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We investigate nonequilibrium stationary distributions induced by stochastic dichotomous noise in
double-well and multi-well models of ion channel gating kinetics. The channel kinetics is analyzed
using both overdamped Langevin equations and master equations. With the Langevin equation
approach we show a non-trivial focusing effect due to the external stochastic noise, namely the
concentration of the probability distribution in one of the two wells of a double-well system or in
one or more of the wells of the multi-well model. In the multi-well system, focusing in the outer
wells is shown to be achievable under physiological conditions, while focusing in the central wells has
proved possible so far only at very low temperatures. We also discuss the strength of the focusing
effect and obtain the conditions necessary for maximal focusing to appear. These conditions cannot
be predicted by a simple master equation approach.

PACS numbers: 05.50.+q, 75.10.Hk, 75.10.Pq

I. INTRODUCTION

Interaction of physical, chemical, or biological systems
with fluctuating stimuli, either random or periodic, has
in recent years received a lot of attention in a variety
of contexts. It gives rise to new effects in nonlinear
systems that cannot be observed under stationary per-
turbation. One of the most studied examples of such
phenomena is stochastic resonance (SR) [1–13], an effect
where noise with suitable properties, either intrinsic or
added to the system, improves the system response to
weak time-dependent signals. The signal-to-noise ratio
can paradoxically be boosted by increasing the level of
noise present in the system. SR was first suggested as an
explanation for the cyclic ice ages observed in the earth’s
climate [1] but has been since expanded as a plausible ex-
planation of various effects in other areas. Of particular
interest is the application of SR to explain the detection
of very weak signals in noisy environments observed in
biological systems, e.g. in ion channels [3, 5, 6].

Another example is the dynamics of ratchets [14–16].
The term refers to spatially asymmetric potentials which,
interacting with Brownian fluctuations, generate a di-
rected drift in the system. The scale of the effect can
be controlled by adjusting the properties of the noise. A
similar ratchet-like effect has been observed in spatially
symmetric potentials subject to temporally asymmetric
noise (so-called correlation ratchets) [17].

An interesting example of such fluctuation-induced
phenomena is called resonant activation [18–23]. It is
an effect where diffusion over a fluctuating potential bar-
rier is correlated with the fluctuation rate and a resonant
effect is observed. As noted in Ref. [18], when the barrier
fluctuations are slow compared to the natural time scale
of barrier crossing, the behavior of the system can be
described using an adiabatic approximation. In the op-

posite limit of very fast oscillations, the barrier crossing
rate approaches that corresponding to the time-averaged
barrier height. For intermediate barrier fluctuation rates,
a resonance-like enhancement of the barrier crossing rate
is observed. This has been applied, e.g. to chemical
reaction rates [24] and to ion transport through chan-
nels [16, 25].

A related effect, and the one we investigate in this pa-
per is the nonequilibrium kinetic focusing first proposed
in Ref. [26]. It is an effect where a particle moving
in a ratchet-like potential subject to external dichoto-
mous noise fluctuations gets trapped in one of the energy
wells. This mechanism was applied to gating kinetics of
voltage-gated ion channels in silico, achieving a focus-
ing of the channels into a particular conformational state
corresponding to this energy well. The first experimental
study of this effect in Shaker K+ channels was reported
in Ref. [27]. The phenomenon of particle trapping in a
correlation ratchet has also been investigated [17].

Ion channels are membrane proteins in biological cells
that form gated pores for a controlled exchange of phys-
iologically important ions, such as sodium or potassium,
between the cytosol and the extracellular medium [28].
Gating of voltage-gated ion channels is controlled by the
transmembrane potential. These channels play a very
important role in various physiological processes (nerve
impulses, muscle contraction, etc.), and several human
and animal disorders have been linked to malfunction-
ing ion channels. Therefore, there have been numerous
studies aimed at advancing our understanding of channel
gating kinetics and ultimately at controlling it. Kinetic
focusing of ion channels seems to be very promising for
both of these goals.

Gating kinetics of voltage-gated ion channels is a reflec-
tion of conformational changes of the channel molecule.
From a physico-chemical standpoint, the gating process
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has been modeled as a particle (so-called gating parti-
cle) moving in a certain multi-well energy landscape (de-
scribing the energy of molecular conformational states).
Mathematically, the most commonly used description is
a discrete Markov chain, where different Markov states
correspond to minima in the energy profile and the tran-
sition rates between the states reflect the heights and
widths of the energy barriers. The time evolution of the
system is described by a master equation. These types of
models dominate the literature about ion channels and
have been reasonably successful in explaining physiolog-
ically relevant effects (see e.g. [29]). However, they are
coarse approximations only, completely disregard intra-
well motions of the gating particle, and work only if the
energy barriers separating the wells are sufficiently high.
More accurately, the process can be described by the
overdamped Langevin equation [1].

In this paper we study both approaches to simple mod-
els of ion channel gating. In Section II we introduce the
model, and in Section III we analyze focusing in a two-
state (two-well) model, which may represent an ion chan-
nel with two stable conformational states only: one open
(where the ions can go through the cell membrane) and
one closed. In the master equation approximation we
find analytic expressions for the equilibrium probability
in each well; however, we show that the master equa-
tion approach does not allow the conditions for maximal
focusing to be obtained. These conditions may be ob-
tained by including the leading Langevin correction to
the master equation approximation. In Section IV we
comment on a more realistic model of gating kinetics for
a Shaker potassium channel developed by Bezanilla et
al. [29] based on patch-clamping experiments with ionic
and gating currents.

II. THE MODEL

In order to model the ion channel gating kinetics, we
consider a one-dimensional potential energy landscape,
where the potential minima are the possible states of
the ion channel, while the barrier heights between two
neighboring states are chosen so as to reproduce the cor-
rect transition rates. Within this model the dynamics
of the ion channel can be described by the overdamped
Langevin equation [26]:

γẋ(t) = −u′(x) +
√

2γkBTξ(t) , (1)

where ξ(t) is a white noise with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t − t′), u(x) is the potential energy land-
scape, γ is the friction coefficient, T is the temperature
of the bath, and kB is the Boltzmann constant.

We investigate the effect of a time dependent stochastic
external potential on the out-of-equilibrium stationary
distributions of our model. When an external voltage,
vext(t), is applied across the cell membrane, the particle
behaves as if it had a charge valence, z, and the Langevin

equation becomes (see [26]),

γẋ(t) = −u′(x) + zvext(t)/λ+
√

2γkBTξ(t), (2)

where the length scale, λ, is the cell membrane thickness.
Using the rescaled variables

X =
zx

λ
, τ =

z2kBT

γλ2
t ,

Vext(τ) =
vext(t)

kBT
, U(X) =

u(x)

kBT
,

(3)

we finally get the Langevin equation in dimensionless
form,

Ẋ(τ) = −U ′(X) + Vext(τ) +
√

2 ξ(τ) . (4)

In the following we set γ = λ = z = 1 for convenience,
so that X = x and τ = kBTt. We see that the external
membrane potential, Vext, changes the potential shape in
a linear way:

U(X)→ U(X)− VextX . (5)

The external potential will include a time-independent
contribution plus a stochastic part given by dichotomous
noise (DN):

Vext(τ) = V0 + VDN(τ) , (6)

where V0 is a constant and VDN(τ) represents a time-
dependent random and asymmetric switching between
two fixed values of the potential, V±,:

V+ =

√
D

τv

(
1 + ε

1− ε

)
, V− = −

√
D

τv

(
1− ε
1 + ε

)
(7)

with transition probabilities w+ (from the + to the −
state), and w− (from the − to the + state),

w+ = (1 + ε)/2τv, w− = (1− ε)/2τv . (8)

It is easy to show that such DN has a null time average

〈VDN(τ)〉 = 0 , (9)

and correlation function

〈VDN(τ)VDN(0)〉 = (D/τv) exp(−τ/τv),

so that it can be fully characterized by three dimension-
less parameters: correlation time τv, intensity D/τv (or

amplitude
√
D/τv), and asymmetry ε (with −1 < ε < 1).

III. FOCUSING IN A DOUBLE-WELL
POTENTIAL

The two-state model, introduced in this Section, is in-
tended to represent open/closed configurations. Even if
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it is too simple to adequately represent the behavior of
real channels, it is commonly used as a toy model, to
demonstrate various phenomena [12, 13, 22, 24, 30–33].
A two-state model can also be understood as a sub-model
of a larger system, see Section IV.

The double-well potential landscape considered here is:

u(x) = −1

2
ax2 +

1

4
bx4 , (10)

and it has two minima at ±xm = ±
√
a/b, and a central

barrier with height ∆u = a2/4b at xb = 0; see the solid
curve in Fig. 1.

Due to thermal fluctuations, the particle jumps be-
tween the two wells with a rate that, for ∆u/kBT � 1,
is given by the Kramers formula [1]:

wK =
ω0ωb
2πγ

exp

(
− ∆u

kBT

)
, (11)

where ω2
0 = |u′′(xm)| and ω2

b = |u′′(xb)|.
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FIG. 1: (Color online) The unperturbed double-well potential
u(x) of Eq. (10) and the two configurations of the potential
when it is modified by dichotomous noise with V0 = 0, as
indicated in the legend. Potential parameters are a = 10
and b = 1, while the DN shown is given by: D/τv = 0.71,
kBT = 0.15∆u, and ε = 0.8.

If we now add a DN perturbation with V0 = 0, see
Eq. (6), then depending on the state of the DN, there are
two possible configurations for the potential: a (−) con-
figuration and a (+) configuration, as depicted in Fig. 1.

A. Solving the Langevin equation

To study the stationary probability distribution, one
has to solve the stochastic equation, Eq. (4), numeri-
cally. We do so using an order 1.5 strong Ito-Taylor

scheme (in explicit form), as described by Platen and
Wagner [34]. Starting with randomly chosen initial po-
sitions and integrating the Langevin equation forward in
time, we compute the probabilities PL/R(τ) of finding
the gating particle in each potential well at time τ . We
have verified that after a transient time, these probabili-
ties always reach stationary values, P eq

L/R, dependent on

the DN parameters.
The results of integrating the Langevin equation are

shown as data points (circles) in Fig. 2, where we fix the
DN intensity D/τv and asymmetry ε, and vary the DN
correlation time τv. Each data point in the graph repre-
sents the left well equilibrium probability, P eq

L . As one
can see, P eq

L reaches a minimum of approximately 10%
at a specific value of τv (i.e., 90% of probability is concen-
trated in the right well). This is nonequilibrium kinetic
focusing, and it should not be confused with the trivial
focusing that occurs at large τv (P eq

L = P mean
L ≈ 0.8),

which can be understood based on equilibrium consider-
ations.
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FIG. 2: (Color online) The equilibrium probability in the
left well versus the DN correlation time τv. The data points
(circles) are obtained from the Langevin equation, while the
solid curve is obtained from a master equation approach (see
Section III B). Thermal tunneling times τL,R(±) are shown
as arrows (except for τR(+) ∼ 106, which is off the scale of
the graph). The horizontal upper dashed line represents the
limit P mean

L , computed with Eq. (14), while the dot-dashed
horizontal lower line is P foc

L , see Eq. (25). Here we have
D/τv = 0.71, kBT = 0.15∆u, and ε = 0.8 as in Fig. 1.

We would now like to understand the relevant time
scales in this system. Since the DN causes the poten-
tial to switch between two configurations, it is possible
to define four thermal tunneling times in the system:
τL/R(+/−), where, for example, τL(+) is the mean time
after which a particle jumps from the left to the right
well when the potential is in the (+) configuration (that
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is when VDN = V+). Note that in this Section we con-
sider a physically realistic regime in which both the DN
amplitude and the thermal fluctuations are not too large,
compared to the height of the potential barrier. Moder-
ate thermal fluctuations relative to the potential barrier
correspond to physiological conditions at room tempera-
ture for ion channels [26]. Moreover, moderate DN am-
plitude corresponds to an experimentally realistic regime
since a large amplitude would interfere with the electro-
physiological properties of cell membranes and of the ion
channels in the membranes. Under these assumptions,
the thermal tunneling times are given by the inverses
of the tunneling rates wR/L(±), obtained by applying
Eq. (11) to the perturbed potential, so that we have:

τL/R(±) =
1

wL/R(±)
. (12)

We should also take into account two additional charac-
teristic times, given by the DN, namely,

τ±v =
1

w±
=

2

(1±ε)
τv , (13)

where w± are given by Eq. (8). The scales τ±v are es-
timates of the typical times spent in each configuration
between DN switchings.

When the DN switching times, τ±v , are much larger
than the thermal tunneling times, τL,R(±), we can as-
sume that the system reaches thermal equilibrium sep-
arately in each potential configuration. Therefore if
P eq
L/R(±) are the thermal Gibbs probabilities for each

well in the (+) and (−) configuration, then it is reason-
able to assume that, for τ±v → ∞, the probability P eq

L
approaches the mean value

P eq
L →

τ+
v

(τ+
v + τ−v )

P eq
L (+)+

τ−v
(τ+
v + τ−v )

P eq
L (−) ≡ P mean

L .

(14)
P mean
L is shown as the upper dashed horizontal line in

Fig. 2 and agrees very well with numerical data.
In the opposite limit of fast DN switching (τv → 0),

the probability distribution becomes symmetric:

P eq
L , P eq

R → 1/2 , (15)

which is the value obtained with our numerical simula-
tions of the Langevin equation, see Fig. 2. The limit
τv → 0 of the Langevin equation can be understood by
noting that when the switching between potential config-
urations is fast compared to the time scale on which the
particle moves in the potential, the particle effectively

sees only the time-averaged DN potential, which is zero
in our case (see Eq. (9)). This can be seen explicitly by
assuming for simplicity a periodic, rather than stochas-
tic, switching between the two potential configurations.
Indeed, the displacement of the particle after time τ+

v in
the (+) configuration, is (see Eq. (4)):

(∆X)+ = [−U ′(X) + V+ +
√

2 ξ]τ+
v , (16)

and after time τ−v in the (−) configuration we have the
additional displacement

(∆X)− = [−U ′(X) + V− +
√

2 ξ]τ−v , (17)

neglecting the terms proportional to τ+
v τ
−
v . The total

displacement after a time τ+
v + τ−v is then:

∆X = (∆X)+ + (∆X)−

= [−U ′(X) +
√

2 ξ](τ+
v + τ−v ) + (V+τ

+
v + V−τ

−
v ) .

(18)

and, dividing by τ+
v + τ−v , we get the Langevin equation

for an infinitely fast oscillating potential:

Ẋ = −U ′(X) +
√

2 ξ +
V+τ

+
v + V−τ

−
v

τ+
v + τ−v

. (19)

The last term corresponds to the time average of the DN.
In the regime of intermediate values of τv, we observe

a non-trivial focusing effect, see Fig. 2. This is an in-
teresting result, since the applied DN has zero mean
(Eq. (9)), and nevertheless can induce a stationary dis-
tribution that focuses the system in one well.

B. Master equation approach

In order to understand the conditions for the focus-
ing, we attempt a simple explanation through a master
equation approach

Ṗ = W P . (20)

Here P(τ) =

 PL(+)
PL(−)
PR(+)
PR(−)

 is the vector of probabilities

(e.g. PL(+) is the joint probability of the DN potential
being in the (+) configuration and the particle being in
the left well at time τ) and W is the 4 × 4 transition
matrix
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W =


−w+ − wL(+) w− wR(+) 0

w+ −w− − wL(−) 0 wR(−)
wL(+) 0 −w+ − wR(+) w−

0 wL(−) w+ −w− − wR(−)

 , (21)

where for example in the upper left matrix element,
WL(+),L(+) = −w+ − wL(+), the first term represents
the probability of switching from L(+) to L(−), with the
rate given in Eq. (8), and the second term represents the
probability of tunneling from L(+) to R(+), with the
appropriate tunneling rate in the (+) configuration. Set-
ting the left hand side of Eq. (20) to zero, and imposing
the normalization condition PL(+) + PL(−) + PR(+) +
PR(−) = 1, we obtain analytically the equilibrium prob-
abilities in terms of the switching time τv, the asymmetry
ε, and the four tunneling rates. In particular,

P eq
L = P eq

L (+) + P eq
L (−) =

w̃R

w̃R + w̃L
, (22)

where

w̃R = wR(−)(1 + ε)(1 + τvw
L(+))

+ wR(+)(1− ε)(1 + τvw
L(−))

+ 2τvw
R(+)wR(−) (23)

and

w̃L = wL(−)(1 + ε)(1 + τvw
R(+))

+ wL(+)(1− ε)(1 + τvw
R(−))

+ 2τvw
L(+)wL(−) (24)

may be interpreted as being proportional to the effective
transition rates from right to left and from left to right,
respectively. Of course, P eq

R is given by P eq
R = 1− P eq

L .
In Fig. 2 we compare the results obtained using the

Langevin equation with those obtained via the master
equation, Eq. (22). We observe good agreement between
the two approaches when the DN correlation time τv is
larger than the value at which the best focusing occurs:
indeed, for large τv, Eq. (22) manifestly reduces to the
result P eq

L = P mean
L obtained using the Langevin equa-

tion in the same limit (Eq. (14)). On the other hand,
for τv → 0, the master equation gives a completely dif-
ferent result. In fact, we see from Fig. 2 that the master
equation implies that maximal focusing is attained for
infinitely fast switching (τv → 0), whereas in reality fo-
cusing is entirely absent in this limit. Explicitly, in the
fast-switching limit τv → 0, Eq. (22) reduces to

P eq
L = P foc

L ≡ 〈wR〉
〈wL〉+ 〈wR〉

, (25)

where

〈wL/R〉 =
1 + ε

2
wL/R(−) +

1− ε
2

wL/R(+) . (26)

Eq. (25) may also be obtained directly by noting that
for small τv the master equation implies equilibration
between the L(+) and L(−) states and separately be-
tween the R(+) and R(−) states, with slow transitions
between L and R being governed by the DN-averaged
rates 〈wL/R〉. In other words, the τv → 0 limit of the
master equation corresponds not to motion in a DN po-
tential averaged over the (+) and (−) configurations, but
to dynamics using tunneling rates averaged over two con-
figurations. The time-averaged transition rates are not
equal in general, and thus do not lead to equal proba-
bilities in the two wells, even though the time-averaged
potential vanishes. This is a limitation of the master
equation formalism. An intuitive explanation of the fail-
ure of the master equation approach for τv → 0 is that
the system does not have time to equilibrate in each well
before the switching, and thus the two-state model for
the two wells becomes inappropriate.

In Fig. 2 the value of P foc
L is shown to agree with the

master equation solution in the limit τv → 0, and, inter-
estingly, it is close to the focusing value of P eq

L at the
minimum. This behavior will be explained below and
used to determine the dependence of the focusing inten-
sity on the parameters of the model.

The fact that a master equation approach cannot ex-
plain the focusing shows that the focusing is highly non-
trivial, being a truly nonequilibrium effect.

C. Understanding the focusing conditions

To better understand the conditions for nonequilib-
rium focusing we need to consider the interplay of several
time scales. Without loss of generality we can assume, as
in Eqs. (5) and (7), that in the (+) configuration the DN
potential has a downward slope, so that the tunneling
rate from left to right is greater than the tunneling rate
from right to left in this configuration. Consequently,
due to the zero average of the DN potential, the opposite
must be true in the (−) configuration. Since we are inter-
ested in nonequilibrium focusing, the switching time τv
will be short compared to the tunneling times τL/R(±).
On the other hand, we want the switching time τv to be
sufficiently large that the master equation gives at least a
reasonable first-order approximation to the true equilib-
rium probabilities obtained from the Langevin equation.
This requires that τv is large compared to the typical time
scale, τwell, associated with Langevin equilibration in a
single well. τwell can be evaluated from Langevin Eq.(4),
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as the time it takes for oscillations to be damped, so
that we have τwell = 1/U ′′(Xm) = kBT/u

′′(xm), where
Xm is the value at which the potential is minimized (For
the two-well model of Eq. (10) without DN perturbation,
τwell = a

8b
kBT
∆u ). Thus we have{

τwell � τv � τL(+)� τR(+)

τwell � τv � τR(−)� τL(−)
. (27)

In this nonequilibrium regime, the rates wL(+) and
wR(−) dominate the transitions between the two wells.
In particular, in the regime given by (27), the equilibrium
probability to be in the left well is given to leading order
by omitting the very small rates wR(+) and wL(−) from
Eq. (25), i.e.,

P eq
L = P foc

L =
(1 + ε)wR(−)

(1 + ε)wR(−) + (1− ε)wL(+)

=
(1 + ε)τL(+)

(1 + ε)τL(+) + (1− ε)τR(−)
. (28)

Now including the first-order corrections to the small-τv
behavior of the master equation and also the first-order
correction to the validity of the master equation result
(i.e., the leading order correction to the master equation
equilibrium probabilities as given by the Langevin equa-
tion for nonzero τwell/τv), we have

P eq
L =

(1 + ε)τL(+)

(1 + ε)τL(+) + (1− ε)τR(−)

+ O

(
τv

τL(+)

)
+O

(
τv

τR(−)

)
+O

(
τwell

τv

)
. (29)

Focusing in the right well will be possible when (1 +
ε)τL(+)� (1−ε)τR(−), and similarly focusing in the left
well will be possible when (1 + ε)τL(+)� (1− ε)τR(−).
Without loss of generality we will concentrate on the case
where the system parameters permit focusing in the right
well, as in Fig. 2, so

(1 + ε)τL(+)� (1− ε)τR(−) . (30)

We are now ready to determine the switching rate nec-
essary for maximal focusing. Rewriting Eq. (29) and
dropping the 1/τR(−) correction term, we have

P eq
L = P foc

L

[
1 + C1

τv
τL(+)

+ C2
τwell

τv

]
, (31)

where C1 and C2 are dimensionless constants indepen-
dent of τv, τ

L(+), and τwell. In particular, we easily find
C1 = 1 by expanding Eq. (22) to first order in τv.

Minimizing P eq
L as a function of τv, we find the optimal

switching time

τvmin =
√
C2τwellτL(+) (32)

and the optimal focusing

P eq
L min = P foc

L

[
1 + 2

√
C2

τwell

τL(+)

]
. (33)

Interestingly, even though the master equation fails en-
tirely in the τv → 0 limit and is wholly inadequate for de-
termining the condition (32) for optimal nonequilbrium
focusing, the strength of optimal focusing is well approxi-
mated by the simple analytic expression P foc

L (Eq. (25)),
obtained using the master equation in this limit.
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τL
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m
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D/τ
v
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B
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D/τ
v
 = 0.4, k

B
T = 0.20 ∆u
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v
 = 0.14, k

B
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FIG. 3: (Color online) The correlation time τ+v min, for which
we observe strongest focusing, is plotted as a function of the
transition time τL(+). Each data set consists of simulations
with fixed DN intensity D/τv and temperature T , as indicated
in the legend, and varying ε. The dashed line indicates a
square root dependence. Error bars describe the variation
of τ+v min for which P eq

L changes by 0.1% from its minimum
value.

In Fig. 3, we study numerically how the switching time
τ+
v min = 2

1+ετvmin, at which a minimum of P eq
L is found,

depends on the thermal tunneling time τL(+) for differ-
ent values of the asymmetry ε, the intensity D/τv, and
the temperature T . In each data set, D/τv and kBT
are fixed, and the asymmetry parameter ε is varied. Ev-
ery value of τ+

v min is then computed from a graph like
Fig. 2, by fitting the function P eq

L (log(τv)) to a quadratic
form around its minimum. A universal curve is obtained,
with precisely the scaling τ+

v min ∝
√
τL(+) predicted by

Eq. (32). Furthermore, we have the remarkable result
that τ+

v min to a very good approximation depends on
the noise amplitude, asymmetry, and temperature only
through τL(+). This is initially surprising, since the
single-well equilibration time τwell and the C2 coefficient
in Eq. (32) are also expected to vary with these parame-
ters, and additionally the factor 2/(1 + ε) relating τ+

v min
and τvmin depends explicitly on ε. We note, however,
that the tunneling time τL(+) is the only quantity in
Eq. (32) that exhibits exponential sensitivity to the sys-
tem parameters, and so it is reasonable that the variation
of τL(+) should be the leading effect.

Up to now, we have only studied the probability dis-
tribution induced by the DN as a function of τv. Now we
analyze the dependence of the focusing on the other pa-
rameters, specifically ε and kBT . In Fig. 4 (upper panel)
we show the left well probability P eq

L at strongest fo-
cusing vs the DN asymmetry parameter ε. We observe
that the focusing gets weaker as the asymmetry decreases
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FIG. 4: (Color online) Upper panel: P eq
L at strongest fo-

cusing (circles) is plotted vs ε for fixed D/τv = 0.71 and
kBT = 0.15∆u. Lower panel: P eq

L at strongest focusing (cir-
cles) is plotted vs kBT/∆u for D/τv = 0.016(∆u/kBT )2 and
fixed ε = 0.8. In each panel, the dashed curve represents the
theoretical prediction (Eq. (25)) obtained from the master
equation, see text.

(ε→ 0). This can be explained by noticing that the sepa-
ration of scales between the two thermal tunneling times
τL(+) and τR(−) decreases as the asymmetry decreases,
and therefore the condition (30) for focusing in the right
well is not met.

In Fig. 4 (lower panel) we show the left well probability
P eq
L at strongest focusing vs the temperature. Obviously

increasing the temperature destroys the focusing effect.
This is expected since increasing temperature causes the
single-well equilibration time τwell to grow while all the
tunneling times τL,R(±) are shortened, and additionally
the separation of scales between the different tunneling
times is reduced. All of these effects combine to make the
conditions in Eq. (27) more difficult to satisfy at higher
temperature.

We recall from Eq. (33) that although the master equa-
tion fails to fit the data for very fast switching, specif-
ically when τv becomes comparable with the single-well
equilibration time τwell, the equilibrium probability P foc

L
obtained from the master equation in this limit is a good
leading-order estimate for the strength of maximal focus-
ing. This remains true as long as τwell is small compared
to the smallest tunneling time, i.e., as long as there is a
separation of time scales between equilibration in a single
well and inter-well tunneling. Thus we can use Eq. (25) to
analytically estimate the value of the focusing as a func-
tion of the parameters. This analytical result is shown
in each panel of Fig. 4 as a dashed curve, and is in good
agreement with our numerical results, except when the
asymmetry ε or kBT becomes so large that the energy
barriers are not well defined (and the Kramers formula
(11) is no longer applicable).

The results of our investigations on a double-well po-
tential can be summarized as follows:

• A stochastic perturbing potential with zero time
average can induce an unbalanced stationary prob-
ability distribution between the two wells.

• Conditions for right-well focusing are: τwell � τv �
τL(+) � τR(−) � τL(−) � τR(+), see Eqs. (27)
and (30), and similarly for left-well focusing.

• The master equation approach completely fails for
fast DN perturbations (small τv) and is unable to
describe the conditions for nonequilibrium kinetic
focusing.

• The conditions for maximal focusing can be ob-
tained by adding the leading Langevin correction to
the master equation equilibrium probabilities. The
optimal switching time τv scales as

√
τwellτL(+) for

right-well focusing, see Eq. (32).

• At fixed DN intensity, the focusing can be improved
by increasing the asymmetry ε or decreasing the
temperature. Analytical estimation of the focusing
intensity is given by Eq. (25).

IV. EIGHT-WELL POTENTIAL: A MORE
REALISTIC MODEL FOR ION CHANNEL

GATING

In the previous Section we showed that it is possi-
ble to modify the stationary probability distribution in
a double-well potential, and particularly to increase the
probability to find the system in one well, by introducing
a stochastic perturbation. Although two-well potentials
can be useful toy models, they are typically far too sim-
ple to describe the gating of real ion channels. As an
example, we consider a very well-studied voltage-gated
ion channel, the Shaker K+ channel. There have been
numerous models developed for the Shaker channel gat-
ing kinetics, based on available experimental data from
patch-clamping experiments. A vast majority of them
have the form of a discrete Markov chains characterizing
possible conformational states of the channel molecule
and the transitions between the states. As in [26], we
concentrate on the BPS model, proposed by Bezanilla
et al. [29]. It is a Markov chain of 8 states as shown
schematically in Fig. 5. The C-states are closed and the
O-state represents an open conformation of the channel
in which the ions can pass through the pore. We label
the states 1− 8, left to right.

Since transitions occur only between nearest-neighbor
states, the ion channel can be represented by an eight-
well potential landscape u(x), as depicted in Fig. 6. The
eight potential minima are the possible states of the chan-
nel, and the barrier heights are chosen so to reproduce
the correct experimental transition rates. The piecewise-
linear shape of the energy landscape was chosen for com-
putational simplicity, as the exact shape is not known.
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FIG. 5: The BPS model [29]. Forward and backward tun-
neling rates, αi and βi, were determined by fitting to various
types of experimental electrophysiological data (ionic and gat-
ing currents from patch-clamping experiments) and can be
found in Ref. [29] .
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FIG. 6: The potential u used by Millonas and Chialvo in
Ref. [26] as a model of the Shaker K+ channel. For the def-
inition of the rescaled potential U(X), see Eq. (3). In this
Figure we assume T = 300K.

In the following we present some preliminary discussion
of the effect of stochastic noise on multistate models, de-
scribed by such multiwell potential landscapes, leaving a
deeper analysis for future work.

The problem of focusing in such an eight-well
model has previously been considered by Millonas and
Chialvo [26]. Based on a probabilistic treatment of the
Langevin equation (4), they concluded that, for very low
temperature and large amplitude of the DN, it is possi-
ble to induce stationary probability distributions concen-
trated in an arbitrarily chosen potential well. This effect
has been called the nonequilibrium kinetic focusing. The
problem it that the two conditions (very low temperature
and large DN) are not physiological, since no living or-
ganism can function at such extreme temperatures, and
very large voltage fluctuations tend to destroy the cell
membrane in which the ions are embedded. Hence, Mil-
lonas and Chialvo’s result could not be verified experi-
mentally.

For this reason, we investigate numerically whether
nonequilibrium kinetic focusing can occur in an eight-well
potential under physiological conditions (room tempera-
ture and moderate DN amplitude), i.e., under the condi-

tions studied in the previous Section in a two-well case.
We also compare the analytical predictions of Ref. [26]
for low temperature and large DN intensity with our nu-
merical simulations.

A. Room temperature and low DN intensity

Similar to the results of the previous Section, we con-
sider the overdamped Langevin equation (4), and com-
pute the equilibrium probabilities P eq

i for each of the
eight wells, defined as in the previous Sections. Fig. 7
shows typical results of our simulations of the equilib-
rium probability distribution P eq

i for each well i as a
function of τv, at fixed asymmetry ε, intensity D/τv, and
mean external potential V0.
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FIG. 7: (Color online) The equilibrium probabilities P eq
i in

the i-th well are shown as functions of the DN correlation time
τv. The parameters are: D/τv = 1, ε = 0.8, V0 = 〈Vext〉 =
(−45 mV)/kBT , and T = 300 K. Dashed lines represents
stationary probabilities given by Eq.(34).

It is clear from the figure that as τv varies strong focus-
ing only occurs in wells 7 and 8 for intermediate values
of τv, and also in well 2 for large τv. The equilibrium
probabilities of the other wells are less strongly depen-
dent on τv for the chosen values of the parameters. We
can also draw conclusions similar to those obtained for
the double-well case in the limits of very small and very
large τv. For very fast DN switching (τv → 0), the system
responds to the average potential and the probability dis-
tribution is given by the thermal Gibbs distribution for
Vext = V0, so that the focusing effect should be judged
comparing the proability at finite τv with the probability
for τv → 0. On the other hand, for τv large compared
to the tunneling times, the stationary probabilities (see
dashed horizontal lines in Fig.(7)), can be evaluated, as
in Eq. (14), by

P mean
i =

τ+
v

(τ+
v + τ−v )

Pi(+) +
τ−v

(τ+
v + τ−v )

Pi(−), (34)

where the probabilities Pi(±) are the thermal Gibbs
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probabilities for each well in the (+) and (−) configu-
ration.

The non-trivial focusing in the intermediate τv regime
resembles that found in the double-well case. Indeed the
conditions discussed in Sec. III C seem to work also in the
multi-well case, but they need to be generalized. We note
that focusing in an inner well i requires the conditions to
hold on both sides, i.e.,

τwell � τv � τ i−1,i(+), τ i+1,i(−) (35)

τ i−1,i(+) � τ i,i−1(−)� τ i−1,i(−)� τ i,i−1(+)(36)

τ i+1,i(−) � τ i,i+1(+)� τ i+1,i(+)� τ i,i+1(−) ,(37)

where τ i,j(±) is the tunneling time from well i to neigh-
boring well j in the (±) configuration. The dual set of
conditions is of course more difficult to satisfy in practice,
and this is especially true at room temperature when the
separation between the time scales is less pronounced, as
discussed in Sec. III C.

In the BPS model, we find that it is appropriate to
treat the two wells 7, 8 as a single unit, since the four
dimensionless tunneling times τ7,8(±) and τ8,7(±) are
all found numerically to be less than 0.5 at room tem-
perature, while the other tunneling times mostly range
between 1 and 100. We then see that focusing in the
7, 8 unit may be possible when τ6,7(+) � τ7,6(−) �
τ6,7(−)� τ7,6(+), which condition is indeed satisfied at
room temperature. Nevertheless a more detailed anal-
ysis is necessary to understand fully how to relate the
focusing in the double well with that in the multi-well
case.

These simulations were repeated with different values
of the DN asymmetry parameter ε and of the DN inten-
sity D/τv. In all cases we observed only some probability
increase in the outer wells, and despite multiple attempts
we were not able to obtain focusing in the central wells.
This negative result is very unfortunate since such focus-
ing would be desirable as an effective tool for controlling
the ion channel kinetics using stochastic perturbations.

B. Low temperature and large DN intensity

An analytical solution for the stationary probability
distribution induced by a DN (Eq. (7) in Ref. [26]) was
derived under the following assumptions:

• The amplitude of the driving must be larger than
the maximal force associated with the potential,√
D/τv > sup |U ′|;

• The potential barriers must be much larger than
the thermal fluctuation energy kBT .

The above two conditions imply, of course, that the driv-
ing is strong compared to thermal fluctuations. When we
computed the probability distribution at room tempera-
tures in Section A, we did not satisfy these two conditions
required in [26], the main reason being that they were not

physiologically feasible. Nevertheless, in this Section we
take this regime into consideration in order to understand
the range of validity of the analytical prediction given in
Ref. [26].

We have computed the probability distribution among
the eight potentials wells for several different, but very
low, temperatures while keeping the other parameters
constant. In Fig. 8 we compare our numerical results
(bars) with the results of the analytical formula from [26]
(diamonds). The values of the temperature and other
relevant parameters are given in the figure caption.

As one can see, while there is a good agreement at
the lowest temperatures (panels a) and b)), the ana-
lytical formula for the probability distribution derived
in Ref. [26] becomes less accurate as the temperature
is increased (panels c) and d)), and fails completely at
T = 40 K, well before room temperature is reached.
Also, the numerical solutions to the Langevin equation
show some degree of focusing at all temperatures con-
sidered, but the effect becomes progressively less pro-
nounced as the temperature grows. This is in accord
with our observations in Sec. IV A where we failed to
find any indication of focusing in the central wells at
room temperature. Interestingly, in some cases we do
notice significant focusing in the central wells even when
the conditions of Millonas and Chialvo are not satisfied:
for example, in panel (c), the Langevin equation yields a
total probability of approximately 90% in the wells 5 and
6, even though the conditions for the analytical equation
of Ref. [26] fail. The presence of focusing in this case
suggests that the conditions given in Ref. [26] are not
necessary in order to achieve focusing.

V. CONCLUSIONS

The purpose of this work was to investigate the effect
of nonequilibrium kinetic focusing, i.e., of selective en-
hancement of probability in one of the wells of a multi-
well system, postulated by Millonas and Chialvo [26]. We
tested for the presence of the effect in different parame-
ter regimes (different temperatures and properties of the
stochastic DN stimulation), as well as studied the neces-
sary conditions for focusing.

We considered two different kinetic models of ion chan-
nels subjected to a dichotomous noise perturbation. The
first was a simple model consisting of two wells separated
by an energy barrier, while the second was a physiolog-
ically relevant eight-well model proposed by Bezanilla
et al. [29] for the Shaker K+ channel. The two mod-
els were studied numerically using the master equation
and the Langevin equation. For the double-well model
nonequilibrium focusing has been found under physiolog-
ical conditions (room temperature and moderate external
perturbation intensity) using the Langevin equation ap-
proach. Interestingly, the master equation failed for short
DN correlation time and we observed a significant diver-
gence between the results of the two methods. It clearly
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FIG. 8: (Color online) Probability distributions at different
values of the temperature are computed with the Langevin
equation (green bars) and theoretically (black diamonds) us-
ing Eq. (7) in Ref. [26]. The parameters are: D/τv = 105,
ε = 0.6, τv = 10−4, and V0 = −142 mV/kBT . The temper-
ature is: (a) T = 20K, (b) T = 25K, (c) T = 30K, and (d)
T = 40K.

indicates that the master equation approach, dominant in
biophysical literature on ion channel gating kinetics, has
significant limitations. For the eight-well model, nonequi-
librium focusing was observed under physiological condi-
tions but only in the outer wells (wells 1, 2, 7, and 8).
Focusing in the central wells, described by Millonas and
Chialvo [26], was observed only at low temperatures, in
the non-physiological regime. We also investigated the

existence of this phenomenon and the dependence of fo-
cusing strength on the external perturbation parameters.
In the double-well case we suggested the necessary condi-
tions, while in the eight-well case more analysis is needed
in order to address this question.

We also analyzed the results of Millonas and Chialvo
in [26] obtained under the assumption that T → 0. We
showed that their analytical formula for the nonequilib-
rium kinetic focusing starts to fail well before physiologi-
cal conditions (room temperature and moderate external
perturbation intensity) are achieved. It also seems that
the conditions for focusing given in [26] are overly restric-
tive, since we observed meaningful focusing outside that
regime, albeit still far away from physiologically relevant
conditions.

In perspective, our analysis still leaves open the ques-
tion of whether it is possible to focus an ion channel in
an arbitrarily chosen well, thus completely controlling
its dynamics, under physiological conditions. This is a
prospect that would be very interesting from a practi-
cal point of view. Although we failed to see focusing in
any of the central wells under physiological conditions,
we still don’t know if this could be possible with a prop-
erly chosen stochastic stimulation. Nevertheless we have
shown both that focusing is possible in physiological con-
ditions in the outer wells and have provided preliminary
evidence that focusing in the central wells of a multi-well
potential is also possible beyond the assumptions used in
Ref. [26].
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