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We simulate the bond and site percolation models on the simple-cubic lattice with linear sizes
up to L = 512, and estimate the percolation thresholds to be pc(bond) = 0.248 811 82(10) and
pc(site) = 0.311 607 7(2). By performing extensive simulations at these estimated critical points, we
then estimate the critical exponents 1/ν = 1.141 0(15), β/ν = 0.477 05(15), the leading correction
exponent yi = −1.2(2), and the shortest-path exponent dmin = 1.375 6(3). Various universal am-
plitudes are also obtained, including wrapping probabilities, ratios associated with the cluster-size
distribution, and the excess cluster number. We observe that the leading finite-size corrections in
certain wrapping probabilities are governed by an exponent ≈ −2, rather than yi ≈ −1.2.
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I. INTRODUCTION

Percolation [1] is a cornerstone of the theory of critical
phenomena [2], and a central topic in probability [3, 4].
In two dimensions, Coulomb gas arguments [5] and con-
formal field theory [6] predict the exact values of the bulk
critical exponents β = 5/36, ν = 4/3, which have been
confirmed rigorously in the specific case of triangular-
lattice site percolation [7]. Exact values of the percola-
tion thresholds pc on several two-dimensional lattices are
also known [8]. In particular, it is known rigorously [9]
that pc = 1/2 for bond percolation on the square lat-
tice. For all d greater than or equal to the upper critical
dimension [10] of dc = 6, the mean-field values for the
exponents β = 1, dν = 3 are believed to hold; this has
been proved rigorously [11, 12] for d ≥ 19.

For dimensions 2 < d < 6 by contrast, no exact values
for either the critical exponents or percolation thresholds
are known. Significant effort has therefore been expended
on obtaining ever more accurate estimates, especially in
three dimensions.

In addition to percolation thresholds and critical ex-
ponents, crossing probabilities [13, 14] also play an im-
portant role in studies of percolation. For lattices drawn
on a torus, the analogous quantities are wrapping prob-
abilities [15], and in two dimensions their values can be
determined exactly [16]. The three-dimensional case [17]
has been far less studied however. Precisely estimating
wrapping probabilities on the simple-cubic lattice repre-
sents one of the central undertakings of the current work.

In addition to their intrinsic importance, wrapping
probabilities have proved to be an effective practical
means of estimating percolation thresholds [18, 19]. Us-
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ing Monte Carlo (MC) simulations and performing a
careful finite-size scaling analysis of various wrapping
probabilities in the neighbourhood of the transition, we
obtain very accurate estimates of pc for both site and
bond percolation. We observe numerically that the lead-
ing finite-size corrections for certain wrapping probabili-
ties appear to be governed by an exponent ≈ −2, rather
than by the leading irrelevant exponent yi ≈ −1.2.
We then estimate the thermal exponent yt = 1/ν by

fixing p to our best estimate of pc, and studying the diver-
gence with linear size L of the derivative of the wrapping
probability, which is proportional to the covariance of its
indicator with the number of bonds. We find this pro-
cedure for estimating yt preferable to methods in which
yt is estimated by studying how quantities behave in a
neighbourhood of p values around pc. In particular, we
believe the current method produces more reliable error
estimates.
The remainder of this paper is organized as follows.

The simulation method and the sampled quantities are
discussed in Section II. The results for the wrapping prob-
abilities and thresholds are given in Section III. Critical
exponents and the excess cluster number are discussed in
Section IV. We then finally conclude with a discussion in
Section V.

II. SAMPLED QUANTITIES

We study bond and site percolation on the periodic
L × L × L simple-cubic lattice with linear system sizes
L = 8, 12, 16, 24, 32, 48, 64, 128, 256, 512. For each
system size, we produced at least 2.5× 107 independent
samples. Each independent bond (site) configuration is
generated by independently occupying each bond (site)
with probability p. The clusters in each configuration are
identified using breadth-first search. The number of sites
in each cluster defines its size.
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TABLE I: Fits of the wrapping probabilities R(x), R(a), R(3), and the ratios Q1, Q2 for bond percolation. We did not obtain
stable fits with yi free for R(3).

Lmin χ2/DF pc yt Oc q1 b1 yi b2

Q1

16 53/40 0.248 812 03(5) 1.16(1) 0.865 37(1) −0.36(1) −0.0423(5) −1.2 0.341(5)
24 33/33 0.248 811 98(6) 1.16(2) 0.865 35(2) −0.31(2) −0.040(2) −1.2 0.31(2)
32 28/26 0.248 811 93(7) 1.19(3) 0.865 33(2) −0.31(3) −0.036(3) −1.2 0.25(5)
16 44/39 0.248 811 84(8) 1.16(1) 0.865 39(3) −0.36(1) −0.10(4) −1.34(9) 0.50(8)
24 31/32 0.248 811 88(9) 1.19(2) 0.865 29(4) −0.32(3) −0.10(8) −1.3(2) 0.5(2)
32 28/25 0.248 811 96(14) 1.19(3) 0.865 4(2) −0.31(3) −0.02(4) −1.0(5) 0.2(3)

Q2

32 28/25 0.248 811 20(5) 1.17(2) 0.633 58(3) −0.80(5) −0.104(4) −1.2 0.05(7)
48 16/18 0.248 811 95(6) 1.14(2) 0.633 50(3) −0.89(8) −0.088(9) −1.2 −0.3(2)
64 10/11 0.248 811 84(11) 1.12(3) 0.633 4(2) −1.0(2) −0.05(4) −1.2 −1(1)
32 28/26 0.248 812 02(6) 1.17(2) 0.633 58(5) −0.80(5) −0.097(8) −1.08(3) -
48 16/19 0.248 811 93(7) 1.14(2) 0.633 46(7) −0.89(8) −0.15(4) −1.22(7) -
64 10/12 0.248 811 82(11) 1.12(3) 0.633 3(2) −1.0(2) −0.5(6) −1.5(4) -

R(x)

16 41/37 0.248 811 81(4) 1.143(7) 0.257 77(2) −1.22(3) 0.005(2) −1.2 −0.23(1)
24 30/31 0.248 811 83(4) 1.15(2) 0.257 78(3) −1.22(6) 0.003(3) −1.2 −0.26(4)
32 25/24 0.248 811 82(6) 1.15(2) 0.257 76(5) −1.20(8) 0.006(7) −1.2 −0.20(10)
16 41/37 0.248 811 82(4) 1.144(7) 0.257 79(2) −1.22(3) 0.18(2) −1.83(4) -
24 31/31 0.248 811 84(4) 1.15(2) 0.257 79(2) −1.22(6) 0.22(8) −1.9(2) -
32 25/24 0.248 811 82(6) 1.15(2) 0.257 77(4) −1.20(8) 0.1(1) −1.7(3) -

R(a)

16 40/39 0.248 811 82(4) 1.149(7) 0.459 99(3) −1.65(4) 0.004(2) −1.2 0.73(2)
24 25/32 0.248 811 82(5) 1.14(2) 0.459 97(5) −1.74(9) 0.003(4) −1.2 0.72(6)
32 22/25 0.248 811 83(6) 1.14(2) 0.459 98(7) −1.7(2) 0.005(9) −1.2 0.7(2)
16 40/39 0.248 811 82(4) 1.149(7) 0.459 97(2) −1.65(4) 0.81(6) −2.06(3) -
24 25/32 0.248 811 82(4) 1.14(2) 0.459 95(3) −1.74(9) 0.8(2) −2.05(8) -
32 22/25 0.248 811 82(5) 1.14(2) 0.459 96(5) −1.74(2) 1.0(9) −2.1(3) -

R(3)
16 44/38 0.248 811 85(6 ) 1.14(1) 0.080 41(2) −0.66(2) 0.010(1) −1.2 −0.076(8)
24 35/31 0.248 811 91(6 ) 1.15(2) 0.080 43(3) −0.63(5) 0.007(3) −1.2 −0.04(3)
32 23/24 0.248 811 85(8 ) 1.17(3) 0.080 39(4) −0.59(5) 0.014(6) −1.2 −0.15(9)

We sampled the following observables in our simula-
tions:

• The number of occupied bonds Nb for bond perco-
lation, and the number of occupied sites Ns for site
percolation;

• The number of clusters Nc;

• The size C1 of the largest cluster;

• The cluster-size moments Sm =
∑

C |C|m with
m = 0, 2, 4. The sum runs over all clusters C, and
S0 is simply the number of clusters;

• An observable S := max
C

max
y∈C

d(xC , y) used to de-

termine the shortest-path exponent. Here d(x, y)
denotes the graph distance from site x to site y, and
xC is the vertex in cluster C with the smallest ver-
tex label, according to some fixed (but arbitrary)
vertex labeling.

• The indicators R(x), R(y), and R(z), for the event
that a cluster wraps around the lattice in the x, y,
or z directions, respectively.

From these observables we calculated the following
quantities:

• The mean size of the largest cluster C1 = 〈C1〉,
which at pc scales like C1 ∼ Lyh with yh = df =
d− β/ν, where df is the fractal dimension;

• The cluster density ρ = 〈Nc〉/Ld;

• The mean size of the cluster at the origin, χ =
〈S2〉/Ld, which at pc scales like χ ∼ L2yh−d;

• The dimensionless ratios

Q1 =
〈C1

2〉

〈C1〉2
, Q2 =

〈S2
2〉

〈3S2
2 − 2S4〉

; (1)

• The shortest-path length S = 〈S〉, which at pc
scales like S ∼ Ldmin with dmin the shortest-path
fractal dimension;

• The wrapping probabilities

R(x) =〈R(x)〉 = 〈R(y)〉 = 〈R(z)〉 ,

R(a) =1− 〈(1−R(x))(1 −R(y))(1 −R(z))〉 ,

R(3) =〈R(x)R(y)R(z)〉 .

(2)

Here R(x) gives the probability that a winding
exists in the x direction, R(a) gives the proba-
bility that a winding exists in at least one of
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FIG. 1: Plots of R(x)(p,L) (top) and R(a)(p,L) (bottom) vs
L for fixed values of p, for bond percolation. In both cases,
the curves correspond to our preferred fit of the MC data for
R(p,L) by the ansatz (4); the dashed curve corresponds to set-
ting p = 0.248 811 82. The blue strips indicate an interval of

one sigma above and below the estimates R
(x)
c = 0.257 78(6)

and R
(a)
c = 0.459 97(8).

the three possible directions, and R(3) gives the
probability that windings simultaneously exist in
all three possible directions. Near pc, we expect
each of these wrapping probabilities to behave as
∼ f((p− pc)L

yt), where f is a scaling function;

• The covariance of R(x) and Nb

g
(x)
bR = 〈R(x)Nb〉 − 〈R(x)〉〈Nb〉

= p(1− p)
∂R(x)

∂p
.

(3)

At pc, we expect g
(x)
bR ∼ Lyt. An analogous defini-

tion of g
(x)
sR , with Nb being replaced with Ns, was

used for site percolation.

To derive (3), one can explicitly differentiate 〈R(x)〉
with respect to p, and use the fact that 〈Nb〉 = p|E|
where |E| is the total number of edges on the lattice.
The complete set of data for all observables, for

both bond and site percolation, is contained as a file
percolation.tar.gz in the preprint version of this pa-
per at arXiv.org [28].
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FIG. 2: Plots of Q1 and Q2 vs L−1.2 (top), and R(x) and R(a)

vs L−2 (bottom), with p = 0.248 811 8, for bond percolation.
The solid lines are simply to guide the eye.

III. ESTIMATING pc

A. Bond percolation

We estimate the thresholds of bond and site percola-
tion by studying the finite-size scaling of the wrapping
probabilities R(x), R(a), R(3), and the dimensionless ra-
tios Q1, Q2. Around pc, we perform least-squares fits of
the MC data for these quantities by the ansatz

O(ǫ, L) = Oc +
2∑

k=1

qkǫ
kLkyt + b1L

yi + b2L
−2 , (4)

where ǫ = pc−p, Oc is a universal constant, and yi is the
leading correction exponent. We perform fits with both
b1 and b2 free, as well as fits with b2 being set identically
to zero. By performing fits with yi free we estimate that
yi = −1.2(2). We also perform fits with yi fixed to yi =
−1.2.
As a precaution against correction-to-scaling terms

that we have neglected in our chosen ansatz, we impose a
lower cutoff L ≥ Lmin on the data points admitted in the
fit, and we systematically study the effect on the χ2 value
of increasing Lmin. In general, our preferred fit for any

http://www.arxiv.org
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given ansatz corresponds to the smallest Lmin for which
χ2 divided by the number of degrees of freedom (DF) is
O(1), and for which subsequent increases in Lmin do not
cause χ2 to drop by vastly more than one unit per degree
of freedom.
Table I summarizes the results of these fits. From the

fits, we can see the finite-size corrections of Q1 and Q2

are dominated by the exponent yi ≈ −1.2. From Q1 and
Q2, we estimate pc = 0.248 811 9(3), and their universal
critical values Q1,c = 0.865 4(2) and Q2,c = 0.633 5(2).

For R(x) and R(a), fixing yi = −1.2 and including both
the b1 and b2 terms we find that b1 is consistent with
zero, while b2 is clearly nonzero. Furthermore, if we set
b2 = 0 and leave yi free, we find yi ≈ −2. This suggests
that either the amplitudes of the leading corrections of
R(x) and R(a) vanish identically, or at least that they
are sufficiently small that they cannot be detected from
our data. Due to these weak finite-size corrections, the
values of pc fitted from R(x) and R(a) are much more
stable than those obtained from Q1 and Q2. From R(x)

and R(a), we estimate pc = 0.248 811 82(10). For R(3),
we report only the fits with corrections b1L

−1.2 + b2L
−2.

If yi is left free the fits become unstable, regardless of
whether the b2L

−2 term is included. From R(3), we esti-
mate pc = 0.248 811 85(15) which is consistent with the
value obtained fromR(x) andR(a). From these fits, we es-

timate the universal wrapping probabilities to be R
(x)
c =

0.257 78(6), R
(a)
c = 0.459 97(8) and R

(3)
c = 0.080 41(8).

In Fig. 1, we illustrate our estimate of pc by plotting
R(x) and R(a) vs L. Precisely at p = pc, as L → ∞ the
data should tend to a horizontal line, whereas the data
with p 6= pc will bend upward or downward. Fig. 1 shows
that our estimate of pc lies slightly below the central value
0.248 812 6 reported in [20].
In Fig. 2, we plot the data at p = 0.248 811 8 for R(x)

and R(a) vs L−2, and for Q1 and Q2 vs L−1.2. The figure
strongly suggests that the correction L−1.2 dominates in
Q1 and Q2, but vanishes (or is very weak) in R(x) and
R(a).

B. Site percolation

For site percolation, we again estimate pc by fitting
Q1, Q2, and R(x), R(a), R(3) by Eq. (4). The fitting
procedure is similar to that of bond percolation, and the
results are summarized in Table II. From the table, we
can see the fits of Q1 and Q2 are less stable for site perco-
lation than bond percolation. The ratio χ2/DF remains
large until Lmin ≥ 32 for Q1 and Lmin ≥ 48 for Q2, and
the resulting estimates of pc range from 0.311 606 9(2) to
0.311 607 7(3).
The fits of the wrapping probabilities are better be-

haved, as was the case for bond percolation. For R(3),
fixing yi = −1.2 and including both the b1 and b2 terms,
we find that b1 is consistent with zero, while b2 is clearly
nonzero. Furthermore, if we set b2 = 0 and leave yi free,
we find yi ≈ −2. This suggests that the amplitude of the
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FIG. 3: Plots of R(x)(p, L) (top) and R(a)(p, L) (bottom)
vs L for fixed values of p, for site percolation. In both cases,
the curves correspond to our preferred fit of the MC data for
R(p,L) by ansatz (4); the dashed curve corresponds to setting
p = 0.311 607 7. The blue strips indicate an interval of one

sigma above and below the estimates R
(x)
c = 0.257 82(6) and

R
(a)
c = 0.459 99(8).

leading correction of R(3) is smaller than the resolution
of our fits, and might possibly be zero. The fits of the
R(a) data, however, quite clearly indicate the presence of
the b1L

−1.2 term. For R(x), we report only the fits with
corrections b1L

−1.2 + b2L
−2; if yi is left free the fits be-

come unstable, regardless of whether the b2L
−2 term is

included. As for R(a), the amplitude b1 appears to take
a nonzero value. These observations suggest the leading
correction L−1.2 does not generically vanish for all wrap-
ping probabilities, but rather that the amplitudes in some
cases are smaller than the resolution of our simulations.

Comparing the various fits, we estimate pc =
0.311 607 7(2) for site percolation, which is consistent
with the previous result 0.311 607 7(4) [21]. In ad-
dition, we estimate the universal wrapping probabili-

ties to be R
(x)
c = 0.257 82(6), R

(a)
c = 0.459 99(8), and

R
(3)
c = 0.080 46(6), which are consistent with those esti-

mated from bond percolation. In Fig. 3, we show plots
of R(x) and R(a) which illustrate our estimate of pc.
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TABLE II: Fits of the wrapping probabilities R(x), R(a), R(3), and the ratios Q1, Q2 for site percolation. For R(x) we obtain
unstable results when yi is free.

Lmin χ2/DF pc yt Oc q1 b1 yi b2

Q1

32 19/16 0.311 606 9(2) 1.14(2) 0.865 05(2) −0.22(2) 0.062(2) −1.2 0(3)
48 11/11 0.311 607 0(2) 1.11(3) 0.865 09(3) −0.25(3) 0.054(6) −1.2 0.2(2)
64 3/6 0.311 607 7(3) 1.12(6) 0.865 26(7) −0.24(6) 0.01(2) −1.2 1.4(5)
32 19/16 0.311 606 9(2) 1.15(2) 0.865 06(3) −0.22(2) 0.063(4) −1.11(2) -
48 10/11 0.311 607 1(2) 1.11(3) 0.865 12(4) −0.25(3) 0.09(2) −1.22(7) -
64 3/6 0.311 607 7(3) 1.12(6) 0.865 27(5) −0.24(6) 0.9(10) −1.8(3) -

Q2

64 3/6 0.311 607 6(2) 1.12(4) 0.633 3(1) −0.56(9) 0.02(3) −1.2 5.1(7)
48 13/11 0.311 607 2(1) 1.14(2) 0.633 06(4) −0.52(4) 0.9(1) −1.52(3) -
64 2/6 0.311 607 6(2) 1.12(4) 0.633 29(8) −0.56(9) 4(2) −1.9(2) -

R(x)
16 42/39 0.311 607 85(5) 1.13(1) 0.257 89(2) −0.76(4) 0.004(1) −1.2 −0.22(1)
24 30/31 0.311 607 74(6) 1.14(2) 0.257 84(3) −0.75(5) 0.009(2) −1.2 −0.29(3)
32 24/24 0.311 607 66(7) 1.14(2) 0.257 80(3) −0.73(5) 0.015(4) −1.2 −0.39(6)

R(a)

16 39/40 0.311 607 70(5) 1.12(2) 0.460 02(2) −1.09(6) 0.023(2) −1.2 0.08(2)
24 25/32 0.311 607 67(7) 1.13(2) 0.459 99(4) −1.05(6) 0.025(3) −1.2 0.05(4)
32 19/24 0.311 607 65(8) 1.13(2) 0.459 98(5) −1.06(7) 0.027(6) −1.2 0.02(9)
16 36/40 0.311 607 75(6) 1.12(2) 0.460 06(3) −1.09(6) 0.055(5) −1.33(4) -
24 25/32 0.311 607 68(8) 1.13(2) 0.460 01(5) −1.05(7) 0.039(9) −1.21(9) -
32 19/24 0.311 607 65(9) 1.13(2) 0.459 99(7) −1.06(7) 0.03(2) −1.1(2) -

R(3)

16 50/38 0.311 608 01(8) 1.14(2) 0.080 55(1) −0.38(3) −0.010(8) −1.2 −0.30(1)
24 27/30 0.311 607 79(9) 1.14(2) 0.080 49(2) −0.39(4) −0.004(2) −1.2 −0.38(3)
32 18/23 0.311 607 65(11) 1.15(3) 0.080 45(3) −0.38(4) −0.002(3) −1.2 −0.47(5)
16 40/38 0.311 607 89(7) 1.15(2) 0.080 510(9) −0.38(3) −0.21(1) −1.77(2) -
24 26/30 0.311 607 77(8) 1.14(2) 0.080 48(2) −0.39(4) −0.30(5) −1.88(5) -
32 18/23 0.311 607 66(10) 1.15(3) 0.080 46(2) −0.38(4) −0.6(2) −2.1(2) -

IV. RESULTS AT pc

In this section, we estimate the critical exponents yt,
yh, and dmin, as well as the excess cluster number. Fixing
p at our estimated thresholds for bond and site percola-

tion, we study the covariances g
(x)
bR and g

(x)
sR , the mean

size of the largest cluster C1, the mean size of the clus-
ter at the origin χ, the shortest-path length S, and the

cluster density ρ. The MC data of g
(x)
bR , g

(x)
sR , C1, χ and

S are fitted by the ansatz

A = LyA(a0 + b1L
−1.2 + b2L

−2) . (5)

We perform fits using different combinations of the two
corrections b1L

−1.2 and b2L
−2 and compare the results.

A. Estimating yt

We estimate yt by studying the covariances g
(x)
bR and

g
(x)
sR , both of which scale as ∼ Lyt at the critical point.
We find this procedure for estimating yt preferable to
methods, such as that employed in [21], in which yt is es-
timated by studying how quantities behave in the neigh-
bourhood of pc as the system deviates from criticality. In
particular, we believe the current method produces more
reliable error estimates.
We fit the data for g

(x)
bR at p = 0.248 811 8 and g

(x)
sR

at p = 0.311 607 7 to Eq. (5), and the results are shown

TABLE III: Fits of covariances g
(x)
bR

and g
(x)
sR

.

Lmin χ2/DF yt a0 b1 b2

g
(x)
bR

16 4/4 1.140 4(9) 0.231(1) −0.03(2) 0.1(2)
24 4/3 1.140 6(13) 0.231(2) −0.02(5) 0.0(4)
16 4/5 1.140 9(4) 0.230 7(3) −0.012(3) -
24 4/4 1.140 6(6) 0.231 1(6) −0.017(7) -

g
(x)
sR

16 5/4 1.141 6(4) 0.155 1(3) −0.004(7) −0.06(5)
24 4/3 1.141 1(6) 0.155 4(6) −0.02(2) −0.1(2)
16 7/5 1.141 1(2) 0.155 5(1) −0.013(1) -
24 4/4 1.141 4(3) 0.155 3(2) −0.010(2) -

in Table III. The estimate of yt from g
(x)
sR produces a

smaller error bar than that from g
(x)
bR . From these fits

we take our final, somewhat conservative, estimate to be
yt = 1.141 0(15).

In Fig. 4, we plot (ln g
(x)
bR −yt lnL) and (ln g

(x)
sR −yt lnL)

vs lnL using three different values of yt: our estimate,
as well as our estimate plus or minus three standard de-
viations. Using the true value of yt should produce a
horizontal line for large L. In the figure, the data using
yt = 1.136 5 and yt = 1.145 5 respectively bend upward
and downward, suggesting that the true value of yt does
indeed lie within 3 sigmas of our estimate. The data
with yt = 1.141 appear to be consistent with an asymp-
totically horizontal line. We note that while the curve
appears to be increasing around the point at L = 512 for
bond percolation, it instead slightly decreases for site per-
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FIG. 4: Plots of (ln g
(x)
bR

− yt lnL) (top) and (ln g
(x)
sR

− yt lnL)
(bottom) vs lnL illustrating our estimate yt = 1.141 0(15).
The dashed curves are simply to guide the eye.

TABLE IV: Fits of C1 and χ. The superscripts b and s denote
bond and site percolation, respectively.

Lmin χ2/DF yh a0 b1 b2

Cb

1

16 3/4 2.522 86(5) 0.939 4(3) −0.014(6) 0.22(4)
24 3/3 2.522 89(7) 0.939 3(4) −0.009(11) 0.2(1)
24 5/4 2.522 98(3) 0.938 8(2) 0.009(2) -
32 3/3 2.522 94(4) 0.939 0(2) 0.005(3) -

χb

16 4/4 2.523 03(4) 1.125 7(5) 0.14(1) 0.18(7)
24 3/3 2.523 00(5) 1.126 2(7) 0.12(2) 0.3(2)
24 6/4 2.523 08(3) 1.125 1(3) 0.157(4) -
32 4/3 2.523 05(3) 1.125 5(4) 0.151(6) -

Cs

1
16 5/4 2.522 99(3) 0.471 16(7) 0.024(2) −0.44(2)
24 5/3 2.523 00(5) 0.471 1(2) 0.024(4) −0.45(4)

χs

32 0.9/2 2.522 91(5) 0.284 1(2) −0.001(7) −1.15(9)
48 0.7/1 2.522 94(9) 0.284 0(4) −0.007(18) −1.3(3)
32 0.9/3 2.522 92(1) 0.284 06(3) - −1.16(1)
48 0.9/2 2.522 91(2) 0.284 08(7) - −1.17(5)

colation, suggesting that in fact this movement is domi-
nated (or even entirely caused) by noise.

B. Estimating yh

We estimate yh by studying the divergence of C1 and
χ as L increases with p fixed to our best estimates of
pc. We fit the MC data for C1 and χ by Eq. (5), with
the exponent yA then corresponding to yh and 2yh −

-0.757

-0.755

-0.753

-0.751

-0.749

 100

ln
C

1s  -
 y
h
ln
L

L

-0.065

-0.063

-0.061

-0.059

ln
C

1b  -
 y
h
ln
L

yh=2.52250 

yh=2.52295 

yh=2.52340 

FIG. 5: Plots of (lnCb

1 − yh lnL) (top) and (lnCs

1 − yh lnL)
(bottom) vs lnL to show our estimate yh = 2.522 95(15). The
dashed curves are simply to guide the eye.

TABLE V: Fits of S. The superscripts b and s denote bond
and site percolation, respectively.

Lmin χ2/DF dmin a0 b1 b2

Sb 24 2/3 1.375 26(5) 1.814 9(5) −0.65(2) −3.8(2)
32 1/2 1.375 33(7) 1.814 2(7) −0.59(5) −4.4(4)
48 0/2 1.375 30(9) 1.815(1) −0.63(9) −4(1)

Ss

16 5/4 1.375 80(2) 1.383 4(2) −3.432(5) 2.72(3)
24 4/4 1.375 77(3) 1.383 6(3) −3.45(2) 2.82(3)
32 4/2 1.375 76(5) 1.383 7(4) −3.45(3) 2.9(3)

d, respectively. The results are reported in Table IV.
We use superscripts b and s to distinguish bond and site
percolation. For Cb

1 and χs, the amplitude b1 is quite
small, while b1 in χb and Cs

1 is clearly present. In the fits
of χs with one correction term b1L

−1.2, the ratio χ2/DF
remains large until Lmin ≥ 64. We therefore show the
fits with correction b2L

−2 instead. Comparing these fits,
we estimate yh = 2.522 95(15).

In Fig. 5, we plot (lnCb
1−yh lnL) and (lnCs

1 −yh lnL)
vs lnL using three different values of yh: our estimate,
as well as our estimate plus or minus three standard de-
viations. As L increases, the data with yh = 2.522 50
and 2.523 40 respectively slope upward and downward,
while the data with yh = 2.522 95 are consistent with an
asymptotically horizontal line.
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TABLE VI: Fits of ρ. The superscripts b and s denote bond
and site percolation, respectively.

Lmin χ2/DF ρc b b1

ρb

16 3/5 0.272 932 83(1) 0.679(3) 0.1(6)
24 1/4 0.272 932 83(1) 0.674(6) 3(4)
16 2/7 0.272 932 83(1) 0.678 9(6) -
24 2/6 0.272 932 83(1) 0.679(2) -

ρs

12 4/6 0.052 438 218(3) 0.674 5(5) 0.02(8)
16 4/5 0.052 438 218(3) 0.674 7(8) −0.02(21)
24 4/4 0.052 438 218(3) 0.674(2) 0.2(10)
12 4/7 0.052 438 218(3) 0.674 6(2) -
16 4/6 0.052 438 218(3) 0.674 6(3) -
24 4/5 0.052 438 218(3) 0.674 6(5) -

 10

 100

 1000

 10000

 10  100  1000

S

L

bond
site

slope 1.3756

FIG. 6: Log-log plot of S versus L for bond and site perco-
lation. Two straight lines with slope 1.375 6 are included for
comparison.

C. Estimating dmin

We estimate the shortest-path fractal dimension dmin

by studying the quantity S at our estimated thresholds.
The MC data for S are fitted to Eq. (5) with the expo-
nent yA replaced by dmin, and the results are reported
in Table V. We again use the superscripts b and s to
distinguish bond and site percolation. In the fits, both
b1 and b2 are clearly observable for Sb and Ss. And
when we set b2 = 0, the ratio χ2/DF remains relatively
large. We also did the fits by replacing the correction
with b2 by a constant term c0 in Eq. (5), and obtained
dmin(bond) = 1.375 55(6) and dmin(site) = 1.375 59(6).
Comparing these fits, we estimate dmin = 1.375 6(3).
To illustrate this estimate, Fig. 6 shows a log-log plot

of S versus L.

D. Excess number of clusters

The cluster density tends to a finite limit ρc =
limL→∞ limp→pc

ρ at criticality. While the value of
ρc is non-universal, the excess cluster number b :=

limL→∞ limp→pc
Ld(ρ−ρc) is universal [27]. To estimate

b, we study ρ with p fixed to our estimated thresholds for
bond and site percolation and fit the data to the ansatz

ρ = ρc + L−3(b+ b1L
−2) . (6)

The resulting fits are summarized in Table VI, where
we again use superscripts b and s to differentiate the
bond and site cases. We report fits both with b1 free
and b1 = 0. We find that ρ can be well fitted to (6)
with b1 = 0 fixed. Leaving b1 free, we find that b1 is
consistent with zero, suggesting that the leading correc-
tion exponent might be even smaller than −2. We also
performed fits in which the leading correction exponent
was fixed to −1.2 and −3, and in both cases the resulting
estimates of ρc and b were consistent with those reported
in Table VI. Leaving the leading correction exponent free
produces unstable fits however. Comparing these fits, we
estimate b = 0.675(2).

To our knowledge, no estimates of b on the periodic
L × L × L simple cubic lattice have previously been re-
ported in the literature; on the L × L square lattice
b = 0.883 5(8) [27]. The excess cluster number was stud-
ied in [20] on an L×L×L′ lattice with L′ ≫ L. Naively,
extrapolating their results to L′ = L gives an estimate
of b ≈ 0.412 which is significantly below our estimate.
We also note that our estimate of the number of clus-
ters ρc = 0.272 932 83(1) differs slightly with the estimate
ρc = 0.272 931 0(5) reported in [20].

V. DISCUSSION

We study in this paper standard bond and site perco-
lation on the three-dimensional simple-cubic lattice with
periodic boundary conditions. Using extensive Monte
Carlo simulations and finite-size scaling analysis, we re-
port the estimates: pc = 0.248 811 82(10) (bond) and
pc = 0.311 607 7(2) (site). The bulk thermal and mag-
netic exponents are estimated to be yt = 1.141 0(15) and
yh = 2.522 95(15), the shortest-path fractal dimension
to be dmin = 1.375 6(3), and the leading irrelevant ex-
ponent to be yi = −1.2(2). The universal value of the
excess cluster number is estimated to be b = 0.675(2).

We emphasize that the reported estimates of pc are
obtained by studying wrapping probabilities, which are
found to have weaker corrections to scaling than dimen-
sionless ratios constructed from moments of magnetic
quantities such as C1 and Sm. In particular, we find evi-
dence suggesting the leading correction exponent in cer-
tain wrapping probabilities (R(x) and R(a) for bond per-
colation, R(3) for site percolation) may be ≈ −2 rather
than −1.2, although the reasons are not clear. The uni-
versal values of the wrapping probabilities we studied are

estimated to be: R
(x)
c = 0.257 80(6), R

(a)
c = 0.459 98(8),

and R
(3)
c = 0.080 44(8), by comparing the results for

bond and site percolation.
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TABLE VII: Summary of estimated thresholds, critical exponents, universal wrapping probabilities, and excess cluster number
of bond and site percolation on the simple-cubic lattice. We note that the values of yt and yh in [21] marked by superscript
∗ contained typographical errors. The final error bars reported in [21] were also underestimated, taking insufficient account of
systematic errors.

Ref. pc(bond) pc(site) yt = 1/ν yh = df dmin yi R(x) R(a) R(3) b
[20] 0.248 812 6(5) 1.12(2) 2.523(4)
[22] 0.311 608 0(4)
[23] 0.311 608 1(13) 1.141(2) 2.523 0(3) −1.61(13)
[17] 0.249 0(2) 0.311 5(3) 1.15(2) 0.265(6) 0.471(8) 0.084(4)
[21] 0.311 607 7(4) 1.145 0(7)∗ 2.522 6(1)∗

[24] 0.248 812 0(5) 1.142(3) 2.523 5(8)
[25] 1.375 6(6)
[26] 1.142(8) −1.0(2)
This work 0.248 811 82(10) 0.311 607 7(2) 1.141 0(15) 2.522 95(15) 1.375 6(3) −1.2(2) 0.257 80(6) 0.459 98(8) 0.080 44(8) 0.675(2)

From these values we can estimate other wrapping
probabilities discussed in the literature, such as

R(1) : = 〈R(x)(1 −R(y))(1−R(z))〉

=
1

3
(2R(a) +R(3) − 3R(x)) ,

R(2) : = 〈R(x)R(y)(1−R(z))〉

=
1

3
(3R(x) − 2R(3) −R(a)) ,

R(x,y) : = 〈R(x)R(y)〉 =
1

3
(3R(x) +R(3) −R(a)) .

In words, R(1) is the probability that a winding exists in
one given direction but not in the other two directions;
R(2) is the probability that a winding exists in two given
directions but not in the third; and R(x,y) is the probabil-
ity that a winding exists in two given directions, regard-
less of whether a winding exists in the third direction.

We obtain R
(1)
c = 0.075 67(14), R

(2)
c = 0.050 85(14), and

R
(x,y)
c = 0.131 29(12).

Table VII summarizes the estimates presented in this
work. For comparison, we also provide an (incomplete)
summary of previous estimates.
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[21] Y. Deng and H. W. J. Blöte, Phys. Rev. E 72, 016126

(2005).
[22] C. D. Lorenz and R. M. Ziff, J. Phys. A 31, 8147 (1998).



9

[23] H. G. Ballesteros, L. A. Fernández, V. Mart́ın-Mayor,
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