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 Spherical catalytic micromotors fabricated as described in Wheat et al. 2010 show fuel 
concentration dependent translational and rotational velocity. The motors possess short-time and 
long-time diffusivities that scale with the translational and rotational velocity with respect to fuel 
concentration. The short-time diffusivities are 2-3 orders of magnitude larger than the diffusivity 
of a Brownian sphere of the same size, increase linearly with concentration, and scale as 
v2/2ω.  The measured long-time diffusivities are 5 times lower than the short-time diffusivities, 
scale as v2/[2Dr(1+(ω/Dr) 2)], and exhibit a maximum as a function of concentration.  Maximums 
of effective diffusivity can be achieved when the rotational velocity has a higher order of 
dependence on the controlling parameter(s), for example fuel concentration, than the 
translational velocity. A maximum in diffusivity suggests that motors can be separated or 
concentrated using gradients in fuel concentration. The decrease of diffusivity with time suggests 
that motors will have a high collision probability in confined spaces and over short times; but 
will not disperse over relatively long distances and times. The combination of concentration 
dependent diffusive time scales and non-monotonic diffusivity of circle swimming motors 
suggests that we can expect complex particle responses in confined geometries and in spatially 
dependent fuel concentration gradients. 

 

I. INTRODUCTION 

Synthetic nanomotors are being developed to mimic nanoscale biomotors present in 
biological systems. Efforts in this area range from synthetic modifications on existing 
biomotors [1–5] to purely synthetic catalytic bimetallic nanomotors [6–8]. Motion of the 
synthetic motors has been achieved using a number of propulsion mechanisms including auto-
diffusiophoresis [9–11], auto-electrophoresis [6,7,12–14], and bubble generation [15,16]. There 
are numerous reviews of motors and we point to Ebbens and Howse [17] for a general review of 
motors and to Paxton, Sen & Mallouk [7] or Wang [18] for reviews self-electrophoretic motors.   

Bimetallic nanomotors have been engineered to swim at 100 body lengths per second as 
well as pick up, haul, and release micrometer-scale cargo [19,20]. Their motion can be controlled 
using external magnetic fields [19,21] as well as chemical [22–24] and thermal [25] fields. 



Catalytic bimetallic nanomotors propel themselves by electrocatalytically decomposing 
hydrogen peroxide (H2O2) [7,14,26,27] through a mechanism we recently described as reaction 
induced charge auto-electrophoresis (RICA) [26,27]. Bimetallic nanomotors in an aqueous 
hydrogen peroxide solution catalyze peroxide oxidation at one of the metal surfaces (anode), 
generating protons, electrons, and oxygen molecules. The electrons conduct through the motor to 
the other metal surface (cathode) and complete the reduction reaction by combining with 
protons, peroxide, and oxygen to generate water. The asymmetric reactions result in an excess 
and depletion of protons in the surrounding electrolyte at the anode and cathode ends, 
respectively. The proton imbalance results in asymmetric free charge density, which generates an 
electric dipole and field pointing from the anode to the cathode. In addition, the particle’s 
negative surface charge attracts cations from the bulk solution which form a positively charged 
diffuse screening layer surrounding the particle. The self-generated electric field couples with the 
charge density induced by both the reactions and the diffuse layer to produce an electrical body 
force that drives fluid from the anode to the cathode. The fluid motion results in locomotion of 
the motor in the direction of the anode. Net motion of the nanomotor requires some native 
charge, or zeta potential. The nanomotor velocity is linearly dependent on the reaction flux 
density and the native surface charge [26,27]. Most synthetic motors are rotationally diffusive, 
which means that although the motors have an advective velocity controlled mainly by some 
chemical concentration, their orientation is dictated by Brownian fluctuations.  

Motors that are fabricated to swim with nonzero mean rotational velocity, ω, in addition 
to rotational Brownian motion, are capable of more complex motion than rotationally diffusive 
swimmers. We classify motors with nonzero mean translational and rotational velocities as circle 
swimmers. Circle swimming motors can be fabricated by combining two individual motors [10] 
or by growing an additional segment [28,29] on the motor such that an asymmetric force profile 
is generated. Ebbens et al. studied the behavior of these diffusiophoretic Janus doublet particles 
and noted that the radius of curvature of the circle swimming doublets depends on the respective 
orientations of the particles within the doublet [10]. 

 In this work, we study the diffusivity of 3 μm spherical catalytic bimetallic circle 
swimmers over short and long time scales as a function of hydrogen peroxide concentration. We 
fabricate the motors using multistep metal deposition process on polystyrene microspheres that 
we reported earlier [30]. We compare the behavior of these motors to Brownian dynamics 
simulations, simple analytical theory, and to previously published work by Ebbens et al.  [10].  
The motors exhibit both translational and mean rotational velocities that depend on H2O2 
concentration. We show that generic circle swimmer motors (not necessarily catalytic motors) 
exhibit short-time and long-time diffusivities that scale as v2/2ω and 
v2/[2Dr(1+(ω/Dr)2)] respectively.  The experimental long-time diffusivities exhibit a maximum 
diffusivity as a function of concentration because the translational and angular velocities deviate 
from the linear trend as shown in Figure 2. The deviations are not systematic (i.e. not because the 
velocity as a function of concentration exhibit some significant nonlinearity). The deviation from 
the fit is due to natural variation of the swimmer’s velocity. We expect that with a larger sample 



volume or more uniform motors, we may not observe the asystematic variation in velocity that 
yields the maximum in effective diffusivity, however we provide some simple examples of the 
conditions under which maximums in effective diffusivities may be observed. Generally, we find 
that a maximum in long-time effective diffusivity can be achieved in a system where either v and 
ω exhibit some nonlinear dependence on concentration (or any other driving potential). Another 
method by which a maximum in in diffusivity could be achieved is through the modulation of the 
rotational diffusivity. It is possible to modulate the rotational diffusivity through an unsteady 
swimming mechanism, as we show in work, or through the curvature of a swimming rod as is 
shown in Takagi et al. 2013 [31]. 

 

II. THEORY 

 The time-averaged displacement of particles with an advective component, such as 
swimming organisms and the motors described here, can be described by their effective 
diffusivity. The effective diffusivity combines the effects of rotational diffusion, translational 
diffusion, and advective motion of the motors. Experimentally, the effective diffusivity can be 
determined by assembling the mean squared displacement (MSD) of a set of particles and 
finding the slope. The MSD is determined by taking the ensemble average (to minimize errors 
due to variability between particles and of individual particles in time) of the squared 
displacement (SD) of individual particles. The shape of the MSD determines what region the 
slope is taken for the diffusivity. The MSD is always initially quadratic since the particle must 
initially move directly away from its origin. Typically the quadratic region transitions into a 
linear long-time region where the classical diffusivity is the slope divided by 2n, where n is the 
number of dimensions over which the displacement is tracked.  

 The long-time behavior of rotationally diffusive motors was studied by Howse et al. for 
platinum Janus particles that swim by auto-diffusiophoresis in hydrogen peroxide [9]. By 
calculating the MSD of the motors they were able to determine the effective diffusivity of the 
motors as a function of concentration and show that for rotationally diffusive swimmers the long-
time effective diffusivity is [9] 
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where Do is the Brownian translational diffusivity, v is the velocity of the motor, and Dr is the 
Brownian rotational diffusivity. From Stokes-Einstein, the Brownian translational diffusivity of a 
sphere is Do=kBT/6πμa and the Brownian rotational diffusivity is Dr=kBT/8πμa3, where kBT is 
the thermal energy, μ is the dynamic viscosity of water, and a is the radius of the sphere [35].  
This means that rotationally diffusive swimmers, like catalytic bimetallic nanorods, with 
considerable advective velocities are capable of achieving effective diffusivities approximately 4 
orders of magnitude larger than that of a Brownian particle of the same size [32]. 



 For circle swimmers the shape of the MSD can be determined by solving the appropriate 
Langevin equations. The standard Langevin equations are reduced to 2-D because the motors 
settle near the surface and are modified such that the displacement of the motors is the sum of its 
advective and Brownian components as shown in Equations 2-4 [10,33]. 
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Where ω is the rotational velocity, x and y are the location of the center of mass, and θ is the 
orientation of the motors. The Brownian fluctuations terms, ξ and ζ, are Gaussian random 
variables with zero mean and whose magnitudes are determined from theoretical isotropic 
Brownian diffusivities. In Ebbens et al. 2010 and van Teeffelen and Löwen 2008 Equations 2-4 
are solved to determine the MSD, 

(5)

The MSD switches from a sinusoidal short-time region to a long-time region when t>π/ω. We 
term the sinusoidal region the short-time region and we define the short-time diffusivity, DS, 
from the slope of the linear region of the first rising wave. Everything that follows the first rising 
wave is considered the long-time region with a long-time diffusivity, DL.  As is shown in Ebbens 
et al. 2010, Equation 5 can be used to solve for the long-time diffusivity of a circle swimmer 
[10], 

(6)

Equation 6 shows that the rotational thermal motion modulates the effective long-time diffusivity 
through the translational and angular velocities.  The translational thermal motion, Do, on the 
other hand is only additive. A circle swimmer with no rotational Brownian motion swims in a 
perfect circle with an origin that drifts with Do and thus will have a long-time effective 
diffusivity equal to the Brownian translational diffusivity.  For a detailed discussion of the 
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interaction between the advective motion and Brownian motion see the Supplemental Material 
(SM1-3) and for a detailed discussion of variable rotational diffusivity see Figure 7b. 

In order to find the short-time diffusivity we solve Equations 2-4 assuming that the 
rotational diffusivity is small compared to the rotational velocity over short times, given as, 

.
 

(7)

This equation is similar to what we observe for the long-time behavior of rotationally diffusive 
swimmers (Equation 1) except that the rotational diffusivity is replaced by the rotational 
velocity. Equation 7 is also similar to Equation 6 except that it scales as v2/ω instead of v2/ω2 
because we assumed the rotational diffusivity to be small in the short-time region. Equation 7 is 
applicable when the motor has completed less than one half of a rotation or t<π/ω. For the range 
of rotational velocities in this paper the short-time region ranges from 2 s to 120 s.  

For particles where the translational and rotational velocities both depend on a third 
parameter, here fuel concentration, we can rewrite the velocities in terms of that parameter, 

 
(8a)

 (8b)

where C is concentration, A (μm/s/Ma), B (rad/s/Mb), and a, b are constants. In this case the 
short-time diffusivity and long-time diffusivity scale as, 

 (9a)

. (9b)

Equation 9 predicts that if both the translational and rotational velocities depends linearly on fuel 
concentration then the short-time diffusivity scales linearly with fuel concentration while the 
long-time diffusivity increases with concentration and then asymptotes at higher concentrations. 

 

III. EXPERIMENTAL METHODOLOGY 

 We fabricate 3μm bimetallic gold and platinum spherical micromotors using a multistep 
metal deposition process on polystyrene microspheres that we reported earlier [30].  In brief, a 
1% volume fraction aqueous dispersion of 3 μm fluorescent polystyrene spheres (ρ = 1.05 g/cm3, 
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Duke Scientific Inc, Fremont, CA, USA) are deposited onto a 2.5 x 2.5 cm2 square glass 
substrate. The solvent evaporates at room temperature, forming a monolayer of spheres. The 
upper hemispheres are coated with 20 nm of gold using a sputter coater (Cressington 108 auto, 
Cressington Scientific Instruments, Watford WD19 4BX, England, UK). The half-coated spheres 
are re-suspended in an aqueous solution and then deposited in random orientations into a 
monolayer on a clean glass slide.  This process is repeated until the spheres are fully coated. The 
fully Au coated spheres are re-deposited on a clean substrate and coated with 20 nm platinum 
resulting in a Janus sphere that is half coated with gold and half platinum. 

 Transmission optical microscopy is used to observe the swimming nanomotors. We use 
an inverted microscope (Nikon TE2000, Japan) with a 20x objective (NA=0.6) and 100 W 
halogen illumination (Nikon TE2 PS 100W, Japan). The images are captured using a cooled 
CCD camera (Cascade IIb, Photometrics, Tucson, AZ). Hydrogen peroxide (Sigma-Aldrich, St. 
Louis, MO) is used at concentrations of 0.063%, 0.135%, 0.253%, 0.5%, 0.75%, 1.0%, and 
1.25% (vol). Experiments are performed in chambered glass wells with an area of 0.4 cm2 
(cat. no. 12-565-110N, Thermo Fisher Scientific Inc., Waltham, MA). During the experiments, 
the chambers are sealed to prevent evaporation-induced convection. Each motor is tracked for 
between 100-10,000 frames, and between 20 and 80 different motors are tracked at each   
concentration. The motors swim only in x-y plane because they settle near the surface and are 
only tracked when they are far from the sides of the glass well. The positions of the sphere 
centers are calculated in MATLAB from the intensity weighted centers of the spheres in each 
frame. Particle centers at each time are paired using an optical flow algorithm. Individual particle 
squared displacements are oversampled before they are averaged into a single mean square 
displacement. The time averaged velocity and the motor orientation are calculated from the 
sphere trajectory. The rotational velocity of the motors is calculated from the time averaged 
displacement of the motors orientation.    

 We compare the experiments with Brownian dynamics (BD) simulations of spherical 
circle swimmers in uniform fuel concentration. The simulations are carried out with the modified 
Langevin equations for 2-D shown in Equations 2-4 and assume that the standard 2-D Langevin 
equations are modified such that the displacement of the motors is the sum of its advective and 
Brownian components [10,33]. The advective velocity of the motors is only in the direction of 
orientation of the motors and the orientation is governed by a sum of the Brownian and time-
averaged rotational velocity. The translational and rotational velocities used in the simulations 
are from linear fits of the experimental data and the Brownian diffusivities are set to match their 
theoretical values.  

 

IV. RESULTS AND DISCUSSION 

 We previously reported that spherical bimetallic motors swim in H2O2 in the same 
manner as bimetallic nanorods [30]. In addition to the translational velocities typical of 



bimetallic nanomotors, the spherical motors are also observed to possess a rotational velocity. 
Figure 1 shows representative traces of the 3 μm bimetallic nanomotors at H2O2 concentrations 
of 0.063%, 0.135%, 0.253%, 0.391%, 0.5%, 0.75%, 1.0%, and 1.25% (vol). Each trajectory 
shows the particle motion for 75 s. These plots show that the motors swim in circular patterns 
with an advective velocity that increases with the peroxide concentration. The orientation of a 
motors circular pattern is consistent in time, i.e. a motor that has a clockwise rotational velocity 
will always trace a clockwise circular pattern. As we increase concentration (from a to h) we see 
that the length of the path increases, denoting an increase in translational velocity, and the radius 
of curvature of the trajectory decreases, denoting an increase in rotational velocity. The motor 
translational swimming velocities are shown in Figure 2a as a function of the H2O2 concentration 
along with a linear fit of the translational velocity. The translational velocity increases linearly 
with concentration, which is consistent with previously published data for bimetallic nanomotors 
in hydrogen peroxide  [6,26,27,30,39].  The motor angular velocities are shown in Figure 2b as a 
function of the H2O2 concentration along with a linear fit of the angular velocity. The rotational 
velocity varies linearly with concentration, which is what we would expect if the rotational 
component was a result of the asymmetric drag profile of the surface of the sphere. As seen in 
Figure 2 of Wheat et al. 2010 the fabrication method results in uneven distribution of mass on the 
surface of the motors and the extra mass on one side of the sphere results in an asymmetric drag 
profile of the sphere. The swimming motor would experience a slight spin towards the region of 
higher drag (the area with extra mass) and the magnitude of the spin would scale linearly with 
the translational velocity since the drag force scales with linearly with translational velocity at 
low Reynolds number  [35].  In Figure 2 each error bar represents a single standard deviation. 
The large standard deviation for both the translational and rotational velocities is high due to the 
variability between motors. 

 While the translational velocity and rotational velocity describe the motion of the motor 
at any instant, the effective diffusivity can be used to describe the time averaged behavior. In 
Figure 3 we show the SDs of three individual motors at H2O2 concentrations of 0.135%, 0.253%, 
and 0.5%.  The circle swimmers’ SDs exhibit different behavior in short and long time scales 
 [10,33,34].   For t<π/ω the SD increases from zero to a local maximum of approximately v2/ω2.  
At long times, t>π/ω,  the amplitude of the SD exhibits damped oscillations with a frequency 
that is roughly ω/2π. The oscillations at long times are due to the motors swimming in a circular 
pattern as the center of the circle drifts away from the origin. The oscillations are damped 
because the displacement due to advection from the origin becomes large compared to the 
swimming radius. Each SD in Figure 3 has a different initial local maximum value and occurs at 
a different time. When the SD is scaled by v2/ω2 and time is scaled by π/ω the SD for each 
concentration will collapse onto a single line for t<π/ω before diverging to their long-time 
behavior (shown in Figure SM4). We can only draw qualitative insights from the SD due to the 
variability between different motors and the variability of a single motor over a period of time. In 
order to determine the time averaged motion of these motors as a function of time we can 
examine the MSD of the ensemble of particles as a function of H2O2 concentration. 



 The MSDs are shown in Figures 4a and 4b at H2O2 concentrations of 0.063%, 0.135%, 
0.253%, 0.5%, 0.75%, 1.0%, and 1.25%. Each MSD represents an average of between 20 and 80 
SDs at each concentration. Figure 4a shows the short-time region, t<π/ω, of the MSD and 
Figure 4b shows the MSD at each concentration for approximately 150 s capturing both the 
short-time and long-time regions. In the short-time region shown in Figure 4a, the MSD 
increases as the swimmers complete half a rotation, consistent with the first phase of a sinusoid. 
The slope of the linear portion of the short-time region is given by Equation 7 and, as we predict, 
the slope increases with concentration. The short-time behavior of a circle swimmer is driven by 
the translational velocity of the swimmer and dampened by the rotational velocity. The long-time 
behavior of a circle swimmer is shown in Figure 4b.  The slope of the long-time region in 
Figure 4b is described by Equation 6 and has a smaller slope than the short-time region because 
at long times both the rotational velocity and rotational diffusivity serve to limit net displacement 
from the origin.  The distinct split between short and long time behavior is not observed at lower 
fuel concentrations because ω~Dr (for a 3 μm sphere in water Dr=0.048 rad2/s). The 
experimental MSDs can be compared to theory (using Equation 5 or the BD simulations with the 
mean experimental velocities). We find that the shape of the MSDs qualitatively agree with 
Equation 5 in that they both exhibit a short-time behavior that transitions into a long-time region 
with a lower slope. The magnitude of the MSD slope at short-times (the short time diffusivity) 
agrees well with Equation 7 as is shown in Figure 5.  At longer times, the experimentally 
measured slope is higher than predicted. The reason for the larger long-time slopes is discussed 
in detail during the presentation of Figure 6.  

 The largest discrepancy between the Equation 5 and the measured MSD is the MSD 
magnitude and the time at which the transition between the short and long time behaviors. The 
theory predicts that this transitions should occur at t=π/ω, and have a magnitude of v2/ω2, where 
v and ω are the mean translational and rotational velocities from the average over all of the 
different motors at a given concentration. The theory and experiments differ in the transition 
stage of the MSD because the theory assumes all spheres have the mean translational and 
rotational velocities reported.  In the experiments, motors, at any given concentration, exhibit 
large variations in the ratio of translational to rotational velocity (as revealed large error bars in 
Figure 2).  These variations in individually measured translational and rotational velocities 
combined with the relatively small sample size (20-80 separate motors at any given 
concentration) leads to the discrepancy in height and location of the transition. 

 From the MSDs shown in Figure 4, we can quantify the short, DS, and long time, DL, 
diffusivities for circle swimmers. In Figure 5 the experimental DS is plotted along with steady 
Brownian dynamics simulations with exact experimental velocities, steady Brownian dynamics 
simulations with velocities determined from linear fits of experimental values, Brownian 
dynamics simulations with amplified Brownian rotational diffusivities and velocities determined 
from linear fits of experimental values, and Equation 7 evaluated using fits of the experimentally 
measured translational and rotational motor velocities. The BD simulations with amplified 



Brownian rotational diffusivities are BD simulations where the effective rotational diffusivities 
are increased to 4.5Dr.  All of the plotted diffusivities are scaled by the theoretical Brownian 
diffusivity of a 3μm sphere in water (Do=0.145 μm2/s).  

 Figures 5a and 5b show plots of the short-time normalized effective diffusivity as a 
function of the controlling parameter v2/2ω and the H2O2 concentration. Figure 5a shows that the 
short-time effective diffusivity increases linearly with a slope and intercept of unity with the 
controlling relationship given in Equation 7. In Figure 5a all of the simulations and the 
experiments agree very well together. The experimental data does show some variation from the 
theory due to uncertainty in the translational and rotational velocities as well as uncertainty in DS 
(due to the relatively small sample size of 20-80 motors at each concentration). From Figure 5a 
we also see that the theory presented in Equation 7 tends to slightly over-predict the short-time 
diffusivity because Equation 7 assumes that the effect of the rotational diffusivity is negligible 
over short-times when the rotational diffusivity actually serves to slightly limit DS.   

 Figure 5b shows that the short-time effective diffusivity also varies linearly with 
concentration as predicted by Equation 9a since both v and ω vary linearly with H2O2 
concentration. DS measured in the experiments and BD simulations with exact experimental 
velocities fluctuate about the theoretical solution, while the BD simulations with fits of the 
velocities agree well with the theory. Figure 5a suggests that the DS of the experiments and the 
BD simulations with exact experimental velocities fluctuate about the theoretical solution in 
Figure 5b due to the deviation of experimental velocity values from the linear dependence. The 
swimming motion of the motors results in short-time diffusivities that are between two hundred 
and one thousand times greater than the Brownian diffusivity. However, due to the circle 
swimming behavior of motors, the short-time diffusivity is smaller than the long-time diffusivity 
of a rotationally diffusive swimmer like a bimetallic nanorod or a platinum coated Janus particle 
in H2O2 with the same velocity.  

 Figures 6a and 6b respectively show the long-time diffusivity scaled by Do as a function 
of v2/[2Dr(1+(ω/Dr)2)]  (from Equation 6) and the fuel concentration for the experimental data, 
Brownian dynamics simulations with exact experimental velocities, Brownian dynamics 
simulations with velocities determined from linear fits of experimental values, Brownian 
dynamics simulations with amplified Brownian rotational diffusivities and velocities determined 
from linear fits of experimental values, and the theoretical long-time diffusivity given by 
Equation 6. In Figure 6a the DL from Equation 6 shows up as a line with a slope and a y-intercept 
of unity. The DL from all of the BD simulations follow the theory, while the experimental DL 
shows some scatter. The deviations of the experimentally determined DL originate from the 
uncertainty of the translational and rotational velocities. A sensitivity analysis of Equation 6 
shows that an uncertainty in the measurement of the translational and rotational velocities of 
10% can account for this deviation. It is important to note that in order to collapse all on the 
diffusivities onto the theory that the appropriate rotational diffusivities of the systems, i.e. for the 



experiments and for the unsteady BD simulations a rotational diffusivity of 4.5Dr was used.  
Another source for the deviation is the fact that DL is determined from a heterogeneous 
population of motors each with their own v and ω that are aggregated into a single DL value.    

 In Figure 6b the theoretical solution given by Equation 6 and the steady BD simulations 
with velocities determined from linear fits of experimental values are in good agreement and 
suggest that DL should increase at low concentration before they asymptote to a DL of roughly a 
third of the measured DL at high H2O2 concentrations. The measured DL increases from 0.063% 
to a local maximum at 0.135% H2O2 concentration and then decreases and is relatively constant 
at high H2O2 concentrations, where ω is large compared to Dr. At high H2O2 concentrations, 
ω/Dr >10, DL is approximately 100 times higher than Do but only an eighth of the short-time 
diffusivity because the long-time diffusivity scales roughly as v2/(1+ω2) instead of v2/ω. The 
measured DL dips at a H2O2 concentration of 1.25% due to the trends of the velocities shown in 
Figure 2, the variability of the motors over a relatively small sample size (47 individual motors at 
1.25% compared to thousands for the simulations), and a selection bias in the experimental data. 
The rotational velocity is 27% higher than expected at a H2O2 concentration of 1.25% based on 
the trend of the rotational velocity at the first six concentrations without a corresponding higher 
than expected translational velocity. From Equation 6 we can see that this results in a DL that is 
50% lower than expected. The MSD is made up of the average of a group of motors SDs. The 
shape of the individual SDs is determined by its rotational and translational velocity pair. At 
1.25% there is a higher percentage of motors with higher rotational velocities and lower 
translational velocities (compared to the mean values) than at the other concentrations (look at 
Figure SM 5 for individual SDs at 0.5% and 1.25%). This issue is in part due to the relatively 
small sample size of our data and a small selection bias that is most prevalent at this 
concentration. The selection bias is due to the fact that motors with a high rotational velocity and 
low translational velocity tend to stay in the field of view of the microscope (and thus be tracked 
longer) than motors with high translational velocities and low rotational velocities. This bias 
becomes more prevalent when the motors, on average, have a high translational velocity. The 
steady BD simulations with exact experimental values predict a trend similar to that of the 
experimental data, except that the DL asymptotes to a value that is roughly a third of the 
experimentally measured DL at high H2O2 concentrations. The fact that the steady BD 
simulations and theory all agree on the asymptotic value of DL at high H2O2 concentrations, but 
the experimental DL is three times higher suggests that there is an underlying physical 
mechanism influencing the experiments that is not captured by the steady BD simulations or 
Equation 6.   

 In order to understand the discrepancy between the measured and theoretical predictions 
of the long-time diffusivity in Figure 6b it is useful to examine what parameters contribute to the 
shape of the MSD [36].  For a perfect circle swimmer, i.e. a particle with constant translational 
and rotational velocity (no Brownian motion or other perturbations to particle motion or 
orientations), the average slope of the long-time region would be zero and the MSD would be a 



perfect sinusoid. If the circle swimmer were to experience Brownian translational motion but not 
Brownian rotational motion, i.e. the angular velocity is constant, then the average slope of the 
long-time region would be the Brownian translational diffusivity Do. This holds regardless of the 
translational and rotational velocity supplied by the motors. If the circle swimmer experiences 
Brownian rotational and translational motion then the slope of the diffusive region is given by 
Equation 6. For the range of experimental translational and rotational velocities in this paper the 
addition of rotational Brownian motion results in long-time diffusivities between 50 and 150 
times greater than Do. The reason why the long-time diffusivity that we measure increases one to 
two orders of magnitude upon the addition of randomness to the orientation of the motors, in this 
case due to Brownian motion, is because the unsteadiness of the orientation allows for the 
translational and rotational velocities to take the motor further, on average, from its origin.  
Therefore, we see that the long-time diffusivity of circle swimmers is strongly modulated by the 
unsteady orientation of the motors. 

 We believe that the measured long-time effective diffusivity is greater than the BD 
simulations and analytical predictions because the unsteadiness of the motors orientation is 
greater than predicted by the theoretical Brownian rotational diffusivity. This is significant 
because it illustrates that motors fabricated with unsteady swimming mechanisms will have 
higher long-time diffusivities than steady motors. For circle swimmers the experimental 
rotational diffusivity can be calculated from a quadratic fit of the experimental mean squared 
angular displacement [10]. We observe a weak linear dependence of the measured rotational 
diffusivity with concentration with a maximum measured rotational diffusivity of six times what 
is expected due to Brownian motion at a H2O2 concentration of 1.25%. We hypothesize that the 
increased long-time diffusivity measured in the experiments, as compared to the Brownian 
dynamics simulations and Equation 6, is due to some additional unsteadiness in the orientation of 
the motor above what is expected due to Brownian rotational motion. This unsteadiness is 
potentially driven by fluctuations in the RICA force experienced by the motors. The fluctuations 
may be due to non-uniform adsorption of anions or other species, intermittent occurrences of the 
O2 reduction reactions, or inhomogeneity of H2O2 concentration. Regardless of their source, any 
perturbation to the RICA force (especially the rotational component) causes an increase in the 
long-time diffusivity. The unsteady perturbations of the RICA mechanism enhance the effective 
diffusivity in the same way that Brownian rotational diffusivity increases the long-time 
diffusivity of a perfect circle swimmer. The validity of this assertion can be seen in Figure 6a 
where we have collapsed the experimental long-time diffusivities around the theory by using an 
amplified rotational diffusivity. In Figure 6b we include the results of the unsteady simulations 
(the velocities are based on linear fits of the experimental data) to show that effectively 
increasing the rotational Brownian diffusivity causes an increase in the motors long-time 
diffusivity. We make the motor motion unsteady by increasing the magnitude of the Brownian 
rotational diffusivity to 4.5Dr based on our findings from the mean squared angular displacement 
and from Figure 6a. If the average fluctuation magnitude is held constant with H2O2 



concentration we observe reasonable agreement of the long-time unsteady BD simulations 
diffusivity to the experimentally measured long-time diffusivity at high H2O2 concentrations.  

 Figure 6b shows a local maximum as a function of the concentration in the long-time 
effective diffusivity for the experiments as well as the BD simulations with exact experimental 
velocities. This maximum is not predicted from Equation 9b nor observed in the BD simulations 
with linear fits of the experimental velocities. The observed maximums that occur around 
peroxide concentrations of 0.135% in Figure 6 are due to a high translational velocity and small 
angular velocity compared to linear behavior of the translational and rotational velocities at those 
concentrations. The translational and angular velocities deviate from the linear trend as shown in 
Figure 2. The deviations are not systematic (i.e. not because the velocity as a function of 
concentration exhibit some significant nonlinearity). The deviation from the fit is due to natural 
variation of the swimmer’s velocity. We expect that with a larger sample volume or more 
uniform motors, we may not observe the asystematic variation in velocity that yields the 
maximum in effective diffusivity.  We examine the conditions under which we expect to observe 
maximums in the long-time effective diffusivity in the next section.  

V. MAXIMUM OF EFFECTIVE DIFFUSIVITY 

 The maximum in effective diffusivity observed in the experiments and simulations is a 
result of asystematic variations in the translational and angular velocity, but we provide some 
discussion of the conditions under which we might expect to observe a local maximum in 
effective diffusivity due to systematic velocity dependence on a physical controlling parameter, 
in this case concentration.    

 It is instructive to consider a general case, Equation 8, for the dependence of the velocity 
on a physical controlling parameter, such as concentration, since non-linear dependencies have 
been measured [9,28,38-40] and predicted [9,26,27,28] for a variety of motor propulsion 
mechanisms.  Figure 7a shows the contour map of the normalized long-time effective diffusivity 
calculated from Equation 6 as a function of H2O2 concentration, and order of power dependence 
of the rotational velocity on H2O2 concentration, b, where the motor’s translational and angular 
velocities can have a nonlinear dependence on the fuel concentration ( av C∝ and bCω ∝  
respectively). In Figure 7a, the translational velocity is held linearly dependent on H2O2 
concentration, a=1, for all values of b. As is predicted by the scaling in Equation 9b, when b≤a 
Figure 7a shows that DL increases monotonically and asymptotes at high H2O2 concentrations. 
When b>a DL increases with concentration to a maximum and decays to an asymptote at high 
H2O2 concentrations. The magnitude of the peak diffusivity increases as the non-linearity of the 
rotational velocity, b, increases. The maximum occurs when ω increases at a faster rate than v 
and the rotational velocity dampens the long-time diffusivity at high translational velocities.  

 Another mechanism by which a maximum in DL could be achieved is by modulation of 
the rotational diffusivity. Figure 7b shows the long-time diffusivity as calculated from 
Equation 6, plotted against the rotational diffusivity scaled by the mean rotational velocity.  



Modulation of rotational diffusivity has been shown in this work (Figure 6a) and by Takagi et al. 
2013 [31].  A maximum in DL is predicted by Equation 6 when the rotational diffusivity equals 
the rotational velocity. This suggests that there is an optimal amount of randomness in a circle 
swimmers motion that can maximize its effective diffusivity. Just enough randomness in the 
orientation allows the motor to break its’ circular trajectory, while too much makes it so that the 
motor is not able to advect away before reorienting and traveling in a different direction. 

  

VI. SUMMARY 

 Spherical catalytic bimetallic micromotors fabricated as described in Wheat et al. 
2010 [30] have both translational and rotational velocity that vary with H2O2 concentration. The 
rotational velocity is likely due to asymmetry of the drag profile of the sphere caused by uneven 
metal coatings in the motor fabrication steps.  We show that generic circle swimmer motors (not 
necessarily catalytic motors) exhibit short and long-time diffusivities that scale as v2/2ω and 
v2/[2Dr(1+(ω/Dr)2)] respectively. The short-time diffusivity is larger than the long-time 
diffusivity because the long-time diffusivity is proportional to v2/(1+ω2) instead of v2/ω.  DS>DL 
suggests that although a circle swimming motor has a reduced diffusivity at long-times compared 
to a rotationally diffusive swimmer it samples a much larger region of the space over which it 
diffuses. The motors transition from short-time to long-time behavior at a time of π/ω(C). 
Therefore, the governing diffusive time scale varies as a function of hydrogen peroxide 
concentration. This means that when observed over short-times, or when the motors are confined 
to small spaces, the motors will appear to have a different diffusivity than at long-times or in 
large spaces. This effect could result in interesting behavior when a large number of these motors 
are placed in close proximity because their swimming pattern would lead to a high collision 
probability.  

 We also show that artificial swimmers can exhibit maxima in long-time effective 
diffusivities if the motors have nonlinear translational or rotational velocities, or if the rotational 
diffusivity is a function the physical controlling parameter, in this work fuel concentration. Here,  
we do not observe significant nonlinear dependencies of v or ω, and owe the measured maximum 
in long-time diffusivity to measured translational and rotational velocities that deviate from the 
expected linear trend at low H2O2 concentrations. The combination of diffusive time scales and 
non-monotonic diffusivity of circle swimming catalytic motors as a function of fuel 
concentration suggests that we can expect complex particle responses in confined geometries and 
in spatially dependent fuel concentration gradients.   
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Figures 

 

Figure 1. Representative traces of the 3 μm spherical bimetallic motors path over 75 s at each 
concentration. The hydrogen peroxide concentration increases from a) to h) [0.063 0.135 0.253 
0.391 0.5 0.75 1.0 1.25] (volume %).  

  



 

 
Figure 2. a) Average bimetallic spherical micromotor velocity versus hydrogen peroxide 
concentration. The error bars represent one standard deviation of the ensemble of time averaged 
velocities. b) Average bimetallic spherical micromotor rotational velocity versus hydrogen 
peroxide concentration. Each individual motor velocity (●) is plotted along with, the mean 
value (□), and a linear fit of the velocity.  The error bars represent one standard deviation of the 
ensemble of time averaged velocities. 
  



 

 
Figure 3.  Squared displacement of individual bimetallic spherical micromotors versus time for 
hydrogen peroxide concentrations of 0.135% (Δ),0.253% (○), and 0.5% (□). For each 
concentration there is a short time (open symbols) and a long time (filled symbols) diffusivity 
region. The short time region is marked by the sharp increase of the SD and corresponds to the 
motor completing half of a rotation. The second region is marked by dampened oscillations that 
correspond to displacement of the circular motor trajectories. 

  



 

 
Figure 4.  a) MSD of bimetallic spherical micromotors versus time for all concentrations of 
hydrogen peroxide at short times (t < π/ω). b) MSD versus time at all times. The hydrogen 
peroxide concentrations shown are: 0.063% (◊), 0.135% (Δ), 0.253% (○), 0.5% (□), 0.756% (x), 
1.0% (*), and 1.25% (●). The slope of the MSD gives the effective diffusivity. The slope of the 
MSD at short times (t < π/ω) is the short-time effective diffusivity. The slope of the MSD at long 
times (t > π/ω) is the long-time effective diffusivity. 

  



 

 
Figure 5. a) Short-time effective diffusivity of bimetallic spherical micromotors scaled by 
Brownian diffusivity versus the controlling parameter, v2/2ω, scaled by the Brownian diffusivity. 
b) Short-time effective diffusivity of bimetallic spherical micromotors scaled by the Brownian 
diffusivity versus hydrogen peroxide concentration. The experimental data (○) is plotted along 
with steady Brownian dynamics simulations  with exact experimental velocities(□), steady 
Brownian dynamics simulations  with velocities determined from fits of experimental values(•), 
unsteady Brownian dynamics simulations with velocities determined from fits of experimental 
values (Δ), and the fit of Equation 7 (solid line). The short time effective diffusivity is the slope 
of the MSD at times less than π/ω shown in Figure 4a.  

  



 

 
Figure 6. a) Long-time effective diffusivity of bimetallic spherical micromotors scaled by the 
Brownian diffusivity versus the controlling parameter, v2/[2Dr(1+(ω/Dr) 2)], scaled by the 
Brownian diffusivity. b) Long-time effective diffusivity of bimetallic spherical micromotors 
scaled by the Brownian diffusivity versus hydrogen peroxide concentration. The experimental 
data (○) is plotted along with steady Brownian dynamics simulations  with exact experimental 
velocities (□), steady Brownian dynamics simulations with velocities determined from fits of 
experimental values(•), unsteady Brownian dynamics simulations with velocities determined 
from fits of experimental values (Δ), and  the scaling shown in Equation 6 (solid line). The long-
time effective diffusivity is the slope of the MSD at times longer than π/ω shown in Figure 4b.  

  



 

 

 

Figure 7. a) Space-field map of the normalized long-time effective diffusivity calculated from 
Equation 6 as a function of hydrogen peroxide concentration, and order of power dependence of 
the rotational velocity on concentration (ω=K1Cb). The long-time diffusivity is normalized by the 
maximum diffusivity within the sample space. The translational velocity is linearly dependent on 
concentration for all values of b. b) The long-time diffusivity calculated from Equation 6 vs. 
rotational diffusivity. The diffusivity is scaled by the maximum diffusivity within the sample 
space and the rotational diffusivity is scaled by the rotational velocity. 
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