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Scaling behavior of universal pinch-off in two-dimensional foam

Chin-Chang Kuo, and Michael Dennin∗
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We study the power-law scaling behavior and pinch-off morphology of two-dimensional bubble
rafts under tension. As a function of pulling speed, we observe two distinct pinch-off morphologies
that have been observed in other fluid systems: long threads (LT) and double-cone (DC). At any
given pulling speed, there is a non-zero probability of observing LT or DC, with the probability of
observing LT modes increasing with pulling velocity. The bubble rafts are composed of millimeter
scale bubbles, and we are able to directly observe pinch-off to the point of final separation and
measure the scaling of the minimum width in time. For both the LT and DC modes, the final
scaling regime before pinch-off exhibits a universal power-law scaling behavior, with power-law
fitting exponents of 0.73 ± 0.01. However, the final cone-angle is different for states that initially
exhibit LT or DC pinch-off, and for the LT case, the final scaling is best described as a local
double-cone mode.

PACS numbers: 83.60.Wc,83.80.Iz,83.50.Jf

I. INTRODUCTION

The failure modes of fluids under tension have
been the subject of significant study and are rele-
vant to a wide range of applications such as sprays,
droplet formation, and thin fluid jets. The ba-
sic question is how the fluid thins as a function of
time, and the ultimate separation into distinct ele-
ments. Of particular interest is the scaling behav-
ior of various failure modes in fluids, the details of
which depend on issues including the relative role
of viscosity[1–7], surface tension[8–10], and even the
system geometry[11–14]. Two characterizations of
the failure are the shape near the pinch-off point and
the scaling of the minimum radius rmin as a func-
tion of the time before pinch-off, given by: rmin ∝

(t − t0)
n, where t0 is the time pinch-off occurs and

n is the scaling exponent. Significant progress has
been made in understanding these issues for Newto-
nian fluids. For 3D Newtonian fluids, the power-law
exponent is n ≈ 2/3 [3] for inviscid fluids, and n ≈ 1
for fluids with a relatively large viscosity [9]. For
2D inviscid fluids, simulations and analytic studies
indicate that the pinch-off exhibits self-similarity of
the second kind [12]. One feature of this behavior
is the observation of two scaling exponents: one for
motion normal to the elongating direction and one
for motion parallel to the elongating direction. Fur-
ther, the morphology of the pinch-off of fluids gen-
erally falls into one of two categories: double-cone
(DC) or long-thread (LT), where understanding the
cross-over between these two morphologies is impor-
tant. For example, simulations of the pinch-off of
liquid propane nanobridges exhibit a cross-over be-
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tween these two modes as a function of external pres-
sure in which the probability of observing a LT mode
increases with increasing pressure [15].

More recently, studies have focused on the failure
modes of complex fluids. In these systems, the viscos-
ity is generally dependent on the rate of strain. This
significantly complicates any scaling arguments, and
presents the possibility of unique and interesting fail-
ure modes. A number of complex fluids have been
studied, including granular streams [16], suspensions
[17–19], foams, and emulsions [20, 21]. Many of these
systems exhibit a power-law dependence of the shear
stress, σ, on the rate of strain: γ̇ (σ − σ0 ∝ γ̇m). It
has been suggested that the minimum radius during
pinch-off should scale in time with the same expo-
nent m as the shear stress dependence on rate of
strain, and recent experiments have confirmed these
results for 3D systems [21]. In addition, complex
fluids exhibit the same basic morphologies as New-
tonian fluids [16, 17, 21].

Given the generally universal behavior of pinch-off
in Newtonian and complex fluids, it is natural to ask
how a 2D complex fluid, such as a foam, would be-
have. Bubble rafts, single layers of bubbles on the
water surface, are ideal 2D foam systems for study-
ing pinch-off under tension. Previous work has es-
tablished that bubble rafts under tension exhibit a
pinch-off to fracture transition as a function of sys-
tem size and pulling velocity, and the general depen-
dence of this behavior on the system size and pulling
speed have been studied in some detail [22, 23]. But
there has not been a quantitative study of the scaling
during pinch-off. In this paper, we report on both
the morphology and the the scaling of pinch-off in
bubble rafts under tension as a function of pulling
speed. We observe a crossover of the pinch-off mor-
phology, but the final stages of the failure exhibits



2

FIG. 1. Images of two main failure modes observed in
the system: (a) The double-cone (DC) mode with pulling
velocity of 0.86 mm/s. (b) The long-thread (LT) mor-
phology with pulling velocity of 4.3 mm/s. The inset in
(b) shows the local pinch-off morphology of the LT mode.
The solid curves in the images correspond to fits of hy-
perbolas to the system’s boundaries, either on a global
(blue dash line) or a local scale (red line). The definition
of the fitting parameters is shown in the insert in (a).
The pinch-off of DC mode is consistent with the hyper-
bolic fitting for both the global and the local scale. In
contrast, the pinch-off of LT mode is only consistent with
the local hyperbolic fitting.

a universal power-law scaling behavior for both the
normal and parallel directions relative to the pulling.
The rest of the paper is organized as follows. Section
II describes the experimental setup and methods of
analysis. Section III provides the experimental re-
sults and a brief discussion of the scaling. Section
IV is a summary of the results.

II. EXPERIMENTAL DETAILS

We used amorphous bubble rafts to study the
pinch-off dynamics of a 2D complex fluid. Bubbles
are created on the surface of an aqueous solution
by blowing nitrogen through a solution of 5% Mira-
cle Bubble, 15% glycerol, and 80% deionized water.
The range of bubble radii is from 0.3 mm to 0.5 mm.
The bubbles are formed between two polycarbonate
plates. The bubbles are attracted to the polycar-
bonate boundary plates, and attach without any ad-
ditional modifications. The separation between the
plates sets the initial length of the raft, and the width
of the plates sets the initial width of the raft. The

sides of the raft that are perpendicular to the plates
are free, and initially form relative straight bound-
aries. However, there are some variations in the lo-
cal width along the length of the sample. The initial
bubble raft width and length are 80 mm and 60 mm.
The bubble rafts are elongated along the direction
of raft length by moving the plates apart at con-
stant speeds ranging from 0.0086 to 4.3 mm/s. We
didn’t observe any slip and detachment between bub-
ble raft and boundaries in the experiment. Bubble
raft pinch-off images are recorded by a CCD cam-
era and processed by MATLAB for the quantitative
analysis. The boundary of the bubble rafts is de-
tected by an image threshold method and is defined
as a fit to the outer edge of the bubbles. We ana-
lyzed the shape of the bubble raft under tension to
study the pinch-off morphology of bubble raft. Full
experimental details are described in Ref. [22, 23].

Figure 1 illustrates the two failure modes.
Fig. 1(a) illustrates the double-cone (DC) failure
mode for a pulling velocity of 0.86 mm/s. This
failure mode is a highly symmetric configuration.
Fig. 1(b) illustrates the long-thread (LT) failure
mode for a pulling velocity of 4.29 mm/s. The images
are at a time of 800 ms for Fig. 1(a)and 240 ms for
Fig. 2(b) before the pinch-off. The evolution of the
LT systems has two distinct stages. Initially, the sys-
tem has essentially a uniform width along its length
that thins as a function of time. Eventually, varia-
tions in the width grow, and a local region develops
a DC morphology that produces the final pinch-off.
The image Fig. 1(b) is taken at the initial formation
of a local DC region, which is highlighted in the in-
sert in Fig. 1(b). (For videos of the pinch-off process,
refer to the supplementary information [24].)

We characterize the pinch-off by the minimum
bubble raft width (Wmin), i.e. the narrowest point
of the bubble raft as indicated in Fig.1. Addition-
ally, we fit the global shape of the bubble raft to
a pair of hyperbolas (blue dash line in Fig.1) using
(y−y0)

2/a2−(x−x0)
2/b2 = 1 and the coordinate sys-

tem in Fig.1. Fitting the top and bottom boundaries
separately gives two sets of parameters: (aup, bup)
and (adown, bdown). The parameter a′ = aup + adown

is identical to Wmin when the global fit is accurate.
The scaling normal to the pulling direction is pro-
vided by Wmin and a′. For scaling parallel to the
pulling direction, we use b′ = (bup + bdown). We also
use a local fit to the hyperbola, where the length of
the fitting region is proportional to Wmin (red line in
Fig.1). The local fit is most relevant to the late-time
behavior of the LT mode for which the global fitting
procedure fails, as shown in Fig.1(b).
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FIG. 2. The power-law scaling behaviors of typical DC
(a) and LT (b) modes are shown in Fig.1. We plot the
minimum bubble raft width (Wmin)(solid black square),
hyperbolic fitting parameters of a′ and b′ in the global
scale (open blue circle and open red down triangle), and
in the local scale (solid blue circle and solid red down
triangle) as a function of t − t0 in log-log scale. Dash
lines in plots indicate the time after which we consistently
observe power-law scaling for Wmin.

III. RESULTS

Figure 2 illustrates the time dependence of Wmin,
a′, and b′ for a typical DC mode (Fig. 2a) and LT
mode (Fig. 2b). The values for a′ and b′ are shown
for both a global and local fit. The key feature of
the DC mode is the agreement for a′ and b′ between
the global and local fits, as well as the agreement be-
tween Wmin and a′. In contrast, the LT mode shows
a significant disagreement for a′ and b′ between the
global and local fits. The reason for this is the failure
of a global fit to a hyperbola to capture the relatively
flat shape of the LT. However, because the ultimate
failure mode of the LT is a local DC, a′local is found
to be consistent with Wmin. It should be noted that
in both cases, the early stage of the dynamics does
not exhibit consistent power-law behavior in time.
Therefore, for all fits to the data, we focus on the
region to the left of the dashed line.

The morphology for any given realization of the
experiment is determined from the behavior of
b′global. For the LT morphology, the global shape

FIG. 3. The histogram of b′global for three particular
pulling velocities are shown in (a). Pulling velocities are
0.0086 mm/s (black), 0.86 mm/s (grey) , and 4.29 mm/s
(empty bar). The distribution of b′global shifts to higher
values with the increase of the pulling velocity. The his-
togram of b′global for the collection of pulling speeds rang-
ing from 0.0086 to 4.3 mm/s is shown in (b). The his-
togram of b′global for the combined pulling velocities is
used to distinguish DC and LT modes. The histogram is
based on the value of b′global at the time corresponding to
the transition to scaling behavior for Wmin. The larger
values of b′global correspond to a LT morphology due to
the flatness of the boundary. This division into DC and
LT with a particular cutoff value for b′global is indicated
by the vertical dashed line.

is consistent with a very “flat” hyperbola, and the
“flatter” the hyperbola, the larger the value of b′global.

Therefore, we consider the value of b′global at the be-

ginning of the scaling regime for Wmin (dashed line
in Fig. 2), and if it exceeds a critical value, we clas-
sify the system as LT. To illustrate the process, we
present to sets of data for b′global. In Fig.3(a), we

present the distribution of values for b′global for three

pulling speeds of 0.0086 mm/s, 0.86 mm/s, and 4.29
mm/s. The distribution of values for b′global shifts
with the increase of the pulling velocity, consistent
with the increased probability of the LT mode oc-
curring. In Fig.3(b), we present the aggregated data
and show the distribution of b′global values for all the
pulling velocities and experimental runs. We choose
a critical cut-off value of b′global based on this distri-
bution.

Figure 4 illustrates the probability of the system
exhibiting the LT mode as a function of pulling veloc-
ity. As a test of the robustness of our cut-off choice,
we show the probability distribution for LT modes
using three cut-off values: 23 mm, 25 mm, and 30
mm. All three corresponding probability curves ex-
hibit sufficiently similar behavior to justify our pro-
cedure. Additionally, we sample random runs to vi-
sually confirm that we are correctly distinguishing
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FIG. 4. The probability of observing the long-thread
(LT) failure mode as a function of pulling velocity as
determined by using b′global and selecting three different
cut-off values for the definition of LT: 23 mm (square),
25 mm (circle), and 30 mm (triangle). The plot illus-
trates that the qualitative behavior of the probability of
observing a LT morphology is reasonably independent
of the precise cut-off value, with a transition from DC
dominated to LT dominated behavior around a pulling
velocity of 1 mm/s.

LT and DC morphologies. This DC to LT transi-
tion with the increase of pulling velocity is similar to
the liquid pinch-off of inviscid and viscous fluid [9].
The observed transition is at 1 mm/s and a width
∼ 10 mm, for a rate of strain of 0.1 s−1. Interest-
ingly, this is of the same order as the transition in
confined shear flow between a quasi-static flow limit
and viscous flow [25].

When the bubble raft close to the final pinch-off
state, it worth noting that the global fit fails to catch
the morphology of the general pinch-off shape for
LT mode as shown in Fig. 1(b). To characterize the
final pinch-off state for both the DC and LT modes,
we focus on hyperbola fits on a local scale. In this
case, the pinch-off of DC and LT mode are consistent
with the local hyperbolic fitting(Fig. 1(a) and the
insert of Fig. 1(b)). We average the Wmin, a

′

local,
and b′local from fifteen data sets with the same pulling
velocity. The results are shown in Fig. 5 for pulling
velocity of 0.0086 mm/s (a) and 4.29 mm/s (b). The
plot of Wmin , a′local, and b′local are as a function of

FIG. 5. Plots of the average Wmin (black square), a′

local

(blue circle), and b′local (red down triangle) as a function
of the time before pinch-off. Two pulling velocities of
0.0086 mm/s and 4.29 mm/s are shown in (a) and (b).
All parameters fit to power-law scaling exponents which
are all consistent with 0.73 ± 0.01. Different ratios of
a′

local to b′local in (a) and (b) are the result of variations
in the pinch-off angle with pulling velocity.

t − t0 for both pulling velocities. The result of the
fitting exponents averaged over all runs is shown in
Fig.6. There is no measurable velocity dependence
of the exponents of a′local and b′local, and the fitting
exponents are consistent with the average value of
0.73 with the standard error of 0.01 (and a standard
deviation of 0.04).

At this point, we can not definitively comment
on the physical meaning of the observed scaling be-
havior. However, there are some important fea-
tures. The first question one might ask is whether or
not this system is exhibiting simple scaling or self-
similarity of the second kind, as found in other 2D
systems. It is intriguing that theoretical work on 2D
scaling found self-similarity of second kind with scal-
ing exponents of 0.75 and 0.69 for the directions nor-
mal and parallel to the elongation, respectively [12].
However, at this point, our results strongly suggests
the behavior in the bubble raft is simple scaling, with
a single exponent of 0.75.

In trying to understand the source of the scaling, it
is worth looking at the behavior of the pre-factors for
the scaling normal (a′local = Ca(t − t0)

n) and paral-
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lel (b′local = Cb(t− t0)
n) to the elongation direction.

For scaling normal to the elongation direction, we
find that the scaling pre-factor (Ca) is independent
of the pulling velocity, except at the very highest
pulling speed that is dominated by the LT morphol-
ogy (see Fig. 7). For scaling parallel to the elon-
gation direction, we find that the scaling pre-factor
(Cb) exhibits a weak, logarithmic dependence on ve-
locity. This is indicated by the fit to a straight line
using a logarithmic scale for the velocity (see Fig. 8).
The implications of these results will be discussed in
Sec. IV.
Two additional characterizations of the failure

modes are the pinch-off strain and cone angle as
a function of pulling velocity, which are shown in
Fig. 9. The cone angle is a local property of the
morphology, and it is determined from the ratio of
b′local to a′local from θ = 2 tan−1(a′/b′). The average
strain at pinch-off is defined as ∆L/L, where L is the
initial length of the system and ∆L is the difference
between the initial length and the length at pinch-
off. Though this macroscopic definition of pinch-off
strain may not be the physically relevant strain for
determining failure, it is a useful method for pro-
viding a dimensionless time-scale for failure that can
be used to compare the results for different pulling
speeds. In effect, it provides an additional measure
of the the likelihood of LT mood (which tends to fail
at a large value of strain) and DC (which tends to
fail at a smaller value of strain). As expected from
the change in morphology from DC to LT in global
scale, the pinch-off strain increases with pulling ve-
locity. By definition, the LT mode stretches further

FIG. 6. The power-law fitting exponents for the average
a′

local(black square) and b′local(red circle) as a function of
pulling velocity. We average fifteen runs of the a′

local and
b′local at the same pulling velocity. The results are con-
sistent with a average value of 0.73 with a standard error
of 0.01 for averaged a′

local and b′local. We don’t observe
velocity dependence for the power-law fitting exponents.

than the DC mode before pinch-off. In contrast to
the value of n, both the average cone angle (θ defined
above) and the pinch-off strain depend on the pulling
velocity. The cone angle decreases with pulling ve-
locity, consistent with the transition from a global
DC mode to a local DC failure as part of a LT mode.

IV. SUMMARY

In summary, we find two universal pinch-off mor-
phologies when subjecting a 2D foam under tension:
double cone and long thread. The occurrence of ei-
ther is probabilistic, but there is a clear cross-over
from DC dominated behavior to LT dominated be-
havior at a rate of strain similar to the cross-over
to viscous dominated flow in confined shear flows.
This appears consistent with the dominance of LT
in highly viscosity fluids [9]. The general associ-
ation of the quasi-static limit in foams with solid-
like behavior suggests a comparison of the DC mor-
phology with equivalent pinch-off behaviors in solids
(see e.g. [26]). Finally, independent of the initial
morphology, the ultimate failure is a local double-
cone that exhibits a scaling regime with an expo-
nent n = 0.73 ± 0.01, independent of the direction
relative to the pulling direction. In contrast to 3D
measurements [21], this does not agree with the rhe-
ological scaling exponent of 1/3 observed in previous
bubble raft experiments [25]. However, it is similar
in magnitude to simulations of a 2D inviscid fluid,
though the simulations report two distinct scaling-
exponents that are indicative of self-similarity of the
second kind [12, 24], and only a single exponent is ob-
served for the bubble rafts. Given these issues, even

FIG. 7. The pre-factor Ca in the power-law fit of a′

local =
Ca(t − t0)

n as a function of the pulling speed averaged
over all runs. The pre-factor is found to be independent
of the pulling velocity, except at the highest speeds for
which the LT mode dominates.
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with our limited data, it is instructive to construct
a potential scaling law based on what is known.
In constructing a possible scaling law, there are

two key features of the dynamics of the system that
provide guidance regarding the relevant physical pa-
rameters. First, once the boundaries used to elon-
gate the system are stopped, the pinch-off dynamics
also stop. This appears to be true independent of
how far the system has progressed into the pinch-off
regime. Therefore, unlike the standard fluid pinch-
off, this suggests that the surface tension is not a
relevant parameter. Second, we find that the pre-
factors in the scaling law are velocity independent
(normal to the pulling direction) or only weakly de-
pendent on the velocity (parallel to the pulling di-
rection). Therefore, we can ignore the pulling ve-
locity as a potential parameter. Having eliminated
surface tension and driving velocity, there are only a
limited number of physical parameters that can be
used form a length that scales as t3/4. First, we can
consider the effective two-dimensional density of the
bubble raft ρ, which has dimensions of M/L2, where
M is a mass and L is a length. For the other pa-
rameters, we have two essentially equivalent choices.
From a bubble-scale perspective (which is relevant
if we consider particle-based modeling of system), it
is natural to consider parameters from the bubble
model [27]. The bubble model essentially considers
the bubble raft to be composed of circular disks with
spring and viscous drag forces between them, and it
has been very successful at capturing the dynamics
of bubble rafts [28–32]. The two relevant parameters
are: (1) an effective spring constant κ, with dimen-

FIG. 8. The pre-factor Cb in the power-law fit of b′local =
Cb(t − t0)

n as a function of the pulling speed averaged
over all runs. Note that a logarithmic scale is used for
the x-axis to highlight the weak dependence on velocity.
The line represents a linear fit to the data with the log-
arithmic x-axis, suggesting a logarithmic dependence on
velocity.

FIG. 9. The cone angle (red circle) and the pinch-off
strain (black Square) versus pulling velocity: The pinch-
off cone angle decreases with the pulling velocity. The
pinch-off strain increases with the pulling velocity. These
geometric features are expected for a transition from the
DC mode to the LT mode.

sions of force/length; and (2) a viscous dissipation
term α, with dimensions of force times time/length.
Constructing a length (L) that scales as time (T ) to
the 3/4 from these parameters gives:

L =
(ακ)1/4

ρ1/2
T 3/4. (1)

Equivalently, one could consider the macroscopic
parameters that are relevant to rheological measure-
ments of the bubble raft. One likely candidate is the
yield-stress because of the fact that the dynamics
are in a relatively slow velocity regime. In fact, the
velocities are consistent with the quasi-static limit,
where the yield-stress is known to dominate the rhe-
ological properties [25]. The other natural candi-
date is the bulk 2D viscosity. So, an alternative scal-
ing law would involved the yield stress (σy) and the
bulk 2D viscosity of the system (η), which have the
same dimensions as the microscopic spring constant
and the viscous dissipation terms, respectively. This
would suggest a scaling law:

L =
(σyη)

1/4

ρ1/2
T 3/4. (2)

Additional work that focuses on varying these pa-
rameters will be able to test these proposed scaling
laws. Also, the weak dependence on velocity of the
pre-factor for scaling in the direction parallel to the
pulling direction needs to be explained.
Finally, it is worth placing the observed morpholo-

gies for the bubble raft in the context a number of
other systems. First, the observed transition from
DC to LT as the pulling speed is increased is similar
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to the nanobridge simulation of liquid propane for
which the transition occurs with higher background
pressure [15]. The raises the important question of
what sets the transition between the two modes. For
the thermal systems, such as the nanobridge system,
the transition is determined by fluctuations that are
controlled by pressure. Therefore, one might ex-
pect that for the bubble raft, the transition is de-
termined by fluctuations set by the pulling speed.
This would be in direct analogy to the role of effec-
tive temperature in many driven, athermal systems
[33–35]. In considering the source of the transition
from DC to LT, it is interesting to note that the scal-
ing appears to occur only below a minimum systems
size, in this case when the width is less than approx-
imately 25 bubbles. In shear flow studies of bubble
rafts, one generally observes dynamics that can not
be described by continuum mechanics if the size of
the system is less than 15 to 20 bubbles [28, 36].
Since scaling regimes are generally understood in
terms of instabilities in a continuum model of the
system, understanding the scaling behavior in this

small-scale system will be an important part of any
future studies. Finally, bubble rafts are often used
as models for amorphous systems. The change of
average cone angle and pinch-off strain as a func-
tion of pulling velocity is consistent with simulations
for necking instability of amorphous solids based on
shear-transformation zones [37]. This result com-
bined with the previously discussed cross-over from
quasi-static to viscous flow strongly suggests that
this system will be useful for future studies of pinch-
off dynamics in a broad class of amorphous complex
fluids and solids.
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