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Abstract

Molecular dynamics simulations are performed to investigate heterogeneous dynamics in amor-

phous glassy materials under oscillatory shear strain. We consider three-dimensional binary

Lennard-Jones mixture well below the glass transition temperature. The structural relaxation

and dynamical heterogeneity are quantified by means of the self-overlap order parameter and the

dynamic susceptibility. We found that at sufficiently small strain amplitudes, the mean square

displacement exhibits a broad sub-diffusive plateau and the system undergoes nearly reversible

deformation over about 104 cycles. Upon increasing strain amplitude, the transition to the diffu-

sive regime occurs at shorter time intervals and the relaxation process involves intermittent bursts

of large particle displacements. The detailed analysis of particle hopping dynamics and the dy-

namic susceptibility indicates that mobile particles aggregate into clusters whose sizes increase at

larger strain amplitudes. Finally, the correlation between particle mobilities in consecutive time

intervals demonstrates that dynamic facilitation becomes increasingly pronounced at larger strain

amplitudes.

PACS numbers: 64.70.P-, 61.43.-j, 66.30.Pa, 62.20.F-
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I. INTRODUCTION

Understanding the relationship between atomic structure and mechanical properties in

amorphous materials is important in many current applications and emerging technolo-

gies [1]. In contrast to crystalline solids, where the plastic deformation is governed by dislo-

cations, it was originally found that the plastic activity in amorphous materials is controlled

by the localized shear transformations [2], which were more recently studied using com-

puter simulations [3–6] and directly visualized in experiments on colloidal glasses [7, 8] and

foams [9]. Under the applied strain, the deformation of amorphous materials is determined

by the cooperative organization of irreversible rearrangements of small clusters of particles,

which could be triggered by the nonlocal redistribution of elastic stress [10–13]. The se-

quence of such plastic events can lead to an avalanche process characterized by a power-law

scaling of the average stress or energy drops with the system size [14, 15]. Another notable

examples of systems with intermittent, spatiotemporal heterogeneous dynamics include the

Barkhausen crackling noise in magnets subject to an external magnetic field [16] and the

driven block-spring model in the theory of self-organized criticality [17, 18].

In recent years, computer simulations have become an increasingly important tool for

studying slow particle dynamics in molecular liquids near the glass transition at thermal

equilibrium [19]. A common observation is that the mean square displacement of individual

particles is reduced upon approaching the glass transition temperature from above, which

also results in broadening of the sub-diffusive plateau that separates the ballistic and diffu-

sive regimes. More importantly, however, is that the particle mobility in the sub-diffusive

regime can be significantly different from the average value; and, in addition, the particles

with similar mobility become spatially correlated, thus leading to dynamic heterogeneity [20–

22]. The spatial fluctuations of mobile regions are characterized by the four-point dynamic

correlation function, and they can be efficiently measured by computing the variance of

the self-overlap order parameter, or the dynamic susceptibility [23, 24]. While no obvious

changes in spatial correlations of particle positions are detected near the glass transition,

the dynamic susceptibility provides an estimate of the number of particles involved in the

correlated motion. It is now well recognized that when a liquid is cooled toward the glass

transition temperature, the peak value of the dynamic susceptibility increases, indicating

that dynamics becomes spatially increasingly correlated [19]. More recently, it was shown
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that in the presence of steady shear flow, the dynamics of supercooled liquids is more ho-

mogeneous as the shear flow reduces the dynamic correlation length and the lifetime of

dynamical heterogeneity [25].

The microscopic mechanism of structural relaxation in glassy materials is governed by

spatially extended domains of fast moving particles that can be identified from the analy-

sis of individual particle trajectories. Hopping particle dynamics was recently studied in a

number of systems, i.e., binary mixtures below the glass transition [26], supercooled liquids

at thermal equilibrium [27], dense granular media [28, 29], and actively deformed polymer

glasses [30]. In each case, a particle trajectory was decomposed into a series of segments,

where motion takes place inside a cage, separated by fast cage jumps. Of particular impor-

tance is the analysis of cage jumps and their spatio-temporal clusterization performed in the

cyclic shear [28] and the fluidized bed [29, 31] experiments of two-dimensional granular me-

dia. In both experiments, it was found that the major structural relaxation events are well

correlated with the bursts of cage jumps. Furthermore, these cage jumps tend to aggregate

into clusters, whose sizes are approximately power-law distributed [28, 29]. In turn, several

clusters might dynamically facilitate each other and form avalanches, which propagate along

the soft regions of the system [27–29]. One of the motivations of the present study is to

examine the collective motion of particles and dynamic facilitation in periodically deformed

three-dimensional amorphous materials.

In this paper, molecular dynamics simulations are employed to study the relaxation dy-

namics in the Kob-Andersen Lennard-Jones binary mixture model at a finite temperature

well below the glass transition. The three-dimensional system is periodically strained over

many cycles, probing regions with low instability thresholds, which leads to intermittent

localized rearrangements of particles. The applied periodic shear strain is spatially homo-

geneous, thus preventing the formation of shear bands. We find that at sufficiently large

strain amplitudes the particle dynamics is purely diffusive, while at lower amplitudes, the

mean square displacement develops an extended sub-diffusive plateau. The analysis of the

dynamical susceptibility and particle hopping dynamics reveals the spatial heterogeneity of

structural relaxation.

The rest of the paper is organized as follows. The details of molecular dynamics sim-

ulations are described in the next section. The results for the particle diffusion, hopping

dynamics, and microstructure of clusters of mobile particles, as well as the analysis of the
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two and four-point correlation functions are presented in Sec. III. The conclusions are given

in the last section.

II. MOLECULAR DYNAMICS SIMULATION MODEL

The three-dimensional amorphous material is modeled as the Kob-Andersen binary

(80:20) Lennard-Jones mixture with non-additive interaction parameters that prevent crys-

tallization [32]. The snapshot of the equilibrated system which consists of Np = 2940

particles is presented in Fig. 1. In this model, any two particles α, β = A,B interact via the

pairwise Lennard-Jones (LJ) potential

Vαβ(r) = 4 εαβ

[(σαβ

r

)12

−
(σαβ

r

)6 ]

, (1)

where εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8, σBB = 0.88, and mA = mB. The cutoff

radius is taken to be twice the minimum position of the LJ potential rc, αβ = 2.245 σαβ [33,

34]. In what follows, the units of length, mass, and energy are set to be σ = σAA, m = mA,

and ε = εAA, and, correspondingly, the unit of time is defined as τ = σ
√

m/ε. The

equations of motion were solved numerically using the fifth-order Gear predictor-corrector

algorithm [35] with a time step △tMD = 0.005 τ .

All simulations were performed at a constant volume with the total density ρ = ρA+ρB =

1.2 σ−3 and temperature 0.1 ε/kB, where kB is the Boltzmann constant. This temperature

is well below the value 0.45 ε/kB at which the computer glass transition is detected [32].

The constant temperature was maintained by rescaling the velocity component in the ŷ di-

rection (perpendicular to the plane of shear). As indicated in Fig. 1, the system dimensions

are measured Lx =12.81 σ, Ly =14.79 σ, and Lz =12.94 σ. In order to simulate homoge-

neous, time-dependent shear strain, the Lees-Edwards periodic boundary conditions [35]

were implemented with the SLLOD equations of motion [36]. It should be mentioned that

in contrast to the boundary-driven shear algorithms, the spatially homogeneous shear strain

prevents the formation of shear bands [37].

The time-periodic shear strain was imposed (in the xz plane) by varying the strain rate

as a function of time γ̇(t) = γ̇0 cos(ωt), where ω is the oscillation frequency and γ̇0 is the

strain rate amplitude. We define the strain amplitude as a ratio of the strain rate amplitude

over the frequency, i.e., γ0 = γ̇0/ω. For the results reported in this paper, the oscillation
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frequency was set ωτ = 0.02, with the corresponding period T = 2π/ω = 314.16 τ ; and the

strain amplitude was varied in the range γ0 6 0.08.

The system was first equilibrated for about 5 × 106 MD steps at a constant volume and

temperature 1.2 ε/kB in the absence of shear, and then gradually quenched to the final

temperature 0.1 ε/kB with steps of 0.1 ε/kB. After the oscillatory shear strain was applied,

the first 2×107 MD steps were discarded to avoid quench-rate and aging effects. During the

oscillatory motion, the measurements of particle positions were taken every back and forth

cycle when strain is zero. The data were accumulated over 12, 000 cycles (about 7.5 × 108

MD steps) at each strain amplitude, and the post-processing analysis of particle trajectories

was performed in six independent systems.

III. RESULTS

At the studied temperature and density, an equilibrated model glass in the absence of

deformation is characterized by the amorphous liquid-like molecular structure where most

of the atoms remain in cages formed by their neighbors on the time scale accessible to

computer simulations [32]. A typical steady shear stress–strain response involves an elastic

deformation at strains below a few percent and a yield stress that depends on the physical

aging and strain rate [34, 38]. During the elastic and plastic deformations, the atoms can

undergo non-affine, irreversible displacements, which, depending on the strain, might form

cascades spanning a considerable fraction of the system [39]. Thus, instead of tempera-

ture, the consecutive irreversible displacements of atoms are governed by the strain rate

as a control parameter [40]. In the present study, the amorphous material is periodically

deformed, and the particle positions are saved every cycle at zero strain. In such a setup,

the affine deformation field, which is present at steady shear strain, is zero; and, therefore,

any irreversible particle rearrangements will contribute to the structural relaxation of the

material.

The mean square displacement (MSD) averaged over both A and B particles is plotted in

Fig. 2 as a function of time for the frequency ωτ = 0.02 and various strain amplitudes. To

compute the displacement, the position of the system center of mass was subtracted from

the position of each particle. It can be observed in Fig. 2 that at small strain amplitudes,

γ0 6 0.06, the MSD curves exhibit a broad sub-diffusive plateau, which becomes more
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pronounced at smaller strain amplitudes, and a gradual crossover to diffusive motion. In

contrast, at larger strain amplitudes, γ0 > 0.07, the sub-diffusive regime is absent, and the

slope of the MSD curves becomes equal to one at times t & 10 T as indicated by the straight

dashed line in Fig. 2. At the largest time interval t = 1.2× 104 T , the particle displacement

is still about the cage size for the strain amplitude γ0 = 0.02, which implies that during the

periodic deformation the system dynamics is nearly reversible. Note also that the ballistic

regime is not observed in any of the MSD curves as it occurs at times much smaller than

the oscillation period T = 314.16 τ .

The appearance of the extended sub-diffusive plateau in the MSD curves reported in

Fig. 2 suggests that the particle dynamics might be spatially heterogeneous on the length

scales of about the cage size. The structural relaxation in amorphous materials is commonly

quantified via the self-correlation function, which is defined as follows:

Qs(a, t) =
1

Np

Np
∑

i=1

exp
(

−
∆ri(t)

2

2 a2

)

, (2)

where ∆ri(t) = ri(t0 + t) − ri(t0) is the displacement vector of the ith particle, t is the lag

time, and a is the probed length scale [41]. In turn, the extent of dynamical heterogeneity

is measured by the four-point correlation function, or the dynamical susceptibility, which is

computed as the variance of the self-correlation function:

χ4(a, t) = Np

[

〈Qs(a, t)
2〉 − 〈Qs(a, t)〉

2
]

, (3)

where the brackets 〈·〉 denote averaging over all initial times and independent runs [23]. At

a given time lag, the correlation function χ4(a, t) provides an estimate of the number of

particles involved in a cooperative displacement over the length scale a [19]. At some inter-

mediate time and length scales, the function χ4(a, t) usually displays a maximum indicating

the largest spatial correlation between localized particles [23].

The time dependence of the self-correlation function Qs(a, t) is illustrated in Fig. 3 when

ωτ = 0.02 and the parameter a is slightly larger than the cage size, i.e., a = 0.12 σ. As is

evident, the correlation function Qs(a, t) decays faster at larger strain amplitudes. Note that

at smaller strain amplitudes γ0 6 0.05, the system is not fully relaxed even at the largest

time interval t = 1.2 × 104 T . On the other hand, at the smallest time interval t = T , the

function Qs(a, t) is less than 1.0 because of the thermal vibrations inside a cage. Further, the

dynamic susceptibility χ4(a, t) is shown in Fig. 4 for the same parameters ωτ = 0.02 and a =
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0.12 σ. It can be observed that the correlation function χ4(a, t) exhibits a pronounced peak,

whose magnitude increases at larger strain amplitudes, indicating progressively larger size of

dynamically correlated regions. The intermittent displacements of neighboring particles at

larger stain amplitudes produce greater fluctuations in Qs(a, t) and lead to an increase in the

dynamic susceptibility. Upon increasing strain amplitude, the peak is displaced to smaller

times, which is consistent with the onset of the diffusive regime in MSD curves reported in

Fig. 2. Finally, assuming that the correlated regions are compact, the dynamic correlation

length ξ4 can be estimated from the peak value of χ4(a, t) at a = 0.12 σ. The inset in Fig. 4

shows ξ4 as a function of the stain amplitude. It is seen that the data are well fitted by the

power-law function with the exponent of about 0.9 (straight red line in Fig. 4). We note that

these results are in contrast to those obtained in previous MD studies on steady shear of

supercooled liquids [25] and glasses [40], where it was found that with increasing shear rate,

the dynamical heterogeneity is suppressed and the dynamic correlation length decreases.

One should keep in mind, however, that the dynamic susceptibility is an averaged quan-

tity, which measures mean square fluctuations of the number of mobile particles, and, thus,

it does not completely describe the microscopic mechanism of structural relaxation. We

next perform a more detailed analysis of the particle hopping dynamics and the local mi-

crostructure of clusters of mobile particles.

At sufficiently low temperature and small strain, a typical particle trajectory in a glassy

material consists of rapid hopping events separated by the rattling motion within a cage.

Hence, the hopping dynamics is controlled by the cage-to-cage jumps, which, in practice, can

be identified by a numerical algorithm recently introduced by Candelier et al. [28]. In essence,

this algorithm is based on the spatial separation of two consecutive segments of a particle

trajectory. More specifically, the measure of the distance separating two segments is defined

by the product of the root mean square distances between all points within the segments to

the center of mass of the other segment [28]. Furthermore, the effective distance between

two segments is normalized by a factor that counterbalances large fluctuations arising from

averaging over short segments. During the iterative procedure, the cage jumps are detected

if the effective distance is greater than the typical cage size; and the whole trajectory is

consecutively divided into a number of segments where the particle motion takes place inside

a cage. This algorithm was successively applied to identify cage jumps in two-dimensional

granular systems under cyclic loading [28], in the fluidized bed experiment [29], and in
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supercooled liquids at mechanical equilibrium [27].

In the present study, the cage detection algorithm was used to analyze three-dimensional

trajectories of individual particles as follows. First, we choose a subset of points in the par-

ticle trajectory, divide the subset in two adjacent segments, and then compute the effective

distance separating these two segments. If the effective distance between any two adjacent

segments within the subset is less than the cage size, rc = 0.1 σ, then the particle was con-

sidered being in the cage during the time interval defined by the subset. For every particle,

the procedure was repeated for all time intervals greater than 10 T and less than 100 T and

all initial times. As a result, all particle trajectories were decomposed into successive cages

separated by cage jumps, which typically consist of several consecutive points each. A vi-

sual examination of the trajectories revealed two types of jumps; namely, reversible, where

a particle jumps back and forth between the averaged positions, and irreversible, where a

particle permanently escapes its cage. This is consistent with the results of previous MD

studies of glassy systems at equilibrium [26, 42, 43].

Figure 5 shows the total number of particles undergoing cage jumps as a function of

time for three representative cases at strain amplitudes γ0 = 0.02, 0.04, and 0.06. It is

clearly observed that the periodic deformation generates a heterogeneous temporal response

characterized by intermittent bursts of large particle displacements. It is apparent that the

amplitude of the bursts and frequency of their occurrence increase at larger strain ampli-

tudes. During the time intervals between the bursts, we also detect a finite number of cage

jumps that are assisted by thermal activation. Following tradition, the frequency spectrum

of the data series in Fig. 5 was determined by computing their discrete Fourier transform.

Within the reported time interval, the power spectrum at each strain amplitude exhibits

a power-law decay with the exponent of about two (not shown), which is indicative of a

simple Brownian noise. This is in contrast with the inverse frequency spectrum of the so-

called flicker noise found in many complex systems that are characterized by scale-invariant

avalanche-like processes and described by the phenomenon known as self-organized critical-

ity [17, 18, 44].

A more direct evidence of spatial heterogeneity can be obtained from visualization of

instantaneous positions of mobile particles. Snapshots of mobile particle positions during

intermittent bursts are presented in Fig. 6 for different strain amplitudes. It is clearly seen

that the particles undergoing cage jumps mostly aggregate into clusters whose sizes increase
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at larger strain amplitudes. A number of previous studies of heterogeneous dynamics in

glassy materials have demonstrated that the sizes of clusters of mobile particles are power-

law distributed [28, 29, 44]. As shown in Fig. 5, the structural relaxation process involves only

a few large-scale cooperative clusters during the time interval 104 T , and, as a consequence,

we find that the probability distribution of cluster sizes of more than about 20 particles

is subject to large statistical uncertainty (not shown). We further comment that in order

to identify an avalanche-like process, a power-law distribution of cluster sizes needs to be

resolved, which, in our case, would require longer simulation time and, possibly, larger

system size.

It was recently suggested that dynamic facilitation might be one of the important mech-

anisms leading to spatio-temporal heterogeneity in glassy materials [45]. In the context of

kinetically constrained models, dynamic facilitation can be quantified either by the mobility

transfer function between highly mobile regions and nearby regions that were previously

mobile, or by the facilitation volume, which measures the spatial extent of mobile regions

initiated by localized excitations [46]. In MD simulations of glass-forming liquids, the mo-

bility transfer function was computed for mobile particles near their neighbors that were

previously mobile [47, 48]. In particular, it was demonstrated that mobility propagates con-

tinuously through the system, and dynamic facilitation becomes increasingly pronounced

upon supercooling [47, 48].

In the present study, two measures of dynamic facilitation were considered based on the

results of the cage detection algorithm applied to individual particle trajectories. First,

it was determined whether a particle was mobile at a given time step and it remained

immobile during the preceding time interval ∆ t. Next, we checked if the particle had at

least one mobile nearest neighbor during the time interval ∆ t. Figure 7 shows the ratio

of dynamically facilitated mobile particles and the total number of particles that become

mobile after ∆ t/T cycles. It can be seen that the ratio Nf/Ntot increases with increasing

strain amplitude, implying that dynamic facilitation plays a more important role at larger

strain amplitudes. Note also that at the strain amplitude γ0 = 0.06 and ∆ t/T & 103, nearly

all particles undergo cage jumps after being in contact with mobile regions. In contrast, at

the strain amplitude γ0 = 0.02, the ratio Nf/Ntot appears to saturate at about 0.65, which

characterizes the relaxation dynamics that involves single particles undergoing reversible

jumps and rearrangement of small clusters of particles [e.g., see Fig. 6 (a)].
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Similar to the analysis presented in the previous MD studies [47, 48], we also computed

the correlation between particle mobilities in back-to-back time intervals of equal duration

∆ t. Namely, we only selected particles that were mobile at least once during the time inter-

val ∆ t but always immobile during the preceding time interval ∆ t. Then, the dynamically

facilitated mobile particles were identified if there was at least one mobile nearest neighbor

during the preceding time interval ∆ t. The results are shown in the inset of Fig. 7. Al-

though the data are somewhat noisy, the trend is clear; an increasingly larger fraction of

mobile particles are dynamically facilitated at larger strain amplitudes. Thus, regardless of

the definition, the results of numerical simulations indicate that, as the strain amplitude

increases, there is a higher probability to find a mobile particle that was previously located

near mobile regions.

IV. CONCLUSIONS

In this paper, we performed molecular dynamics simulations to study heterogeneous

relaxation dynamics in an amorphous material under spatially homogeneous, time-periodic

shear strain deformation. The three-dimensional amorphous material was modeled as the

binary Lennard-Jones mixture at a temperature well below the glass transition. During the

oscillatory deformation, the particle positions were stored every cycle when the net strain is

zero. We found that at small strain amplitudes, the mean square displacement develops an

extended sub-diffusive plateau followed by the diffusive regime; whereas at larger amplitudes

only the diffusive regime is present at the reported time scales.

The structural relaxation was described by the decay of the self-overlap correlation func-

tion, which indicated that at small strain amplitudes the system dynamics is nearly reversible

over about 104 cycles, while at strain amplitudes above a few percent, almost all particles un-

dergo irreversible displacements and escape their cages. With increasing strain amplitude,

the dynamic susceptibility exhibits a pronounced peak at intermediate time and length

scales, and the magnitude of the peak increases at larger strain amplitudes, indicating pro-

gressively larger size of dynamically correlated regions. Furthermore, the detailed analysis

of particle hopping dynamics revealed that the periodic deformation generates a heteroge-

neous temporal response characterized by intermittent bursts of large particle displacements.

Lastly, our numerical simulations have shown that dynamic facilitation of mobile particles
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becomes increasingly important as the strain amplitude increases.
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FIG. 1: (Color online) A snapshot of instantaneous positions of particles A (large blue circles)

and B (small red circles) at mechanical equilibrium. The particle sizes are not drawn to scale.

During the oscillatory motion, the periodic shear strain was applied in the xz plane (indicated by

the arrows).
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FIG. 2: (Color online) The mean square displacement of A and B particles as a function of time

for the oscillation frequency ωτ = 0.02 and period T = 2π/ω = 314.16 τ . The strain amplitudes

from bottom to top are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08. The dashed line with

unit slope is plotted for reference.
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FIG. 3: (Color online) The self-correlation function Qs(a, t) defined by Eq. (2) for the oscillation

frequency ωτ = 0.02 and period T = 2π/ω = 314.16 τ . The probed length scale is a = 0.12σ. The

strain amplitudes from top to bottom are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08.
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FIG. 4: (Color online) The dynamic susceptibility χ4(a, t) for the oscillation frequency ωτ = 0.02

and a = 0.12σ. The strain amplitudes from bottom to top are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06.

The oscillation period is T = 314.16 τ . The inset shows the dynamic correlation length ξ4 =

[χmax
4

(t)]1/3 as a function of the strain amplitude γ0. The red line with a slope 0.9 is the best fit

to the data.
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FIG. 5: (Color online) The number of particles undergoing cage jumps as a function of time for the

oscillation frequency ωτ = 0.02, period T = 2π/ω = 314.16 τ , and strain amplitudes (a) γ0 = 0.02,

(b) γ0 = 0.04, and (c) γ0 = 0.06. Note that the vertical scale is different in the panel (c).
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FIG. 6: (Color online) Typical clusters of mobile particles A (large blue circles) and B (small red

circles) for the oscillation frequency ωτ = 0.02 and strain amplitudes (a) γ0 = 0.02, (b) γ0 = 0.03,

(c) γ0 = 0.04, and (d) γ0 = 0.05.
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FIG. 7: (Color online) The ratio of dynamically facilitated mobile particles and the total number

of mobile particles at a given time step, provided that they were immobile during the preceding

time interval ∆ t (see text for details). The strain amplitudes from bottom to top are γ0 =

0.02, 0.03, 0.04, 0.05, 0.06. The inset shows the ratio of dynamically facilitated particles and

the total number of particles that become mobile during the time interval ∆ t, given that they

were immobile during the previous time interval ∆ t. The color code for γ0 is the same; the strain

amplitude increases from bottom to top.
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