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We study phonon modes in two-dimensional colloidal crystals composed of soft microgel particles
with hard polystyrene particle dopants distributed randomly on the triangular lattice. This experi-
mental approach produces close-packed lattices of spheres with random bond strength disorder, i.e.,
the effective springs coupling nearest-neighbors are either very stiff, very soft, or of intermediate
stiffness. Particle tracking video microscopy and covariance matrix techniques are then employed to
derive the phonon modes of the corresponding “shadow” crystals with bond strength disorder as a
function of increasing dopant concentration. At low frequencies, hard and soft particles participate
equally in the phonon modes, and the samples exhibit Debye-like density of states behavior charac-
teristic of crystals. For mid- and high-frequency phonons, the relative participation of hard versus
soft particles in each mode is found to vary systematically with dopant concentration. Additionally,
a few localized modes, primarily associated with hard particle motions, are found at the highest

frequencies.

PACS numbers: 63.20.dd,63.20.Pw,63.50.1.Lm,82.70.Dd

Macroscopic properties of disordered materials often
differ from those of their crystalline counterparts [1-4],
and the search for the microscopic origin of these dif-
ferences is an interesting and ongoing enterprise [5-12].
A variety of disordered solids, ranging from metallic to
colloidal glasses, have been found to exhibit similar vi-
brational properties [13-22]. Notable among these fea-
tures is the so-called “boson peak”, corresponding to
an excess number of low-frequency phonon modes com-
pared to Debye predictions for crystals [23], and the pres-
ence of floppy, quasi-localized modes [24-31]. Thus far,
most of this research has focused on materials wherein
the microscopic constituents are structurally disordered.
Structurally disordered solids typically form from rapidly
quenched atomic and molecular liquids [32, 33] and, in
the case of colloids, from densely-packed rapidly loaded
and/or polydisperse suspensions [1, 2, 24, 34-43].

Besides structural disorder, other kinds of disorder are
present in nature. Disorder can be introduced into a crys-
talline material, for example, via heterogenous interac-
tions or bonds between constituent particles [44]. Inter-
estingly, simulations and numerical studies suggest that
similarities and differences exist between systems with
pure structural disorder versus bond disorder [45-49], but
experimental studies of such systems are lacking. Fur-
ther, because the simulations and numerical studies have
primarily focused on the shape of the density of states,
e.g., in searches for insight into the origin of the boson
peak, little is known about the behavior of individual par-
ticles which make up such systems. Thus, experiments
that derive information about individual particle motions
can provide complementary insights and can help to elu-
cidate similarities and differences between structurally

disordered versus bond-interaction disordered systems,
including their relationship to underlying ordered phases.

To this end, we study and report on the vi-
brational properties of colloidal crystals with bond
disorder confined in quasi-two-dimensional chambers.
These colloids are composed primarily of soft poly(N-
isopropylacrylamide) (PNIPAM) microgel particles, with
hard polystyrene (PS) particle dopants distributed ran-
domly on the lattice. Importantly, soft and hard spheres
in the crystal have the same diameter. As a result, two-
dimensional (2D) structurally ordered lattices are pro-
duced with a distribution of bond strengths; nearest-
neighbor bonds are either very stiff, very soft, or of in-
termediate stiffness. Video microscopy is employed to
track the motion of all particles, and particle displace-
ment covariances are used to derive the phonon modes
of the corresponding “shadow” crystals with the same
geometric configuration and interactions as the experi-
mental colloidal system, but absent damping. Thus, we
explore the phonon modes in crystals with bond strength
disorder as a function of increasing dopant concentration.

The experiments reveal that the vibrational density
of states in bond strength disordered crystals is modified
by doping with small numbers of especially stiff particles.
However, these bond disordered crystals were not found
to exhibit the classic phonon behavior of structurally
disordered glasses. For example, the low-frequency Bo-
son peak is not apparent in any of the samples studied.
Nevertheless, the shape of the phonon density of states
(DOS), and the relative participation of hard versus soft
particles in each mode, is found to vary systematically in
the intermediate- and high-frequency phonon ranges. At
low frequencies, all samples exhibit phonon DOS with
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FIG. 1. Images of a soft PNIPAM particle colloidal crys-

tal doped with a) 0%, b) 2%, c¢) 11%, and d) 21% hard
polystyrene (PS) particles. The white spheres are PS parti-
cles, and the grey spheres are PNIPAM particles. Scale bars
are 10 um. e) The orientational correlation function, ge(r),
of all crystals studied. Symbols represent local maxima and
the dashed lines represent the full correlation function.

Debye law scaling characteristic of crystalline systems;
additionally, both hard and soft particles participate
equally in these low-frequency phonon modes. At inter-
mediate frequencies, the phonon DOS exhibits a regime
with numbers of modes per unit frequency clearly in ex-
cess of Debye scaling predictions, and the characteristic
frequency of the high-frequency regime decreases with
increasing dopant concentration. Interestingly, interme-
diate modes recruit greater participation of soft particles,
while high frequency modes recruit greater participation
of hard particles. Thus, three frequency regimes are iden-
tified. Low frequencies feature soft and hard particles be-
having similarly; intermediate frequencies are dominated
by soft particle motions, and high frequencies are domi-
nated by hard particle motions.

The experiments employed ensembles of particles sand-
wiched between a glass slide and cover slip (Fisher Scien-
tific), creating a quasi-2D chamber (Fig. 1). Polystyrene
(PS) particles (Invitrogen) had a diameter of 1.1 um
and the poly(N-isopropylacrylamide) (PNIPAM) parti-
cles [50] had a diameter of ~1.1 pm. Because of this sim-
ilarity in size, the particle mixture readily self-assembled

into a triangular crystal. PNIPAM particles have a soft
inter-particle potential [51], while polystyrene particles
are much more hard-sphere-like [52-54]. Since two dif-
ferent species of particles are employed, i.e., soft PNI-
PAM and hard polystyrene, three different inter-particle
interaction combinations arise (soft-soft, soft-hard, and
hard-hard). A small amount of Fluorescein dye (~0.2%
w/v, Sigma-Aldrich) was added to the aqueous suspen-
sion of particles in order to improve imaging contrast.
The dye was excited using light from a mercury lamp
that was directed through a 488 nm wavelength band-
pass filter; the resulting video images consisted of dark
particles on a bright background.

To characterize the triangular crystalline order of the
samples, the orientational and translational correlation
functions, ge(r) and gr(r), respectively, were calculated
for all of the crystals; go(r=|r;-r;|) = (W%, (ri)va;(r5)),
where r; and r; are the positions of particles 7 and
j, and a = 6,T. 16 and 1pg; are thus the orienta-
tional order parameters for particles i and j, and ¥p;
and 1r; are the translation order parameters for par-
ticles ¢ and j. The orientational and translational or-
der parameters for a given particle j are defined as
Yo; = (Opr, €%%r) /nn, where 6, is the angle between
particle j and its neighbor k& and nn is the number of
nearest neighbors, 1r; = e'GTi, where G is a primary
reciprocal lattice vector determined from the peak in the
sample’s 2D structure factor, s(k). Notice in Fig. le, the
orientational correlation function gg(r) is large (> 0.8) at
short distances and does not significantly decay over the
longer distances probed; this observation suggest that the
samples possess good triangular order. Measurements of
the translational correlation functions gr(r) (discussed
more fully in the supplemental material) lead to simi-
lar conclusions about long-range crystalline order in the
samples. Briefly, for the 0%, 11%, and 21% hard-particle
crystals, gr(r) behaved similar to ge(r). gr(r) for the
2% and 7% hard-particle crystals decayed more quickly
at longer distances, but this effect was brought about by
a single grain boundary present in the field of view of
these two crystals. We separately confirmed, with stud-
ies of crystal subsections excluding the grain boundaries,
that the phonon behavior of the smaller subsections was
consistent with that derived from the larger fields of view
including the grain boundaries.

We thus create crystals with three distinct inter-
particle potentials distributed randomly on the triangu-
lar lattice. Particle motion was recorded using video mi-
croscopy, while the samples were kept at a temperature
of 25 °C using an objective heater (Bioptechs) connected
to the microscope oil immersion objective. Video data of
Nyot &= 1000 — 1500 particles was recorded at a rate of 60
frames per second for 500 seconds. The raw images (dark
particles on a bright background) were then inverted to
yield images of bright particles on a dark background
(Fig. 1), and the motion of all particles was extracted
using standard particle tracking techniques [55].

We derive the vibrational properties of the doped crys-
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FIG. 2. Effective spring constants k£ between two hard par-
ticles (hollow squares), two soft particles (circles), and hard-
particle/soft-particle pairs (filled squares) derived from the
computed spring constant matrix K as a function of average
particle separation r for the 21% hard-particle doped crystal.

tals using the displacement covariance matrix method
[24, 35, 56-58]. Briefly, we measure u(t), the 2N;q-
component vector of the displacements of all particles
from their average positions (Z, 7). Then we compute the
time-averaged displacement covariance matrix (covari-
ance matrix), Ci; = (u;(t)u;(t)): where i,5 =1, ..., 2Nt
run over particles and positional coordinates, and the
average runs over time (i.e., over all frames). In the har-
monic approximation, the covariance matrix C' is directly
related to the sample’s stiffness matrix K, defined as the
matrix of second derivatives of the effective pair interac-
tion potential with respect to particle position displace-
ments; in particular, (C~');;kgT = K,j. The vibra-
tional properties of the so-called shadow system, a sys-
tem of particles with the same static properties as our
experimental system (i.e., with the same covariance and
stiffness matrices, C and K), but absent damping, are
derived from the dynamical matrix D, which is directly
related to the stiffness matrix with D;; = K;;/m;;, where
m;; = /Mymy with m; the mass of particle i. Diago-
nalizing the dynamical matrix gives the eigenvalues and
eigenvectors of the shadow system phonons. The eigen-
values correspond to the frequencies, w, of the phonon
modes, while the eigenvectors correspond to the particle
amplitudes associated with each of the phonon modes.
Extraction of the phonons of an undamped system from
a damped system, such as ours, is possible as long as
the damping is only a direct function of the particle mo-
menta. In this case, the displacement covariance and
spring constant matrices, C and K, respectively, only de-
pend on the static interactions between particles which
are the same for the real and shadow systems. For fur-
ther discussion about the limitations of this approach see
refs. [18, 58-61].

From the spring constant matrix K, it is apparent that
three distinct nearest neighbor springs are present, cor-
responding to the three nearest neighbor particle combi-
nations. Figure 2 shows the effective spring constants
measured in the 21% hard-particle crystal. Notice that
hard-hard particle pairings have the stiffest springs, soft-
soft particle pairings have the softest springs, and soft-
hard particle pairings have springs with an intermediate
stiffness.

For a 2D crystal, the Debye model predicts that the ac-
cumulated number of phonon modes, N (w), should grow
as the frequency squared in the low frequency regime
[62]. Note, N(w) is defined as the number of modes
with frequency less than or equal to w and is thus in-
tegral over the phonon density of states (DOS). In Fig. 3
the measured N(w) is plotted for all doped crystals
(2%, 7%, 11%,21% PS/hard particles), as well as for a
pure PNIPAM crystal (0% PS/hard particles). At low
frequencies, N (w) exhibits similar scaling with frequency
in all crystals. This scaling is very close to the Debye
model prediction. Thus, despite different degrees of bond
strength disorder, the low frequency DOS behavior is
quite similar to that of a perfect crystal.

At intermediate frequencies N(w) grows faster than
predictions of the Debye model, and at the highest fre-
quencies, N (w) plateaus. Note, a somewhat similar DOS
behavior at low-intermediate frequencies was also ob-
served by Kaya et al. [56] using two-dimensional slices
within a three-dimensional colloidal crystal; they at-
tributed this deviation from Debye behavior to a hetero-
geneous distribution of microgel particle stiffness and ar-
gued that the deviations were related to the boson peak.
Our low-frequency data, however, does not support the
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FIG. 3. Accumulated mode number, N(w), for all doped crys-
tals and pure PNIPAM crystal as a function of the frequency
w scaled by the minimum frequency wmin for each sample.
The solid black line represents Debye law scaling, N(w) ~ w?.
The accumulated mode numbers are logarithmically binned.
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FIG. 4. Mode characterization and representation for 11% hard-particle crystal. a) Accumulated mode number N(w) with
solid black line representing Debye law scaling, N(w) ~ w?, and dotted black lines show where representative modes (d-f) are
found on plot. b) Participation fraction Pp(w) of hard (filled red circles) and soft (hollow black squares) spheres. Horizontal
solid black lines show number fractions of soft and hard particles, 8% and 11% respectively, and dashed black lines again show
representative modes. The participation fraction of hard and soft spheres is binned (i.e. averaged) over a bin size of 20 X 10°
rad/s. c) Participation ratio Pr(w) with solid black line showing threshold for localized versus extended motion, and dotted
lines again show representative modes. The participation ratio of all particles is binned over a bin size of 20 x 103 rad/s. d-f)
Vector displacement plots of representative modes d) w = 86.4 x 10° rad/s, ) w = 381.2 x 10° rad/s, and f) w = 758.7 x 10°
rad/s. Dark blue dots are hard particles, light blue are soft particles, and arrows are the particles’ displacements. The larger

the arrow, the larger the particle’s displacement.

existence of a boson peak in these systems. To better
understand how crystalline behavior is preserved at low
frequencies, as well as to elucidate the behaviors exhib-
ited by these systems at higher frequencies, we utilize
the derived eigenvectors of the present system to obtain
spatial information about the phonon modes.

First, we quantify the contributions of soft and hard
particles to each mode. This information is derived by
calculating the participation fractions of each species for
each mode. The eigenvectors of each mode have com-
ponents (i.e. associated displacement amplitudes) corre-
sponding to each particle and each direction, i.e., e(w) =
(e12(W), vy €Ny 2 (W), €1y (W), ooy €N,y (W), Where Nyg is
the total number of particles in the sample. Fur-
ther, all eigenvectors are normalized such that |e(w)|=
Yalei(w) 4+ €2, (w)) = 1, where o runs over all par-
ticles. The participation fraction for particle o in a
mode with frequency w is therefore given by Pr,(w) =

€2, (w) + €2, (w). Thus, the participation fraction of
hard spheres in a mode with frequency w is Pp rarda =
Yonlens(w) + €;,(w)), where h is the set of indices cor-
responding to hard spheres in the eigenvector, and the
participation fraction of soft spheres is Ppgopt(w) =
1— Prrara = (€2, (w) + €2, (w)), where s is the set of
indices corresponding to soft spheres in the eigenvector.
Second, we quantify the spatial extent of each mode
by calculating its participation ratio. The mode par-
ticipation ratio is defined as Pr(w) = (3, €2, (w) +
€2, (W)?/(Niot 32 €az (W) + €4, (w)). A low numerical
value for the participation ratio indicates that the mode
is spatially localized, while a high value indicates the
mode is spatially extended. The participation ratio cut-
off used to separate localized from extended modes is
typically set to be 0.2. Modes with a participation ratio
below (above) 0.2 are considered localized (extended).
The general behavior of the bond-disordered crystals



can be gleaned from Fig. 4 wherein representative phonon
modes of an 11% hard-particle-doped crystal are shown,
along with the accumulated mode number, N(w), the
participation fraction, Pr(w), and the participation ra-
tio, Pgr(w). Interestingly, at low frequencies, where
Debye-like behavior was observed in the accumulated
mode number, the participation fractions of hard and soft
particles follow their respective number fractions in the
sample, i.e. soft and hard particles participate equally
(Fig. 4b). This representative mode and other modes at
low frequencies, exhibits long-wavelength-like extended
behavior; the behavior is similar to that of corresponding
modes at low frequencies in perfect crystals. Note also
that a few low frequency modes have very low participa-
tion ratios (i.e., they have at least some quasi-localized
character); we believe these effects are probably due lat-
tice point defects and/or grain boundaries [63]. In the
case of point defects, these low frequency modes appear
to possess both long-wavelength-like character and lo-
calized motions near lattice defects. The mode shown
in Fig. 4d is an example of one such mode; notice the
defect in the lower left hand corner. Thus, though the
participation ratio of such modes is typically below the
expected participation ratio of extended modes (~ 0.5),
they clearly exhibit a form of long-wavelength-like spa-
tially extended behavior too.

At intermediate frequencies, the accumulated mode
number grows faster than would be expected should De-
bye scaling continue to higher frequencies. In addition,
the motion in these modes is dominated by soft spheres
as is best quantified by the participation fraction. In
particular, we see that the participation fraction of soft
spheres in these modes is higher than the number ratio of
soft spheres in the system (Fig. 4b), i.e., we observe en-
hanced participation of soft spheres and diminished par-
ticipation of hard spheres compared to their sample num-
ber fractions. The motion of these intermediate modes
is also spatially extended, but their character appears
qualitatively different than was found at low frequencies.

The highest frequency modes are dominated by hard
spheres. Specifically, a crossover in the participation frac-
tion is observed wherein hard particles have enhanced
participation, and the participation of soft spheres is di-
minished. The highest frequency modes do not display
long wavelength extended behavior; rather, they appear
to be more localized than most of the modes observed
at intermediate and low frequencies. This latter effect
is supported quantitatively by the participation ratio
(Fig. 4c). The participation ratio at intermediate fre-
quencies is far above the 0.2 threshold. At high frequen-
cies, however, the participation ratio drops below 0.2.

We next explore the effects of differing dopant con-
centrations. To better compare samples with different
dopant concentrations, we scale the frequencies of each
sample type by its mean frequency (w). In this manner,
we can plot the behaviors of all samples over the same rel-
ative frequency range to discern trends more easily. Fur-
ther, by subtracting the number fraction of hard spheres
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FIG. 5. a) Hard-particle participation fractions shifted by
hard-particle number fractions P gard(w) — Neard/Niot as
a function of frequency scaled by the mean frequency w/{(w)
for all doped crystals. Dotted line represents equal participa-
tion. b) Participation ratio as a function of frequency scaled
by the mean frequency w/(w) for all doped crystals as well
as pure soft-particle crystal. Dotted line represents localized
versus extended threshold. Legend is for both figures, how-
ever data for 0% hard-particle crystal only in Figure b. Both
participation fraction and participation ratio data is binned
(i.e. averaged) over a bin size of 20 x 10° rad/s.

in a sample from the measured participation fraction,
i.e., Pppard(w) — Nuara/Niot, we can suggestively plot
all participation fraction versus frequency data as shown
in Fig. 5. Here, when Pp gara(w) — Nrard/Niot has a
value of zero, then all particles participate equally (i.e.,
corresponding to their number fraction in the sample); a
negative value means there is diminished participation by
the hard spheres and enhanced participation by the soft
spheres; a positive value means enhanced participation
by the hard spheres and diminished participation by the
soft spheres. The three frequency regimes observed in
the 11% hard particle crystals are apparent in all doped
crystals within this plotting scheme. Equal participation
is observed at low frequencies, diminished hard particle
participation at intermediate frequencies, and enhanced
hard particle participation at high frequencies. In addi-
tion, we find that the extent (i.e., frequency range) of the
high frequency regime, wherein hard particles become the



primary mode participants, shifts to lower relative fre-
quency as the number of hard-particle dopants increases.

The participation ratio of all doped crystals and the
pure soft PNIPAM crystal are also shown in Fig. 5 as a
function of scaled frequency. Notice that extended modes
predominate at low and intermediate frequencies for all
crystals, regardless of dopant concentration. The high
frequency modes in the pure soft particle crystal are also
observed to be extended; however, the highest frequency
modes of all doped crystals are found to be localized.
Evidently, the hard particle dopants dominate motion at
high frequencies, thus localizing vibrational motion since
they are relatively isolated. This high frequency behavior
appears similar, at least superficially, to that observed in
colloidal glasses [19, 24].

To further confirm our findings, we studied computa-
tionally generated spring networks. These spring net-
works employed varying ratios of stiff and soft springs
located randomly within the lattice. Part of our moti-
vation for carrying out these simulations was due to the
fact that the spatial distribution of hard particle dopants
in the experimental samples was not perfectly random;
we therefore hoped to clarify whether this lack of perfect
randomness would affect any of the conclusions we made
about the phonon spectra.

The computer simulations employed particles with
equal masses on triangular lattices. The particles were
randomly chosen to have one of two spring constants, k1
or k3. We set ko to be five times larger than k. Par-
ticles with spring constant ko are referred to as “stift”
and particles with spring constant k; are referred to as
“soft”. The effective spring between two neighboring par-
ticles is the mean value of the spring constants of the
two particles. In other words, the effective spring con-
stant k;; between neighboring particles ¢ and j is given
by ki; = (ki + k;)/2, where k; and k; are the spring con-
stants of individual particles ¢ and j, respectively. This
model was employed to be consistent with our experi-
ments, wherein two hard particles are coupled by an ef-
fectively stiff spring, two soft particles are coupled by
an effectively soft spring, and hard-particle/soft parti-
cle pairs are coupled by an effective spring of intermedi-
ate stiffness. All non-nearest neighbor springs were set
to zero. We thus generated a spring constant matrix K
based on nearest neighbor spring interactions; K, in turn,
gives rise to a dynamical matrix D for the spring network.
The eigenvalues and eigenvectors of D were calculated,
and the frequencies, participation fractions, participation
ratios, etc., were derived. One hundred different initial
configurations were employed for each network; networks
were chosen with 0, 10, 25, 35, 50, 65, 75, 90, and 100
percent stiff particles. By averaging over 100 iterations,
we minimized effects specific to any one configuration.

Plots derived from these “computationally generated
data”, and analogous to those of the experimental data
in Fig. 5, are provided in Fig. 6. Notice that the com-
putationally generated networks exhibit the same three
frequency regimes as the experimental systems. Further,
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FIG. 6. a) Stiff-particle participation fractions shifted by
stiff-particle number fractions Pp,s¢iff(w) — Nsiiff/Niot as a
function of frequency scaled by the mean frequency w/{w) for
computationally generated springs networks, excluding those
which are purely soft particles or purely stiff particles. Dot-
ted line represents equal participation. b) Participation ratio
Pr(w) as a function of frequency scaled by the mean frequency
w/{w) for all computationally generated spring networks, in-
cluding those which are purely soft particles (black line with
dots) or pure stiff particles (grey line with dots). Dotted line
represents localized versus extended threshold. Legend is for
both figures, however data for 0% and 100% stiff particle crys-
tal only in Figure b.

the participation ratios, Pr(w), of all computationally
generated spring networks (0% to 100% stiff particles) ex-
hibit trends similar to experiment. Thus, it appears that
the small non-randomness in the experimental dopant
spatial distribution does not introduce systematic errors
that affect our primary conclusions.

In summary, the vibrational modes in soft-particle
crystals doped with hard particles exhibit three dis-
tinct frequency regimes. At low frequencies, crystalline
(Debye-like) behavior in the DOS is observed in all sys-
tems regardless of doping. These low frequency modes
display long wavelength behavior in which hard and soft
particles participate equally. At intermediate frequen-
cies, the modes are extended and dominated by soft par-
ticles. At the highest frequencies, the modes are more
localized and dominated by hard particles. Our com-
putationally generated spring networks exhibit many of



the trends observed here and even extrapolate to higher
number fractions of hard spheres.

The experimental results imply that while the intro-
duction of bond-strength disorder does indeed alter some
of the vibrational properties of crystalline materials, com-
pared to the introduction of structural disorder, it does
not as readily destroy the crystalline/Debye-like proper-
ties at low frequencies. Thus, at least within the present
experimental regimes, it appears that structural order in
crystalline materials is more important than bond ho-
mogeneity for maintaining crystalline phonon properties
at low frequencies. This finding is superficially in con-
flict with previous simulation work on interaction disor-
dered crystals which have found a boson peak at low fre-
quencies when enough disorder is present [45-49]. The
previous simulation work examined a variety of spring
constant distributions including a box distribution with
plus/minus 20% variation about the average [45], trun-
cated Gaussian distributions with widths varying from
0.6 to 1 [46, 48], power law distributions [47], and binary
distributions with a spring constant ratio of 0.1 [47, 49].
The simulations of binary distributions are closest to our
experiments. However these simulations started with a
crystal of primarily hard springs and then doped it with
soft springs. By contrast our experiments employed a
soft crystal doped with hard particles. Also, the simu-
lations used only two spring constants (soft and hard),
whereas our experiments had three distinct spring con-
stants (soft, hard, and intermediate stiffness) correspond-
ing to our three inter-particle interactions, i.e., soft-soft,
hard-hard, and soft-hard, respectively. It should be inter-
esting for future work to push to higher concentrations
of hard spheres or to start with hard-particle crystals
and add soft dopants. These experiments should be pos-
sible but are technically more difficult because the hard

polystyrene particles scatter significantly more light than
the PNIPAM particles, and tracking PNIPAM particles
surrounded by a large number of polystyrene particles is
difficult.

Looking to the future, it should be interesting to in-
crease the bond-strength disparity by using softer par-
ticles. This variation, as well as the use of higher hard
particle concentrations, would enable us to probe sys-
tems closer to the onset of mechanical instability. The
responses of these materials to mechanical perturbations
would also be interesting to study. Given that colloidal
glasses have been shown to possess quasi-localized “soft
spots” which correlate with the location of structural re-
arrangements [24-30], it would be interesting to see when
and if the soft spheres would become literal soft spots in
hard crystals that facilitate rearrangements (due to ther-
mal motion or mechanical stress). Finally, in a different
vein, these systems potentially offer a new class of so-
called phononic materials in which localization of elas-
tic energy (i.e., phonons) can influence wave transport
[64, 65].
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