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We investigate non-Brownian particles suspended in a periodic shear-flow using simulations. Fol-
lowing Metzger & Butler [Phys. Rev. E 82, 051406], we show that the chaotic dynamics arising
from lubrication interactions are too weak to generate an observable particle dispersion. The ir-
reversibility observed in periodic flow is dominated by contact interactions. Nonetheless, we show
that lubrication interactions must be included in the calculation to obtain results that agree with
experiments.

PACS numbers:

I. INTRODUCTION

Viscous suspensions of non-Brownian and neutrally
buoyant spheres in a periodic shear flow exhibit a re-
markable transition. At a given volume fraction, if the
strain amplitude surpasses a critical value, the suspen-
sion transitions to a fluctuating state: the particles do
not return to their original positions and when tracked
stroboscopically at the end of each cycle of shear, the
particles exhibit large fluctuations analogous to a ran-
dom walk [1–4].

This dispersion of particles has attracted a large in-
terest since sheared suspensions often are assumed to
be governed by reversible equations (Stokes equations).
Within this “pure-hydrodynamic limit” (i.e. only hy-
drodynamic forces are present and the Reynolds num-
ber is zero), the irreversible motion of the particles was
attributed to the chaoticity of the hydrodynamic inter-
actions [2, 5, 6]. Chaos, when coupled to any source of
noise, ensures that reversing the direction of flow does
not in practice lead to a time-reversed motion for all
of the particles; any small perturbation in the state of
the system grows exponentially in time. Thus according
to this explanation, small perturbations (weak Brownian
motion, particle roughness, or any finite-ranged force)
which are inevitably present in real suspensions are am-
plified and give rise to the observe particle dispersion.

However, other studies have shown that the extent of
irreversibility in concentrated suspensions strongly corre-
lates with the particles’ roughness [7–9]. Similar observa-
tions were reported for very dilute suspensions [10] and
for the interaction between two particles [7, 11], where
chaos can not explain the lack of reversibility.

Thus, fundamental questions persist regarding the role
of the hydrodynamic interactions and whether contacts
should be considered just a source of noise or as a pri-
mary source of irreversible displacements. The suspen-
sion dynamics arise from three different contributions: i)
the long range hydrodynamic interactions, ii) lubrication
which results from the thin layer of viscous fluid that sep-

arates nearly touching particles, and iii) contacts which
prevent particles from overlapping. It is difficult from ex-
perimental results or from existing numerical simulations
(Stokesian dynamics) to discern which mechanism causes
the irreversibility as all three contributions are present at
the same time.
Resolving the questions requires separating the differ-

ent contributions to the particle dynamics and estimat-
ing their relative importance. This systematic approach
already demonstrated that the long range hydrodynamic
interactions are not a source of chaos and are not respon-
sible for the observed irreversibility [1]. The present work
continues this investigation by probing the role of hydro-
dynamic interactions between particles at short range:
the lubrication interaction.

II. MODEL

A minimal model was developed to inquire specifically
about the role of lubrication in generating chaotic and ir-
reversible behavior in sheared suspensions. A total of N
particles is initially distributed in a square box with non-
overlapping positions to give an areal-fraction φ; simulat-
ing a monolayer of particles provides substantial savings
in computational time while maintaining an accurate de-
scription of the relevant physics. The particle positions
are periodic in the flow, or x, direction and are con-
strained in the gradient, or y, direction by solid walls.
In the absence of inertia, the sum of the hydrodynamic
forces, Fh

i , and the contact forces, Fc
i , on each particle i

balance,

F
h
i +

N
∑

j 6=i

F
c
ij = 0. (1)

The hydrodynamic forces are given by

F
h
i = 3πµd(ui−ui∞)+

∑

j(i)

3πµd2

8hij

nij(ui−uj) ·nij , (2)
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FIG. 1: (color online) Relative trajectory between two particles initially located at (x1, y1) = (0, 0) and (x2, y2) = (−10, 0.1).

where µ denotes the fluid viscosity, d the particle diame-
ter, and ui the velocity of particle i. The fluid velocity at
xi = (xi, yi), the position of particle i, is ui∞ = γ̇yi and
γ̇ is the shear rate. Lubrication forces between particle i
and the particles j(i) located within the lubrication range
of particle i depend upon the relative velocities and sep-
aration distance hij = |xij | − d, where |xij | = |xi − xj |,
of each pair. The particles j(i) located within the lubri-
cation range of particle i satisfy 2ǫr 6 hij 6 d/2, where
ǫr is the particle roughness. The algorithm only accounts
for the normal component of lubrication [12], which acts
along the particles’ common normal, nij = xij/|xij |. The
contact forces are given by

F
c
ij =

{

F0nij if |hij | 6 2ǫr
0 if |hij | > 2ǫr,

(3)

where F0 denotes the amplitude of the repulsive force.
We set F0 = 3πµγ̇dH , whereH is the separation distance
between the shearing walls, and ǫr was varied between 0
and 10−2d.
The equations presented above are solved for the ve-

locities of the particles given their spatial positions. The
positions are updated in time using a fourth-order Runge-
Kutta method with a time step that ensures a displace-
ment of less than d/200 for every particle. Simulations
were performed with up to N = 50 particles that were
tracked over a strain γ = 10 for continuous shear simula-
tions. One strain unit corresponds to a relative displace-
ment of the cell walls equal to their separation distance.
We also performed simulations applying a periodic shear
with strain amplitudes γ0 between 0.5 and 6 and a to-
tal accumulated strain of 400. The total accumulated
strain after n cycles is γ=4nγ0, as γ0 is the strain for a
quarter-cycle.
Equations (1)-(3) describe a sheared suspension of par-

ticles interacting through lubrication and contact forces.
The model does not include long-range hydrodynamic in-
teractions purposely, as we aim to investigate whether lu-
brication forces engender chaotic and irreversible behav-
ior. The investigation is facilitated by simulating three
different conditions: i) the “pure lubrication limit” in
which case the contact force and roughness are set to
zero, F0 = 0 and ǫr = 0; ii) the “pure contact limit”
where the lubrication forces are not included; and iii) sim-
ulations containing both lubrication and contact forces.
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FIG. 2: (color online) Separation distance, S, versus strain
obtained in the “pure lubrication limit” (F0 = 0) for N = 50,
φ = 0.25, and a steady shear flow.

III. RESULTS

We first investigate the relative trajectory between
two particles as calculated for the three different cases.
The results, shown in Fig. (1), are compared to the
full-solution obtained by integrating the equation of da
Cunha & Hinch 1996 [13], which includes the long-range
hydrodynamic interaction. The trajectory obtained with
lubrication differs from the full-solution: deviation of the
trajectory occurs only when the particles are very close
(within the lubrication range). However the symmetry,
and thus reversibility, of the trajectory is preserved. The
minimum separation distance between the two particles
is h12 = 3 × 10−6d. Similarly to the observation of da
Cunha & Hinch 1996 [13], the trajectory becomes asym-
metric when the contact force is included and the min-
imum separation distance falls below 2ǫr. Including the
contact force and ignoring lubrication results in an even
larger asymmetry of the trajectory, as the motion of the
particles follows the streamlines of the background shear
flow after contacting.
Note that the equations can also be integrated for small

total strains for multiple particles in the “pure lubri-
cation limit” without violating the excluded volume re-
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FIG. 3: a) Illustration of the streamline focusing and de-
focusing before and after the apex of the interaction. b)
Relative trajectories for two particles initially displaced at
[(x1, y1)=(0, 0), (x2, y2)=(0, d + h)], and at [(x1, y1)=(0, 0),
(x2, y2) = (0, d+h+ǫ), with h = 5×10−4d and ǫ = 5×10−4d.
The distance in the y−direction between these two trajecto-
ries after a strain γ = 10 is α. c) Amplification caused by the
streamline de-focusing, α/ǫ, versus initial separation distance,
h.

strictions. This allows us to investigate whether lubrica-
tion interactions alone lead to chaotic dynamics. Follow-
ing [1, 14–16], two random distributions of 50 particles
each are simulated. The second distribution, labeled B,
is prepared from the original configuration, labeled A,
by displacing each particle in a random direction by a
small distance ǫ = 10−4d. The Euclidian distance be-
tween these two simulations is computed in phase space

as S=
√

1
N

∑N
i=1(y

A
i − yBi )2 [18]. For chaotic systems,

S grows exponentially as ǫeλγ , where λ is the Lyapunov
exponent. Figure 2 shows the exponential increase of the
separation distance, S, with accumulated strain ampli-
tude, γ. The positive value of the Lyapunov exponent,
λ = 0.56, is a clear indicator of chaos. The separation
distance was obtained by averaging data from nine sets
of simulations.

We can identify two distinct mechanisms that poten-
tially contribute to the amplification, seen in Fig. 2, of
the initial perturbation. One contribution is from the
N-body dynamics occurring through the lubrication in-
teractions. The second is a two-body mechanism arising
from the strong focusing and de-focusing of streamlines
which is illustrated in Fig. 3.a. Two particles placed
on top of each other separate on very different stream-
lines if a small perturbation is imposed on their initial
position, see Fig. 3.b. We systematically quantify this
effect by measuring the amplification factor, α/ǫ, where
α and ǫ are the final and initial distance between these
two streamlines, respectively, as the function of the ini-
tial particle separation distance h. Fig. 3.c shows that
the amplification of an initial perturbation can be O(20)
for two particles initially separated by a small distance h.
However, this effect decreases when the initial separation
distance increases; two particles initially separated by a

distance h > 0.1d are weakly sensitive to this mechanism
as α/ǫ → 1. Note that this amplification is the same
using the full solution of da Cunha & Hinch 1996 [13] or
lubrication only.

To remove this effect in the estimation of the Lyapunov
exponent, simulations were performed with altered ini-
tial conditions where the minimum separation distance
between particles was set at 0.1d instead of zero. The re-
sults calculated from these initial conditions, labeled as
“modified initial conditions” in Fig. 2, show that S still
grows exponentially, albeit with a lower rate of λ = 0.31.
The lubrication interactions thus lead to a chaotic be-
havior.

In the following we investigate whether this chaotic dy-
namics can be responsible for the irreversibility observed
in periodically sheared suspensions. We performed simu-
lations applying a periodic shear with strain amplitudes
γ0 between 0.5 and 6 and a total accumulated strain of
400. The particle mean square displacements are evalu-
ated from the particle positions at the end of each cycle
of shear. Changes in the mean square displacements in-
dicate the presence of irreversible dynamics, whereas the
lack of a change in the mean square displacements from
cycle-to-cycle indicate that the system is in a reversible
state.

The mean square displacements obtained in the “pure
lubrication limit” do not show, at the particle scale, any
significant growth: the system behaves in a reversible way
(c.f. Fig. 4). This seems at first inconsistent with the
chaotic nature of lubrication interactions shown above.
However, considering a strain amplitude of γ0 = 3,
the amplification of perturbations caused by chaos is
eλγ0 ≈ 5. The amplification of the noise present in our
system (typically round-off error O(10−8)) is thus too
small to produce an irreversible displacement observable
at the particle scale O(1). Therefore, the chaos arising
from lubrication is not responsible for the irreversibility
observed in periodically sheared suspensions.

In the “pure contact limit”, the mean square displace-
ments increase rapidly and then plateau after an accumu-
lated strain γ ≈ 150. The system freezes into a reversible
state even at large strain amplitudes. This evolution oc-
curs since the particles driven solely by contact forces
organize into layers (see inset of Fig. 4.a), a configura-
tion in which collisions between particles cease.

A steady fluctuating state is attained at large strain
amplitudes when both contact and lubrication interac-
tions are included in the calculations. The lubrication
interactions disrupt the formation of layers (see inset of
Fig. 4.a) and consequently particles remain on stream-
lines where collisions occur. We found that the slope of
the mean square displacement strongly depends on the
particle roughness ǫr (shown on Fig. 4.a), but weakly
depends on the upper bound of the lubrication range.
Note that the above dynamics (self-organization into lay-
ers when particles are solely interacting through contacts
and the disruption of particle layering when lubrication
is included) are also observed when simulations are per-
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FIG. 4: a) Mean square displacements versus accumulated strain for φ = 0.4 and γ0 = 3. b) Diffusion coefficients versus strain
amplitude for simulations with contact and lubrication interactions for φ = 0.5 and ǫr = 0.002d.

formed with N = 200 particles. This suggests that the
results are not due to finite size effects.
The slopes of the particle mean square displacements

for strains of γ > 100 are used in calculating the di-
mensionless diffusivities: D∗

x =<xx>/2γd2 and D∗
y =<

yy>/2γd2 plotted in Fig. 4.b. The diffusion coefficients
parallel, D∗

x, and perpendicular, D∗
y, to the flow direc-

tion rapidly increase with strain amplitude. These nu-
merical results agree qualitatively with the experimental
data of Pine et al. [2] and successfully predict the tran-
sition of the particle dispersion at γ0 ≈ 2. For strain
amplitudes smaller than 2, the system self-organizes into
a non-fluctuating quiescent state as suggested by the ex-
periments of Corté et al [17].

IV. CONCLUSIONS

We have examined the role of lubrication interactions
in suspensions of non-Brownian particles submitted to
a periodic shear-flow. We used a simple model that in-
cludes repulsive forces (to prevent overlap) and lubrica-

tion (to describe the interaction between particles). We
found that chaos arises from the N-body dynamics occur-
ring through the lubrication interactions. However, for
the strain amplitudes considered here, γ0 = [0.25−6], this
chaos is too weak to produce a significant irreversibility
under oscillatory shear. Therefore in periodically sheared
suspensions, lubrication is not responsible for the irre-
versibility which is dominated by contact interactions.
Nonetheless, lubrication plays an important role by dis-
rupting the particle layering that occurs if particles solely
interact through contact forces. Lubrication thus ensures
that the collision process perpetuates and allows the sys-
tem to reach the steady fluctuating state observed in ex-
periments at large strain amplitudes.
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