
interactions due to electric charges on the particles, as
well as electric-dipole forces between them, are expected
to become more important. With larger particles, the
particles would fill a larger fraction of the volume and
would interact more strongly with each other, due to col-
lisions and electrostatic forces, as well as with the lattice
light field. Higher-resolution Bragg scattering would en-
able the investigation of such richer systems.
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